Knowledge (XXG)

Fermat's Last Theorem

Source 📝

4808:—a large sum at the time—to the Göttingen Academy of Sciences to offer as a prize for a complete proof of Fermat's Last Theorem. On 27 June 1908, the academy published nine rules for awarding the prize. Among other things, these rules required that the proof be published in a peer-reviewed journal; the prize would not be awarded until two years after the publication; and that no prize would be given after 13 September 2007, roughly a century after the competition was begun. Wiles collected the Wolfskehl prize money, then worth $ 50,000, on 27 June 1997. In March 2016, Wiles was awarded the Norwegian government's 3372:
to make my original Iwasawa theory work from three years earlier. So out of the ashes of Kolyvagin–Flach seemed to rise the true answer to the problem. It was so indescribably beautiful; it was so simple and so elegant. I couldn't understand how I'd missed it and I just stared at it in disbelief for twenty minutes. Then during the day I walked around the department, and I'd keep coming back to my desk looking to see if it was still there. It was still there. I couldn't contain myself, I was so excited. It was the most important moment of my working life. Nothing I ever do again will mean as much.
727:, to resolve. As a result, the final proof in 1995 was accompanied by a smaller joint paper showing that the fixed steps were valid. Wiles's achievement was reported widely in the popular press, and was popularized in books and television programs. The remaining parts of the Taniyama–Shimura–Weil conjecture, now proven and known as the modularity theorem, were subsequently proved by other mathematicians, who built on Wiles's work between 1996 and 2001. For his proof, Wiles was honoured and received numerous awards, including the 2016 4927: 3354:, without success. By the end of 1993, rumours had spread that under scrutiny, Wiles's proof had failed, but how seriously was not known. Mathematicians were beginning to pressure Wiles to disclose his work whether it was complete or not, so that the wider community could explore and use whatever he had managed to accomplish. But instead of being fixed, the problem, which had originally seemed minor, now seemed very significant, far more serious, and less easy to resolve. 2099: 118: 4847: 639:, leaving irregular primes to be analyzed individually. Building on Kummer's work and using sophisticated computer studies, other mathematicians were able to extend the proof to cover all prime exponents up to four million, but a proof for all exponents was inaccessible (meaning that mathematicians generally considered a proof impossible, exceedingly difficult, or unachievable with current knowledge). 505: 3260: 1893: 10310: 47: 3197:). This was widely believed inaccessible to proof by contemporary mathematicians. Second, it was necessary to show that Frey's intuition was correct: that if an elliptic curve were constructed in this way, using a set of numbers that were a solution of Fermat's equation, the resulting elliptic curve could not be modular. Frey showed that this was 2062:, he never posed the general case. Moreover, in the last thirty years of his life, Fermat never again wrote of his "truly marvelous proof" of the general case, and never published it. Van der Poorten suggests that while the absence of a proof is insignificant, the lack of challenges means Fermat realised he did not have a proof; he quotes 2509: = 3, but his proof by infinite descent contained a major gap. However, since Euler himself had proved the lemma necessary to complete the proof in other work, he is generally credited with the first proof. Independent proofs were published by Kausler (1802), Legendre (1823, 1830), Calzolari (1855), 694:: any solution that could contradict Fermat's Last Theorem could also be used to contradict the Taniyama–Shimura conjecture. So if the modularity theorem were found to be true, then by definition no solution contradicting Fermat's Last Theorem could exist, which would therefore have to be true as well. 3371:
I was sitting at my desk examining the Kolyvagin–Flach method. It wasn't that I believed I could make it work, but I thought that at least I could explain why it didn't work. Suddenly I had this incredible revelation. I realised that, the Kolyvagin–Flach method wasn't working, but it was all I needed
3357:
Wiles states that on the morning of 19 September 1994, he was on the verge of giving up and was almost resigned to accepting that he had failed, and to publishing his work so that others could build on it and fix the error. He adds that he was having a final look to try and understand the fundamental
3074:
states that it seemed "impossible to actually prove", and Ken Ribet considered himself "one of the vast majority of people who believed was completely inaccessible", adding that "Andrew Wiles was probably one of the few people on earth who had the audacity to dream that you can actually go and prove
4820:
tended to use a special preprinted form for such proofs, where the location of the first mistake was left blank to be filled by one of his graduate students. According to F. Schlichting, a Wolfskehl reviewer, most of the proofs were based on elementary methods taught in schools, and often submitted
3366:
could be made to work, if he strengthened it using his experience gained from the Kolyvagin–Flach approach. Fixing one approach with tools from the other approach would resolve the issue for all the cases that were not already proven by his refereed paper. He described later that Iwasawa theory and
3382:
On 24 October 1994, Wiles submitted two manuscripts, "Modular elliptic curves and Fermat's Last Theorem" and "Ring theoretic properties of certain Hecke algebras", the second of which was co-authored with Taylor and proved that certain conditions were met that were needed to justify the corrected
715:, who had a childhood fascination with Fermat's Last Theorem and had a background of working with elliptic curves and related fields, decided to try to prove the Taniyama–Shimura conjecture as a way to prove Fermat's Last Theorem. In 1993, after six years of working secretly on the problem, Wiles 3312:
for the inductive argument around 1990–91 when it seemed that there was no existing approach adequate to the problem. However, by mid-1991, Iwasawa theory also seemed to not be reaching the central issues in the problem. In response, he approached colleagues to seek out any hints of cutting-edge
706:
I myself was very sceptical that the beautiful link between Fermat's Last Theorem and the Taniyama–Shimura conjecture would actually lead to anything, because I must confess I did not think that the Taniyama–Shimura conjecture was accessible to proof. Beautiful though this problem was, it seemed
3349:
The error would not have rendered his work worthless: each part of Wiles's work was highly significant and innovative by itself, as were the many developments and techniques he had created in the course of his work, and only one part was affected. However, without this part proved, there was no
1569:
In ancient times it was known that a triangle whose sides were in the ratio 3:4:5 would have a right angle as one of its angles. This was used in construction and later in early geometry. It was also known to be one example of a general rule that any triangle where the length of two sides, each
4815:
Prior to Wiles's proof, thousands of incorrect proofs were submitted to the Wolfskehl committee, amounting to roughly 10 feet (3.0 meters) of correspondence. In the first year alone (1907–1908), 621 attempted proofs were submitted, although by the 1970s, the rate of submission had decreased to
3161:
would have such unusual properties that it was unlikely to be modular. This would conflict with the modularity theorem, which asserted that all elliptic curves are modular. As such, Frey observed that a proof of the Taniyama–Shimura–Weil conjecture might also simultaneously prove Fermat's Last
3408:
The full Taniyama–Shimura–Weil conjecture was finally proved by Diamond (1996), Conrad et al. (1999), and Breuil et al. (2001) who, building on Wiles's work, incrementally chipped away at the remaining cases until the full result was proved. The now fully proved conjecture became known as the
1544:
In other words, any solution that could contradict Fermat's Last Theorem could also be used to contradict the modularity theorem. So if the modularity theorem were found to be true, then it would follow that no contradiction to Fermat's Last Theorem could exist either. As described above, the
2710:
can have at most a finite number of prime factors, such a proof would have established Fermat's Last Theorem. Although she developed many techniques for establishing the non-consecutivity condition, she did not succeed in her strategic goal. She also worked to set lower limits on the size of
5302:
Singh, p. 144 quotes Wiles's reaction to this news: "I was electrified. I knew that moment that the course of my life was changing because this meant that to prove Fermat's Last Theorem all I had to do was to prove the Taniyama–Shimura conjecture. It meant that my childhood dream was now a
697:
Although both problems were daunting and widely considered to be "completely inaccessible" to proof at the time, this was the first suggestion of a route by which Fermat's Last Theorem could be extended and proved for all numbers, not just some numbers. Unlike Fermat's Last Theorem, the
4796:
offered a prize for a general proof of Fermat's Last Theorem. In 1857, the academy awarded 3,000 francs and a gold medal to Kummer for his research on ideal numbers, although he had not submitted an entry for the prize. Another prize was offered in 1883 by the Academy of Brussels.
3249:
solutions existed to Fermat's equation (because then no such curve could be created), which was what Fermat's Last Theorem said. As Ribet's Theorem was already proved, this meant that a proof of the modularity theorem would automatically prove Fermat's Last theorem was true as
1989:
Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos & generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.
662:(eventually as the modularity theorem), it stood on its own, with no apparent connection to Fermat's Last Theorem. It was widely seen as significant and important in its own right, but was (like Fermat's theorem) widely considered completely inaccessible to proof. 3325:
that seemed "tailor made" for the inductive part of his proof. Wiles studied and extended this approach, which worked. Since his work relied extensively on this approach, which was new to mathematics and to Wiles, in January 1993 he asked his Princeton colleague,
1997:
It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers. I have discovered a truly marvelous proof of this, which this margin is too narrow to contain.
690:). These papers by Frey, Serre and Ribet showed that if the Taniyama–Shimura conjecture could be proven for at least the semi-stable class of elliptic curves, a proof of Fermat's Last Theorem would also follow automatically. The connection is described 698:
Taniyama–Shimura conjecture was a major active research area and viewed as more within reach of contemporary mathematics. However, general opinion was that this simply showed the impracticality of proving the Taniyama–Shimura conjecture. Mathematician
2617:
increased, it seemed unlikely that the general case of Fermat's Last Theorem could be proved by building upon the proofs for individual exponents. Although some general results on Fermat's Last Theorem were published in the early 19th century by
5517: 3338:. Specifically, Wiles presented his proof of the Taniyama–Shimura conjecture for semistable elliptic curves; together with Ribet's proof of the epsilon conjecture, this implied Fermat's Last Theorem. However, it became apparent during 3192:
Following this strategy, a proof of Fermat's Last Theorem required two steps. First, it was necessary to prove the modularity theorem, or at least to prove it for the types of elliptical curves that included Frey's equation (known as
669:
noticed an apparent link between these two previously unrelated and unsolved problems. An outline suggesting this could be proved was given by Frey. The full proof that the two problems were closely linked was accomplished in 1986 by
3333:
By mid-May 1993, Wiles was ready to tell his wife he thought he had solved the proof of Fermat's Last Theorem, and by June he felt sufficiently confident to present his results in three lectures delivered on 21–23 June 1993 at the
2006:
After Fermat's death in 1665, his son Clément-Samuel Fermat produced a new edition of the book (1670) augmented with his father's comments. Although not actually a theorem at the time (meaning a mathematical statement for which
2981:
case: even if all exponents were verified up to an extremely large number X, a higher exponent beyond X might still exist for which the claim was not true. (This had been the case with some other past conjectures, such as with
1381:
This last formulation is particularly fruitful, because it reduces the problem from a problem about surfaces in three dimensions to a problem about curves in two dimensions. Furthermore, it allows working over the field
4783:
is equivalent to the abc conjecture and therefore has the same implication. An effective version of the abc conjecture, or an effective version of the modified Szpiro conjecture, implies Fermat's Last Theorem outright.
3189:) capable of disproving Fermat's Last Theorem, could also be used to disprove the Taniyama–Shimura–Weil conjecture. Therefore, if the latter were true, the former could not be disproven, and would also have to be true. 10435:
Discusses various material that is related to the proof of Fermat's Last Theorem: elliptic curves, modular forms, Galois representations and their deformations, Frey's construction, and the conjectures of Serre and of
357:. Fermat added that he had a proof that was too large to fit in the margin. Although other statements claimed by Fermat without proof were subsequently proven by others and credited as theorems of Fermat (for example, 3288:, an English mathematician with a childhood fascination with Fermat's Last Theorem, and who had worked on elliptic curves, decided to commit himself to accomplishing the second half: proving a special case of the 3817: 3295:
Wiles worked on that task for six years in near-total secrecy, covering up his efforts by releasing prior work in small segments as separate papers and confiding only in his wife. His initial study suggested
475:
of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as
3416:
Several other theorems in number theory similar to Fermat's Last Theorem also follow from the same reasoning, using the modularity theorem. For example: no cube can be written as a sum of two coprime
3070:
Even after gaining serious attention, the conjecture was seen by contemporary mathematicians as extraordinarily difficult or perhaps inaccessible to proof. For example, Wiles's doctoral supervisor
4403: 2093: 1545:
discovery of this equivalent statement was crucial to the eventual solution of Fermat's Last Theorem, as it provided a means by which it could be "attacked" for all numbers at once.
1586:. Examples include (3, 4, 5) and (5, 12, 13). There are infinitely many such triples, and methods for generating such triples have been studied in many cultures, beginning with the 4631: 8483: 4533: 4468: 3581: 6433: 2185: 1775: 7673: 7637: 7444: 7408: 6325: 4014: 4239: 4193: 4812:
worth €600,000 for "his stunning proof of Fermat's Last Theorem by way of the modularity conjecture for semistable elliptic curves, opening a new era in number theory".
2069:
Wiles and Taylor's proof relies on 20th-century techniques. Fermat's proof would have had to be elementary by comparison, given the mathematical knowledge of his time.
3965: 3928: 3335: 3632:, also known as the Mauldin conjecture and the Tijdeman-Zagier conjecture, states that there are no solutions to the generalized Fermat equation in positive integers 2591: = 3, 5, and 7, respectively. Nevertheless, the reasoning of these even-exponent proofs differs from their odd-exponent counterparts. Dirichlet's proof for 719:
enough of the conjecture to prove Fermat's Last Theorem. Wiles's paper was massive in size and scope. A flaw was discovered in one part of his original paper during
7837: 7801: 7772: 7608: 7046: 3400:
These papers established the modularity theorem for semistable elliptic curves, the last step in proving Fermat's Last Theorem, 358 years after it was conjectured.
3358:
reasons why his approach could not be made to work, when he had a sudden insight: that the specific reason why the Kolyvagin–Flach approach would not work directly
3350:
actual proof of Fermat's Last Theorem. Wiles spent almost a year trying to repair his proof, initially by himself and then in collaboration with his former student
2899:(It is often stated that Kummer was led to his "ideal complex numbers" by his interest in Fermat's Last Theorem; there is even a story often told that Kummer, like 1725: 4269: 2977:
However, despite these efforts and their results, no proof existed of Fermat's Last Theorem. Proofs of individual exponents by their nature could never prove the
2131:
to show that the area of a right triangle with integer sides can never equal the square of an integer. His proof is equivalent to demonstrating that the equation
4825:, "Fermat's Last Theorem has the peculiar distinction of being the mathematical problem for which the greatest number of incorrect proofs have been published." 10477: 5950: 3346:. The error was caught by several mathematicians refereeing Wiles's manuscript including Katz (in his role as reviewer), who alerted Wiles on 23 August 1993. 2066:
as saying Fermat must have briefly deluded himself with an irretrievable idea. The techniques Fermat might have used in such a "marvelous proof" are unknown.
10635: 10140: 3275: 716: 366: 10630: 2609:, either in its original form, or in the form of descent on elliptic curves or abelian varieties. The details and auxiliary arguments, however, were often 8798: 2084:', such a proof need be 'elementary' only in a technical sense and could involve millions of steps, and thus be far too long to have been Fermat's proof. 10707: 10541: 9447: 10604: 1676:, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two integers 358: 522: 6374:
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni
488: 6825: 10599: 4839:
The popularity of the theorem outside science has led to it being described as achieving "that rarest of mathematical accolades: A niche role in
9806: 361:), Fermat's Last Theorem resisted proof, leading to doubt that Fermat ever had a correct proof. Consequently, the proposition became known as a 7739: 3367:
the Kolyvagin–Flach approach were each inadequate on their own, but together they could be made powerful enough to overcome this final hurdle.
3330:, to help him check his reasoning for subtle errors. Their conclusion at the time was that the techniques Wiles used seemed to work correctly. 739:
There are several alternative ways to state Fermat's Last Theorem that are mathematically equivalent to the original statement of the problem.
483:
The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in
2942:
posed a conjecture that implied that Fermat's equation has at most a finite number of nontrivial primitive integer solutions, if the exponent
10215: 10192: 10170: 10118: 10096: 10077: 10025: 10001: 9979: 9903: 9884: 9850: 9789: 9587: 9033: 8435: 8197: 6250: 5117: 6574:
Bottari A (1908). "Soluzione intere dell'equazione pitagorica e applicazione alla dimostrazione di alcune teoremi della teoria dei numeri".
2311:
required only that the theorem be established for all odd prime exponents. In other words, it was necessary to prove only that the equation
10712: 9642: 9112: 5160: 2892:
could be generalized to include new prime numbers such that unique factorisation was restored. He succeeded in that task by developing the
69: 3238:
Ribet's theorem showed that any solution to Fermat's equation for a prime number could be used to create a semistable elliptic curve that
2579:
were published by Kausler, Thue, Tafelmacher, Lind, Kapferer, Swift, and Breusch. Similarly, Dirichlet and Terjanian each proved the case
1791: 3067:
found evidence supporting it, though not proving it; as a result the conjecture was often known as the Taniyama–Shimura–Weil conjecture.
2974:
had extended this to all primes less than 125,000. By 1993, Fermat's Last Theorem had been proved for all primes less than four million.
1846:
mixing two letters, without sharing its particular properties. For example, it is known that there are infinitely many positive integers
627:
need further investigation. Over the next two centuries (1637–1839), the conjecture was proved for only the primes 3, 5, and 7, although
10640: 8480: 4940: 4834: 3763: 3014:
ultimately succeeded in proving Fermat's Last Theorem, as well as leading the way to a full proof by others of what is now known as the
2561:
was proved by Lamé in 1839. His rather complicated proof was simplified in 1840 by Lebesgue, and still simpler proofs were published by
10702: 10614: 2962:
In the latter half of the 20th century, computational methods were used to extend Kummer's approach to the irregular primes. In 1954,
2124: 569: 10314: 9467:
Our proof generalizes the known implication "effective ABC eventual Fermat" which was the original motivation for the ABC conjecture
10682: 10290: 10226: 10049: 8994: 8534: 7935: 6409: 5761: 5199: 588: 541: 95: 6269: 2261: 4915:
states that the theorem is still unproven in the 24th century. The proof was released 5 years after the episode originally aired.
3097:
noted a link between Fermat's equation and the modularity theorem, then still a conjecture. If Fermat's equation had any solution
2647:
developed several novel approaches to prove Fermat's Last Theorem for all exponents. First, she defined a set of auxiliary primes
2547:(1875, posthumous), Lebesgue (1843), Lamé (1847), Gambioli (1901), Werebrusow (1905), Rychlík (1910), van der Corput (1915), and 1797:
Diophantine equations have been studied for thousands of years. For example, the solutions to the quadratic Diophantine equation
1786:, of which only a portion has survived. Fermat's conjecture of his Last Theorem was inspired while reading a new edition of the 659: 10659: 10584: 9914: 5572: 4879: 2998:, proposed around 1955—which many mathematicians believed would be near to impossible to prove, and was linked in the 1980s by 548: 35: 5529: 9872: 8920: 8845: 8083: 4903: 3498:
The generalized Fermat equation generalizes the statement of Fermat's last theorem by considering positive integer solutions
3351: 3322: 2912: 2904: 2540: 2081: 724: 526: 398: 8226: 7305: 3836: 3684: 453:(with the simplest example being 3, 4, 5). Around 1637, Fermat wrote in the margin of a book that the more general equation 259: 10506:
The title of one edition of the PBS television series NOVA, discusses Andrew Wiles's effort to prove Fermat's Last Theorem.
8928: 8786: 3484:
greater than 2. There are several generalizations of the Fermat equation to more general equations that allow the exponent
1582:, and a triple of numbers that meets this condition is called a Pythagorean triple; both are named after the ancient Greek 10383: 7997: 6662: 2799:). Germain tried unsuccessfully to prove the first case of Fermat's Last Theorem for all even exponents, specifically for 2486:
In the two centuries following its conjecture (1637–1839), Fermat's Last Theorem was proved for three odd prime exponents
7693: 6861: 555: 402:
as the "most difficult mathematical problem", in part because the theorem has the largest number of unsuccessful proofs.
10697: 10322: 6190: 2623: 2249: 2241: 3173:
In plain English, Frey had shown that, if this intuition about his equation was correct, then any set of four numbers (
10692: 10378: 4956: 3063:
The link was initially dismissed as unlikely or highly speculative, but was taken more seriously when number theorist
10481: 2720: 1842:
have a form similar to the equation of Fermat's Last Theorem from the point of view of algebra, in that they have no
77: 73: 57: 10534: 5237: 537: 10579: 7877:
Association française pour l'avancement des sciences, St. Etienne, Compte Rendu de la 26me Session, deuxième partie
4793: 4324: 515: 10527: 6171:
Kausler CF (1802). "Nova demonstratio theorematis nec summam, nec differentiam duorum cuborum cubum esse posse".
4894:
to Fermat's Last Theorem. The equation is wrong, but it appears to be correct if entered in a calculator with 10
4858: 3194: 9867:. Diophantine Analysis. Vol. II. New York: Chelsea Publishing. pp. 545–550, 615–621, 688–691, 731–776. 6986:(1823). "Recherches sur quelques objets d'analyse indéterminée, et particulièrement sur le théorème de Fermat". 5629:
Frey's suggestion, in the notation of the following theorem, was to show that the (hypothetical) elliptic curve
3342:
that a critical point in the proof was incorrect. It contained an error in a bound on the order of a particular
3231:
The modularity theorem—if proved for semi-stable elliptic curves—would mean that all semistable elliptic curves
2468:
is divisible by 4 or by an odd prime number (or both). Therefore, Fermat's Last Theorem could be proved for all
10717: 10687: 10373: 9271:
Bennett, Curtis D.; Glass, A. M. W.; Székely, Gábor J. (2004). "Fermat's last theorem for rational exponents".
9242: 7173: 6830: 6657: 2587: = 10. Strictly speaking, these proofs are unnecessary, since these cases follow from the proofs for 2565:
in 1864, 1874 and 1876. Alternative proofs were developed by Théophile Pépin (1876) and Edmond Maillet (1897).
2285: 3383:
step in the main paper. The two papers were vetted and published as the entirety of the May 1995 issue of the
9705: 9128: 10722: 9922: 8451: 7194: 3394: 2994:
The strategy that ultimately led to a successful proof of Fermat's Last Theorem arose from the "astounding"
2971: 2522: 389: 9970:
Manin, Yuri Ivanovic; Panchishkin, Alekseĭ Alekseevich (2007). "Fundamental problems, Ideas and Theories".
10651: 9860: 4945: 4574: 3301: 3053: 2691: 1587: 1538: 631:
innovated and proved an approach that was relevant to an entire class of primes. In the mid-19th century,
393: 233: 6057: 4474: 4409: 3389:. The proof's method of identification of a deformation ring with a Hecke algebra (now referred to as an 8933: 8853: 6983: 6211: 5580: 4761: 3530: 3385: 2716: 2253: 1906:. On the right is the margin that was too small to contain Fermat's alleged proof of his "last theorem". 707:
impossible to actually prove. I must confess I thought I probably wouldn't see it proved in my lifetime.
10574: 7820: 5096: 4926: 4775:. In particular, the abc conjecture in its most standard formulation implies Fermat's last theorem for 2951: 2922:
Using the general approach outlined by Lamé, Kummer proved both cases of Fermat's Last Theorem for all
2289: 2269: 2137: 10247: 9385: 9340: 8618: 8389: 8310: 8048: 7372: 6820: 6781: 5697: 5474: 5249: 2915:
said the belief that Kummer was mainly interested in Fermat's Last Theorem "is surely mistaken". See
2874: 2796: 2544: 1839: 1665: 1641: 562: 373:
and formally published in 1995. It was described as a "stunning advance" in the citation for Wiles's
7856: 3213:
who also gave an almost-complete proof and the link suggested by Frey was finally proved in 1986 by
2613:
and tied to the individual exponent under consideration. Since they became ever more complicated as
1731: 8088: 7099: 6817: 4895: 4821:
by "people with a technical education but a failed career". In the words of mathematical historian
3343: 3284:
in 1986 accomplished the first of the two goals proposed by Frey. Upon hearing of Ribet's success,
2518: 2498: 1835: 1595: 1579: 1395: 416: 31: 9974:. Encyclopedia of Mathematical Sciences. Vol. 49 (2nd ed.). Berlin Hedelberg: Springer. 7136: 3971: 2911:
in 1910 and the evidence indicates it likely derives from a confusion by one of Hensel's sources.
1602:
mathematicians. Mathematically, the definition of a Pythagorean triple is a set of three integers
10589: 10426: 10400: 10237: 9939: 9757: 9402: 9365: 9357: 9288: 9177: 9159: 9085: 9067: 8950: 8870: 8650: 8471: 8405: 8326: 8065: 8014: 7756: 7220: 7065: 6956: 6679: 6541: 5729: 5597: 5500: 5349: 5267: 4932: 4653: 4199: 4153: 3688: 3410: 3297: 3289: 3281: 3202: 3049: 3027: 3015: 2995: 2930:; the only irregular primes below 270 are 37, 59, 67, 101, 103, 131, 149, 157, 233, 257 and 263. 2514: 2008: 1978: 1812: 1599: 1564: 1399: 472: 450: 382: 378: 377:
award in 2016. It also proved much of the Taniyama–Shimura conjecture, subsequently known as the
238: 10609: 10015: 9513: 5937:
Second Edition, Cambridge University Press, 1910, reprinted by Dover, NY, 1964, pp. 144–145
3206: 3088: 1479: 680: 9650: 9150:
Cai, Tianxin; Chen, Deyi; Zhang, Yong (2015). "A new generalization of Fermat's Last Theorem".
5164: 10458: 10286: 10211: 10188: 10166: 10149: 10114: 10106: 10092: 10073: 10045: 10021: 9997: 9975: 9899: 9880: 9846: 9785: 9749: 9583: 9525: 9108: 8990: 8958: 8878: 8530: 8431: 8193: 6499: 5757: 5751: 5605: 5492: 5441: 5393: 5195: 5113: 4780: 3934: 3897: 3210: 3003: 2983: 2822: 2818: 2619: 2277: 2080:
implies that any provable theorem (including Fermat's last theorem) can be proved using only '
1591: 1190:, then it can be multiplied through by an appropriate common denominator to get a solution in 675: 9779: 9681: 6392: 5415: 5371: 3040:
observed a possible link between two apparently completely distinct branches of mathematics,
2926:. However, he could not prove the theorem for the exceptional primes (irregular primes) that 2873:. His proof failed, however, because it assumed incorrectly that such complex numbers can be 608:, proved by Fermat himself, is sufficient to establish that if the theorem is false for some 381:, and opened up entire new approaches to numerous other problems and mathematically powerful 10550: 10410: 10278: 10274: 9931: 9741: 9732: 9484: 9456: 9394: 9349: 9280: 9251: 9218: 9169: 9077: 8942: 8862: 8634: 8626: 8463: 8397: 8318: 8057: 8006: 7748: 7562: 7516: 7081: 6940: 6671: 6596: 5713: 5705: 5589: 5482: 5465: 5431: 5383: 5341: 5257: 4805: 4301: 3318: 3170:
or refutation of Fermat's Last Theorem would disprove the Taniyama–Shimura–Weil conjecture.
2889: 2881:, who later read a paper that demonstrated this failure of unique factorisation, written by 2878: 2866: 2606: 2457:, it would suffice to prove that it has no solutions for at least one prime factor of every 2281: 2128: 2103: 2098: 2077: 1918:
asks how a given square number is split into two other squares; in other words, for a given
1881: 348: 184: 10422: 9537: 9300: 8646: 7860: 7103: 6952: 5725: 5101: 4300:
also has an infinitude of solutions, and these have a geometric interpretation in terms of
3052:(at the time known as the Taniyama–Shimura conjecture) states that every elliptic curve is 2521:(1878), Gambioli (1901), Krey (1909), Rychlík (1910), Stockhaus (1910), Carmichael (1915), 2022:, but it appears unlikely. Only one related proof by him has survived, namely for the case 1698: 10418: 10180: 9989: 9533: 9296: 9210: 8642: 8593: 8487: 8423: 8185: 7784: 7767: 7718: 7656: 7391: 6948: 6660:(1913). "On the impossibility of certain Diophantine equations and systems of equations". 5721: 5672: 4912: 4869:
that the latter cannot produce a proof of Fermat's Last Theorem within twenty-four hours.
4840: 4245: 3884: 3629: 3037: 2967: 2814: 2562: 2265: 2073: 1919: 1104:
is negative, the result follows symmetrically. Thus in all cases a nontrivial solution in
898:
Most popular treatments of the subject state it this way. It is also commonly stated over
647: 283: 254: 10255: 9195:
Mihailescu, Preda (2007). "A Cyclotomic Investigation of the Catalan–Fermat Conjecture".
7620: 7603: 7427: 7033: 2900: 2838: 2825:
proved that the first case of Fermat's Last Theorem holds for infinitely many odd primes
2510: 10461: 10251: 9840: 9517: 9081: 8903: 8622: 8393: 8314: 5701: 5543: 5478: 5253: 10204: 10039: 9488: 8035: 7933:: Una demonstración nueva del teorema de fermat para el caso de las sestas potencias". 6843: 6139: 5747: 4950: 4891: 4801: 4731: 4725: 4131: 3363: 3309: 3163: 3121: 3071: 3041: 2963: 2862: 2644: 2627: 2502: 2245: 2051: 1471: 699: 651: 628: 228: 117: 9427:. Graduate Texts in Mathematics. Vol. 211. Springer-Verlag New York. p. 196. 8984: 8227:"Voici ce que j'ai trouvé: Sophie Germain's grand plan to prove Fermat's Last Theorem" 4846: 2907:
told him his argument relied on unique factorization; but the story was first told by
10676: 10569: 10128: 9958: 9761: 9406: 9369: 9256: 9237: 9222: 9181: 8654: 8409: 8377: 8330: 8112: 7760: 7546: 6960: 6428: 6022: 5733: 5188: 4883: 4862: 4854: 4817: 4568:
is the integer altitude to the hypotenuse. Then the hypotenuse itself is the integer
3305: 3064: 2947: 2939: 2927: 2923: 2870: 2810: 2670:
is any integer not divisible by three. She showed that, if no integers raised to the
2548: 2273: 2063: 2055: 636: 484: 271: 145: 10430: 10414: 9947: 9943: 9730:
Kasman, Alex (January 2003). "Mathematics in Fiction: An Interdisciplinary Course".
9089: 7020:
Tentativo per dimostrare il teorema di Fermat sull'equazione indeterminata x + y = z
6040: 2723:, which verified the first case of Fermat's Last Theorem (namely, the case in which 1059:; the other case is dealt with analogously. Now if just one is negative, it must be 17: 10645: 10594: 10035: 9010: 8924: 8841: 8546: 8301:
Adleman LM, Heath-Brown DR (June 1985). "The first case of Fermat's last theorem".
8102:, vol. I, pp. 189–194, Berlin: G. Reimer (1889); reprinted New York:Chelsea (1969). 6245: 5568: 5504: 4874: 4118:
All primitive integer solutions (i.e., those with no prime factor common to all of
3835:
The statement is about the finiteness of the set of solutions because there are 10
3314: 3285: 3271: 3264: 3094: 3057: 3045: 3033: 3011: 3010:
to Fermat's equation. By accomplishing a partial proof of this conjecture in 1994,
2999: 2916: 2893: 2882: 2346: 2257: 1483: 712: 666: 655: 643: 632: 616: 370: 205: 10132: 8886: 8549:(1986). "Links between stable elliptic curves and certain diophantine equations". 6996:
Reprinted in 1825 as the "Second Supplément" for a printing of the 2nd edition of
6733:, vol. 4, pp. 202–205, București: Editura Academiei Republicii Socialiste România. 6156:, ser. I, "Commentationes Arithmeticae", vol. I, pp. 38–58, Leipzig:Teubner (1915) 5613: 5436: 5388: 2018:
It is not known whether Fermat had actually found a valid proof for all exponents
711:
On hearing that Ribet had proven Frey's link to be correct, English mathematician
10441: 8233: 7122:
Sitzungsberichte der Königliche böhmische Gesellschaft der Wissenschaften in Prag
5414:
Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (15 May 2001).
10343: 10011: 9775: 9438: 8966: 7976:
Kapferer H (1913). "Beweis des Fermatschen Satzes für die Exponenten 6 und 10".
4822: 3490:
to be a negative integer or rational, or to consider three different exponents.
3339: 3292:(then known as the Taniyama–Shimura conjecture) for semistable elliptic curves. 3201:
but did not go as far as giving a full proof. The missing piece (the so-called "
2908: 2059: 1913: 1782: 720: 504: 353: 128: 2501:(10th century), but his attempted proof of the theorem was incorrect. In 1770, 10364: 9842:
Fermat's Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem
9836: 9745: 9461: 9442: 9420: 9398: 9173: 8638: 7787:(1876). "Généralisation du théorème de Lamé sur l'impossibilité de l'équation 7085: 6944: 5717: 5487: 5460: 4922: 4908: 4809: 3393:) to prove modularity lifting theorems has been an influential development in 3259: 3125: 3084: 2111: 1903: 1892: 1673: 1669: 1583: 1467: 728: 686: 374: 362: 123: 10326: 10153: 9753: 9529: 8086:(1832). "Démonstration du théorème de Fermat pour le cas des 14 puissances". 7287:
Boletín de la Academia de Ciencias Físicas, Matemáticas y Naturales (Caracas)
5445: 5397: 5106:, but he did not call attention to its non-modularity. For more details, see 392:
in the 19th and 20th centuries. It is among the most notable theorems in the
10466: 8962: 8882: 8589: 7894: 7216: 7197:(1915). "Quelques formes quadratiques et quelques équations indéterminées". 5668: 5609: 5216: 4302:
right triangles with integer sides and an integer altitude to the hypotenuse
3327: 3214: 3007: 2526: 1971:
Around 1637, Fermat wrote his Last Theorem in the margin of his copy of the
671: 10369:
Blog that covers the history of Fermat's Last Theorem from Fermat to Wiles.
6480:
Gambioli D (1901). "Memoria bibliographica sull'ultimo teorema di Fermat".
5496: 1684:
such that their sum, and the sum of their squares, equal two given numbers
10309: 9879:. Graduate Texts in Mathematics. Vol. 50. New York: Springer-Verlag. 3891:
th roots are required to be real and positive, all solutions are given by
2877:
into primes, similar to integers. This gap was pointed out immediately by
2841:
outlined a proof of Fermat's Last Theorem based on factoring the equation
1486:. However, the proof by Andrew Wiles proves that any equation of the form 658:, two completely different areas of mathematics. Known at the time as the 609: 9877:
Fermat's Last Theorem. A Genetic Introduction to Algebraic Number Theory
9383:
Richinick, Jennifer (July 2008). "The upside-down Pythagorean Theorem".
8799:
26 June – 2 July; A Year Later Fermat's Puzzle Is Still Not Quite Q.E.D.
6545: 5372:"Modularity of certain potentially Barsotti-Tate Galois representations" 10497: 10227:"A Study of Kummer's Proof of Fermat's Last Theorem for Regular Primes" 9935: 9361: 9292: 8954: 8874: 8630: 8475: 8401: 8322: 8069: 8018: 7752: 6683: 5709: 5601: 5353: 5329: 5271: 4080:
are coprime, then there are integer solutions if and only if 6 divides
2191: 2015:, as it was the last of Fermat's asserted theorems to remain unproved. 1661: 529: in this section. Unsourced material may be challenged and removed. 434: 286: 10391:
Ribet, Kenneth A. (1995). "Galois representations and modular forms".
8380:(1983). "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern". 7430:(1847). "Mémoire sur la résolution en nombres complexes de l'équation 6027:
Number Theory: An approach through history. From Hammurapi to Legendre
3691:. The conjecture states that the generalized Fermat equation has only 3304:, and he based his initial work and first significant breakthrough on 3220:
Following Frey, Serre and Ribet's work, this was where matters stood:
678:, who proved all but one part known as the "epsilon conjecture" (see: 10405: 9072: 7567: 7550: 9353: 9284: 8946: 8866: 8467: 8061: 8010: 7722: 7069: 6675: 5593: 5345: 5262: 3611:
need not be equal, whereas Fermat's last theorem considers the case
2595: = 14 was published in 1832, before Lamé's 1839 proof for 2292:(1966), Grant and Perella (1999), Barbara (2007), and Dolan (2011). 2194:
solutions). In turn, this proves Fermat's Last Theorem for the case
471:
is an integer greater than 2. Although he claimed to have a general
365:
rather than a theorem. After 358 years of effort by mathematicians,
10519: 7897:(1896). "Über die Auflösbarkeit einiger unbestimmter Gleichungen". 7838:
Comptes rendus hebdomadaires des séances de l'Académie des Sciences
7802:
Comptes rendus hebdomadaires des séances de l'Académie des Sciences
7773:
Comptes rendus hebdomadaires des séances de l'Académie des Sciences
7609:
Comptes rendus hebdomadaires des séances de l'Académie des Sciences
7047:
Comptes rendus hebdomadaires des séances de l'Académie des Sciences
6742:
Grant, Mike, and Perella, Malcolm, "Descending to the irrational",
2970:
to prove Fermat's Last Theorem for all primes up to 2521. By 1978,
723:
and required a further year and collaboration with a past student,
344:
have been known since antiquity to have infinitely many solutions.
76:
external links, and converting useful links where appropriate into
10515:
Simon Singh and John Lynch's film tells the story of Andrew Wiles.
10242: 9164: 7623:(1840). "Mémoire d'analyse indéterminée démontrant que l'équation 4866: 4845: 4816:
roughly 3–4 attempted proofs per month. According to some claims,
3812:{\displaystyle {\frac {1}{m}}+{\frac {1}{n}}+{\frac {1}{k}}<1.} 3446:
Fermat's Last Theorem considers solutions to the Fermat equation:
3435: 3258: 2097: 1891: 7659:(1840). "Démonstration de l'impossibilité de résoudre l'équation 3245:
The only way that both of these statements could be true, was if
2731:) for every odd prime exponent less than 270, and for all primes 2583: = 14, while Kapferer and Breusch each proved the case 1578:, would also be a right angle triangle. This is now known as the 132:
includes Fermat's commentary, referred to as his "Last Theorem" (
7463:
Gambioli D (1903–1904). "Intorno all'ultimo teorema di Fermat".
6142:(1738). "Theorematum quorundam arithmeticorum demonstrationes". 2626:, the first significant work on the general theorem was done by 1947:. Diophantus shows how to solve this sum-of-squares problem for 10523: 9915:"From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem" 7379:(2nd ed.). Königl. Ges. Wiss. Göttingen. pp. 387–391. 6197:. St. Paul's Church-Yard, London: J. Johnson. pp. 144–145. 4065:
not equal to 1, Bennett, Glass, and Székely proved in 2004 for
10501: 10133:"The Proof of Fermat's Last Theorem by R. Taylor and A. Wiles" 2106:
for Fermat's Last Theorem case n=4 in the 1670 edition of the
1983: 828:
For comparison's sake we start with the original formulation.
498: 487:, and over time Fermat's Last Theorem gained prominence as an 40: 10510: 6712:
Gheorghe Vrănceanu (1966). "Asupra teorema lui Fermat pentru
6287:
Lebesgue VA (1853). "Résolution des équations biquadratiques
4688:. If there were, the equation could be multiplied through by 2605:
All proofs for specific exponents used Fermat's technique of
9807:"Here's a Fun Math Goof in 'Star Trek: The Next Generation'" 7770:(1874). "Sur l'impossibilité de quelques égalités doubles". 5238:"Irregular primes and cyclotomic invariants to four million" 4800:
In 1908, the German industrialist and amateur mathematician
3224:
Fermat's Last Theorem needed to be proven for all exponents
1541:, which in turn proves that no non-trivial solutions exist. 742:
In order to state them, we use the following notations: let
10344:"Tables of Fermat "near-misses" – approximate solutions of 5518:
British mathematician Sir Andrew Wiles gets Abel math prize
2946:
is greater than two. This conjecture was proved in 1983 by
2702:
satisfied the non-consecutivity condition and thus divided
2450:
Thus, to prove that Fermat's equation has no solutions for
9896:
Amazing Traces of a Babylonian Origin in Greek Mathematics
8983:
Barrow-Green, June; Leader, Imre; Gowers, Timothy (2008).
2050:
as challenges to his mathematical correspondents, such as
1790:, that was translated into Latin and published in 1621 by 821:. A solution where all three are nonzero will be called a 480:, stood unsolved for the next three and a half centuries. 8156: 8154: 6173:
Novi Acta Academiae Scientiarum Imperialis Petropolitanae
5896: 5894: 5461:"Fermat's last theorem earns Andrew Wiles the Abel Prize" 4102:
are different complex 6th roots of the same real number.
691: 9058:
Michel Waldschmidt (2004). "Open Diophantine Problems".
7394:(1843). "Théorèmes nouveaux sur l'équation indéterminée 5530:
300-year-old math question solved, professor wins $ 700k
5095:
This elliptic curve was first suggested in the 1960s by
4978:
were not prime or 4, then it would be possible to write
3687:
generalizes Fermat's last theorem with the ideas of the
2568:
Fermat's Last Theorem was also proved for the exponents
9549: 9547: 8978: 8976: 2888:
Kummer set himself the task of determining whether the
1407:
Equivalent statement 4 – connection to elliptic curves:
65: 60:
may not follow Knowledge (XXG)'s policies or guidelines
9649:. The Abel Prize Committee. March 2016. Archived from 8551:
Annales Universitatis Saraviensis. Series Mathematicae
7189: 7187: 6699:
Foundations of the Theory of Algebraic Numbers, vol. I
6464:(Thesis). Uppsala: Almqvist & Wiksells Boktrycken. 6092: 6090: 6088: 6086: 5370:
Conrad, Brian; Diamond, Fred; Taylor, Richard (1999).
5236:
Buhler J, Crandell R, Ernvall R, Metsänkylä T (1993).
1822:). Solutions to linear Diophantine equations, such as 1513:
does have a modular form. Any non-trivial solution to
1402:, which allows for deeper analysis of their elements. 27:
17th-century conjecture proved by Andrew Wiles in 1994
10072:. New York: The Mathematical Association of America. 8929:"Ring theoretic properties of certain Hecke algebras" 8220: 8218: 8038:(1960). "A simple proof of Fermat's last theorem for 7606:(1839). "Mémoire sur le dernier théorème de Fermat". 6931:
J. J. Mačys (2007). "On Euler's hypothetical proof".
6144:
Novi Commentarii Academiae Scientiarum Petropolitanae
4577: 4477: 4412: 4327: 4248: 4202: 4156: 3974: 3937: 3900: 3766: 3533: 2986:, and it could not be ruled out in this conjecture.) 2903:, believed he had proven Fermat's Last Theorem until 2140: 2094:
Proof of Fermat's Last Theorem for specific exponents
2011:
exists), the marginal note became known over time as
1734: 1701: 30:
For other theorems named after Pierre de Fermat, see
9479: 9477: 9475: 8284:
Comptes Rendus de l'Académie des Sciences, Série A-B
6434:
Jahresbericht der Deutschen Mathematiker-Vereinigung
6431:(1897). "Die Theorie der algebraischen Zahlkörper". 6248:(1846). "Théorèmes sur les puissances des nombres". 2711:
solutions to Fermat's equation for a given exponent
2280:(1901), Bang (1905), Sommer (1907), Bottari (1908), 2190:
has no primitive solutions in integers (no pairwise
1574:, equals the square of the length of the third side 10623: 10557: 10511:"Documentary Movie on Fermat's Last Theorem (1996)" 10279:"An Overview of the Proof of Fermat's Last Theorem" 8904:"Modular elliptic curves and Fermat's Last Theorem" 8846:"Modular elliptic curves and Fermat's Last Theorem" 7899:
Det Kongelige Norske Videnskabers Selskabs Skrifter
6670:(7). Mathematical Association of America: 213–221. 6360:Pepin T (1883). "Étude sur l'équation indéterminée 5573:"Modular elliptic curves and Fermat's Last Theorem" 5409: 5407: 5365: 5363: 2369:is equivalent to a solution for all the factors of 388:The unsolved problem stimulated the development of 247: 221: 211: 201: 190: 180: 151: 141: 10203: 7954:Lind B (1909). "Einige zahlentheoretische Sätze". 5187: 5043:would be a power of 2 greater than 4, and writing 4625: 4527: 4462: 4397: 4263: 4233: 4187: 4008: 3959: 3922: 3883:. All solutions of this equation were computed by 3811: 3575: 3442:Relationship to other problems and generalizations 3056:, meaning that it can be associated with a unique 2543:around 1825. Alternative proofs were developed by 2179: 2030: 1769: 1719: 282:, especially in older texts) states that no three 7971: 7969: 7349: 7347: 6755:Barbara, Roy, "Fermat's last theorem in the case 2928:conjecturally occur approximately 39% of the time 2719:. As a byproduct of this latter work, she proved 642:Separately, around 1955, Japanese mathematicians 347:The proposition was first stated as a theorem by 9326:Voles, Roger (July 1999). "Integer solutions of 8989:. Princeton University Press. pp. 361–362. 8030: 8028: 7377:Zur Theorie der complexen Zahlen, Werke, vol. II 7375:(1875). "Neue Theorie der Zerlegung der Cuben". 6475: 6473: 6471: 6341:. Paris: Leiber et Faraguet. pp. 83–84, 89. 6206: 6204: 6195:An Elementary Investigation of Theory of Numbers 5946: 4716:, which is impossible by Fermat's Last Theorem. 3336:Isaac Newton Institute for Mathematical Sciences 2127:has survived, in which he uses the technique of 748:be the set of natural numbers 1, 2, 3, ..., let 8462:(142). American Mathematical Society: 583–591. 8089:Journal für die reine und angewandte Mathematik 7911:, pp. 19–30, Oslo: Universitetsforlaget (1977). 7263:(1977), Oslo: Universitetsforlaget, pp. 555–559 7235:er unmulig i hele tal fra nul forskjellige tal 6591: 6589: 6166: 6164: 6162: 5756:. New York: Springer-Verlag. pp. 110–112. 5323: 5321: 5248:(203). American Mathematical Society: 151–153. 4734:roughly states that if three positive integers 3369: 3313:research and new techniques, and discovered an 2715:, a modified version of which was published by 1079:are positive, then it can be rearranged to get 754:be the set of integers 0, ±1, ±2, ..., and let 704: 9682:Wheels, Life and Other Mathematical Amusements 9573: 9571: 7000:, Courcier (Paris). Also reprinted in 1909 in 6508:Reprinted by New York:Springer-Verlag in 1978. 6029:. Basel, Switzerland: Birkhäuser. p. 104. 5155: 5153: 5151: 4850:Czech postage stamp commemorating Wiles' proof 3120:, then it could be shown that the semi-stable 10535: 10393:Bulletin of the American Mathematical Society 9524:. Séminaire Bourbaki exp 694 (161): 165–186. 9518:"Nouvelles approches du "théorème" de Fermat" 8192:. New York: Springer Verlag. pp. 51–54. 7074:Proceedings of the Royal Society of Edinburgh 5110:Invitation to the Mathematics of Fermat-Wiles 4982:either as a product of two smaller integers ( 4564:are the integer legs of a right triangle and 4398:{\displaystyle a=(v^{2}-u^{2})(v^{2}+u^{2}),} 791:. In what follows we will call a solution to 635:extended this and proved the theorem for all 8: 10141:Notices of the American Mathematical Society 10089:The Moment of Proof: Mathematical Epiphanies 8773: 8771: 8769: 7674:Journal de Mathématiques Pures et Appliquées 7638:Journal de Mathématiques Pures et Appliquées 7445:Journal de Mathématiques Pures et Appliquées 7409:Journal de Mathématiques Pures et Appliquées 6326:Journal de Mathématiques Pures et Appliquées 6000:van der Poorten, Notes and Remarks 1.2, p. 5 5424:Journal of the American Mathematical Society 5376:Journal of the American Mathematical Society 4953:, a list of related conjectures and theorems 110: 10631:List of things named after Pierre de Fermat 9781:The Simpsons and Their Mathematical Secrets 9103:Crandall, Richard; Pomerance, Carl (2000). 7995:Swift E (1914). "Solution to Problem 206". 7141:Mathematisch-Naturwissenschaftliche Blätter 6821:"Abu Mahmud Hamid ibn al-Khidr Al-Khujandi" 6518:Bang A (1905). "Nyt Bevis for at Ligningen 6218:(3rd ed.). Paris: Firmin Didot Frères. 5416:"On the modularity of elliptic curves over 5311: 5309: 4996:is a prime number greater than 2, and then 1972: 1911: 1897: 1116:, the original formulation of the problem. 10542: 10528: 10520: 10323:"The Mathematics of Fermat's Last Theorem" 10234:IISER Mohali (India) Summer Project Report 9580:Elementary number theory with applications 9448:International Mathematics Research Notices 9213:(1992). "On the inverse Fermat equation". 9105:Prime Numbers: A Computational Perspective 8529:Fermat's Last Theorem, Simon Singh, 1997, 8525: 8523: 8521: 8519: 8517: 8515: 8454:(1978). "The irregular primes to 125000". 8430:. New York: Springer Verlag. p. 202. 7137:"Neuer Beweis eines arithmetischen Satzes" 6988:Mémoires de l'Académie royale des sciences 6626:Nutzhorn F (1912). "Den ubestemte Ligning 6349:. Paris: Mallet-Bachelier. pp. 71–73. 6232:Einige Sätze aus der unbestimmten Analytik 6220:Reprinted in 1955 by A. Blanchard (Paris). 6119:Traité des Triangles Rectangles en Nombres 1037:is positive, then we can rearrange to get 1007:. If two of them are negative, it must be 116: 109: 10404: 10241: 9582:. New York: Academic Press. p. 544. 9460: 9255: 9163: 9071: 8787:A Year Later, Snag Persists In Math Proof 8513: 8511: 8509: 8507: 8505: 8503: 8501: 8499: 8497: 8495: 7566: 7160:Beitrag zum Beweis des Fermatschen Satzes 6609:Časopis Pro Pěstování Matematiky a Fysiky 6276:. Paris: Hachette. pp. 217–230, 395. 5486: 5435: 5387: 5261: 4746:(hence the name) are coprime and satisfy 4614: 4604: 4591: 4576: 4513: 4500: 4476: 4448: 4435: 4411: 4383: 4370: 4354: 4341: 4326: 4247: 4222: 4201: 4176: 4155: 4000: 3973: 3951: 3936: 3914: 3899: 3853:to be the reciprocal of an integer, i.e. 3793: 3780: 3767: 3765: 3564: 3551: 3538: 3532: 3308:before switching to an attempt to extend 2539:was proved independently by Legendre and 2171: 2158: 2145: 2139: 1758: 1745: 1733: 1700: 619:, it must also be false for some smaller 589:Learn how and when to remove this message 467:had no solutions in positive integers if 96:Learn how and when to remove this message 9965:. Cambridge: Cambridge University Press. 5023:. That is, an equivalent solution would 1896:Problem II.8 in the 1621 edition of the 1815:, originally solved by the Babylonians ( 10605:Fermat's theorem on sums of two squares 10453:The story, the history and the mystery. 10283:Modular Forms and Fermat's Last Theorem 9963:Three Lectures on Fermat's Last Theorem 9898:. World Scientific Publishing Company. 9706:"Geek Trivia: The math behind the myth" 9313: 8343: 8172: 8160: 8145: 7590: 7482:Werebrusow AS (1905). "On the equation 7338: 7251:Archiv for Mathematik og Naturvidenskab 6918: 6906: 6894: 6826:MacTutor History of Mathematics Archive 6803: 6077: 5900: 5885: 5135: 4967: 4890:on a blackboard, which appears to be a 4726:abc conjecture § Some consequences 4667:There are no solutions in integers for 4556:. The geometric interpretation is that 3362:meant that his original attempts using 3078: 2572: = 6, 10, and 14. Proofs for 2276:(1897), Bendz (1901), Gambioli (1901), 1537:an odd prime) would therefore create a 359:Fermat's theorem on sums of two squares 351:around 1637 in the margin of a copy of 10636:Wiles's proof of Fermat's Last Theorem 9041:The Harvard College Mathematics Review 9011:"Mauldin / Tijdeman-Zagier Conjecture" 8986:The Princeton Companion to Mathematics 8270:Terjanian, G. (1977). "Sur l'équation 7740:Annali di Matematica Pura ed Applicata 7519:(1910). "On Fermat's last theorem for 6599:(1910). "On Fermat's last theorem for 6504:Vorlesungen über Zahlentheorie, vol. I 5459:Castelvecchi, Davide (15 March 2016). 5330:"On Deformation Rings and Hecke Rings" 5141: 5139: 3869:, we have the inverse Fermat equation 3377:Andrew Wiles, as quoted by Simon Singh 3276:Wiles's proof of Fermat's Last Theorem 10285:. New York: Springer. pp. 1–16. 9611: 9553: 8819: 8751: 8739: 8718: 8697: 8676: 8576: 8355: 8257: 7921:Tafelmacher WLA (1897). "La ecuación 7823:(1876). "Impossibilité de l'équation 7273:Duarte FJ (1944). "Sobre la ecuación 6532:, ikke kan have rationale Løsinger". 6347:Introduction à la Théorie des Nombres 6096: 5979: 5921: 5873: 5861: 5840: 5828: 5807: 5795: 5783: 3032:Around 1955, Japanese mathematicians 2833:Ernst Kummer and the theory of ideals 2300:After Fermat proved the special case 1110:would also mean a solution exists in 650:suspected a link might exist between 433:, has an infinite number of positive 136:), posthumously published by his son. 7: 10600:Fermat's theorem (stationary points) 10185:13 Lectures on Fermat's Last Theorem 9972:Introduction to Modern Number Theory 9805:Moseman, Andrew (1 September 2017). 9602:Singh, pp. 120–125, 131–133, 295–296 8428:13 Lectures on Fermat's Last Theorem 8225:Laubenbacher R, Pengelley D (2007). 8190:13 Lectures on Fermat's Last Theorem 7635:est impossible en nombres entiers". 7551:"Sur une question de V. A. Lebesgue" 7036:(1865). "Étude des binômes cubiques 6121:, vol. I, 1676, Paris. Reprinted in 5231: 5229: 5217:"The Proof of Fermat's Last Theorem" 4626:{\displaystyle c=(v^{2}+u^{2})^{2},} 3757: 3719:) with distinct triplets of values ( 3524: 2651:constructed from the prime exponent 2031:§ Proofs for specific exponents 873:are all positive whole numbers) and 735:Equivalent statements of the theorem 702:' quoted reaction was a common one: 527:adding citations to reliable sources 495:Subsequent developments and solution 234:Effective modified Szpiro conjecture 9082:10.17323/1609-4514-2004-4-1-245-305 8594:"On modular representations of Gal( 8129:Bulletin des Sciences Mathématiques 6506:. Leipzig: Teubner. pp. 35–38. 5673:"On modular representations of Gal( 4528:{\displaystyle d=2uv(v^{2}-u^{2}),} 4463:{\displaystyle b=2uv(v^{2}+u^{2}),} 2698:, infinitely many auxiliary primes 1979:Diophantus's sum-of-squares problem 1478:Examining this elliptic curve with 34:. For the book by Simon Singh, see 10476:O'Connor JJ, Robertson EF (1996). 9994:Fermat's Last Theorem for Amateurs 7694:"Fermat's Last Theorem: Proof for 7306:"Fermat's Last Theorem: Proof for 6862:"Fermat's Last Theorem: Proof for 6850:, Roy. Acad. Sci., St. Petersburg. 6848:Vollständige Anleitung zur Algebra 6251:Nouvelles Annales de Mathématiques 5548:MathWorld – A Wolfram Web Resource 5190:The Guinness Book of World Records 5027:have to exist for the prime power 3887:in 1992. In the case in which the 3743:are positive coprime integers and 3668:being pairwise coprime and all of 3576:{\displaystyle a^{m}+b^{n}=c^{k}.} 2490: = 3, 5 and 7. The case 2349:. This follows because a solution 2325:has no positive integer solutions 972:are negative, then we can replace 928:≥ 3, has no non-trivial solutions 396:and prior to its proof was in the 176:has no positive integer solutions. 25: 10708:Conjectures that have been proved 10165:. American Mathematical Society. 9784:. A&C Black. pp. 35–36. 8831:Singh p. 186–187 (text condensed) 7936:Anales de la Universidad de Chile 7104:"Ueber die unbestimmte Gleichung 6775:Dolan, Stan, "Fermat's method of 6410:Anales de la Universidad de Chile 5293:Singh 1997, pp. 203–205, 223, 226 5194:. Guinness Publishing Ltd. 1995. 5161:"Abel prize 2016 – full citation" 4779:that are sufficiently large. The 4771:is usually not much smaller than 3755:are positive integers satisfying 2180:{\displaystyle x^{4}-y^{4}=z^{2}} 1165:This is because the exponents of 1094:again resulting in a solution in 674:, building on a partial proof by 134:Observatio Domini Petri de Fermat 10641:Fermat's Last Theorem in fiction 10308: 10041:An Introduction to Number Theory 9865:History of the Theory of Numbers 9704:Garmon, Jay (21 February 2006). 9238:"A radical diophantine equation" 8309:(2). Berlin: Springer: 409–416. 7978:Archiv der Mathematik und Physik 7956:Archiv der Mathematik und Physik 6998:Essai sur la Théorie des Nombres 4941:Euler's sum of powers conjecture 4925: 4835:Fermat's Last Theorem in fiction 4792:In 1816, and again in 1850, the 3022:Taniyama–Shimura–Weil conjecture 2996:Taniyama–Shimura–Weil conjecture 2783:is prime (specially, the primes 2036:While Fermat posed the cases of 1570:squared and then added together 1350:yields the non-trivial solution 1276:yields the non-trivial solution 1184:), so if there is a solution in 503: 45: 10615:Fermat's right triangle theorem 10585:Fermat polygonal number theorem 10415:10.1090/S0273-0979-1995-00616-6 9131:. American Mathematical Society 6607: = 3 (in Bohemian)". 6445:Gesammelte Abhandlungen, vol. I 6216:Théorie des Nombres (Volume II) 5053:, the same argument would hold. 4880:The Wizard of Evergreen Terrace 4274:for positive, coprime integers 3079:Ribet's theorem for Frey curves 2990:Connection with elliptic curves 2427:is a solution for the exponent 2233:Alternative proofs of the case 1780:Diophantus's major work is the 1226:, has no non-trivial solutions 1143:, has no non-trivial solutions 760:be the set of rational numbers 514:needs additional citations for 489:unsolved problem in mathematics 449:; these solutions are known as 10225:Saikia, Manjil P (July 2011). 10206:Notes on Fermat's Last Theorem 10111:Fermat and the Missing Numbers 9643:"The Abel Prize citation 2016" 6561:Vorlesungen über Zahlentheorie 6459:Öfver diophantiska ekvationen 5303:respectable thing to work on." 4904:Star Trek: The Next Generation 4611: 4584: 4519: 4493: 4454: 4428: 4389: 4363: 4360: 4334: 3997: 3984: 2674:th power were adjacent modulo 2541:Peter Gustav Lejeune Dirichlet 2082:elementary function arithmetic 2029:, as described in the section 1770:{\displaystyle B=x^{2}+y^{2}.} 1664:solutions, is an example of a 1482:shows that it does not have a 399:Guinness Book of World Records 1: 10202:van der Poorten, Alf (1996). 10187:. New York: Springer Verlag. 9996:. New York: Springer-Verlag. 9273:American Mathematical Monthly 8604:) arising from modular forms" 7998:American Mathematical Monthly 7861:"Sur l'équation indéterminée 7692:Freeman L (18 January 2006). 7555:Annales de l'Institut Fourier 7304:Freeman L (28 October 2005). 6663:American Mathematical Monthly 6339:Exercices d'Analyse Numérique 5683:) arising from modular forms" 5437:10.1090/S0894-0347-01-00370-8 5389:10.1090/S0894-0347-99-00287-8 4304:. All primitive solutions to 4047:For the Diophantine equation 3599:In particular, the exponents 3254: 2694:to prove that, for any given 2088:Proofs for specific exponents 1816: 1421:is a non-trivial solution to 194: 10365:"Fermat's Last Theorem Blog" 9845:. Four Walls Eight Windows. 9257:10.1016/0022-314x(81)90040-8 9223:10.1016/0012-365x(92)90561-s 9034:"The ABC's of Number Theory" 7909:Selected Mathematical Papers 7261:Selected Mathematical Papers 7124:. jahrg. 1878-1880: 112–120. 6640:Nyt Tidsskrift for Matematik 6534:Nyt Tidsskrift for Matematik 6274:Traité Élémentaire d'Algèbre 5947:Manin & Panchishkin 2007 4009:{\displaystyle c=r(s+t)^{m}} 2917:the history of ideal numbers 2307:, the general proof for all 2272:(1883), Tafelmacher (1893), 1668:, named for the 3rd-century 1398:exhibit more structure than 1388:, rather than over the ring 950:The equivalence is clear if 36:Fermat's Last Theorem (book) 10713:20th century in mathematics 10379:Encyclopedia of Mathematics 10091:. Oxford University Press. 9060:Moscow Mathematical Journal 7221:"Et bevis for at ligningen 7199:Nieuw Archief voor Wiskunde 6746:83, July 1999, pp. 263–267. 5328:Diamond, Fred (July 1996). 5108:Hellegouarch, Yves (2001). 4788:Prizes and incorrect proofs 4234:{\displaystyle b=mk+k^{2},} 4188:{\displaystyle a=mk+m^{2},} 3847:When we allow the exponent 3494:Generalized Fermat equation 2680:non-consecutivity condition 2643:In the early 19th century, 2529:(1917), and Duarte (1944). 1053:resulting in a solution in 660:Taniyama–Shimura conjecture 10739: 10161:Mozzochi, Charles (2000). 10087:Benson, Donald C. (2001). 10020:. New York: Anchor Books. 8456:Mathematics of Computation 5242:Mathematics of Computation 5186:"Science and Technology". 4832: 4794:French Academy of Sciences 4781:modified Szpiro conjecture 4723: 4106:Negative integer exponents 3269: 3195:semistable elliptic curves 3082: 3025: 2735:such that at least one of 2634:Early modern breakthroughs 2472:if it could be proved for 2091: 1887: 1838:(c. 5th century BC). Many 1639: 1618:that satisfy the equation 1562: 623:, so only prime values of 367:the first successful proof 29: 10703:Theorems in number theory 9746:10.1080/10511970308984042 9487:; Tucker, Thomas (2002). 9462:10.1155/S1073792891000144 9399:10.1017/S0025557200183275 9174:10.1016/j.jnt.2014.09.014 9107:. Springer. p. 417. 7671:= 0 en nombres entiers". 7086:10.1017/s0370164600041857 6945:10.1134/S0001434607090088 6860:Freeman L (22 May 2005). 6721:Gazeta Matematică Seria A 6056:Freeman L (12 May 2005). 5753:Elements of Number Theory 5488:10.1038/nature.2016.19552 5334:The Annals of Mathematics 4859:The Devil and Simon Flagg 3685:Fermat–Catalan conjecture 3310:horizontal Iwasawa theory 2284:(1910), Nutzhorn (1912), 1834:, may be found using the 1554:Pythagoras and Diophantus 1313:. Conversely, a solution 320:for any integer value of 260:Fermat–Catalan conjecture 115: 9243:Journal of Number Theory 9197:Mathematica Gottingensis 9152:Journal of Number Theory 9032:Elkies, Noam D. (2007). 8611:Inventiones Mathematicae 8382:Inventiones Mathematicae 8303:Inventiones Mathematicae 7381:(Published posthumously) 7162:. Leipzig: Brandstetter. 6973:Ribenboim, pp. 33, 37–41 6831:University of St Andrews 6576:Periodico di Matematiche 6482:Periodico di Matematiche 5935:Diophantus of Alexandria 5690:Inventiones Mathematicae 5420:: Wild 3-adic exercises" 3960:{\displaystyle b=rt^{m}} 3923:{\displaystyle a=rs^{m}} 3228:that were prime numbers. 2721:Sophie Germain's theorem 2686:must divide the product 2373:. For illustration, let 2288:(1913), Hancock (1931), 2256:(1830), Schopis (1825), 2248:(1738), Kausler (1802), 2240:were developed later by 1987: 1925:, find rational numbers 1001:to obtain a solution in 958:is odd and all three of 369:was released in 1994 by 229:Effective abc conjecture 10580:Fermat's little theorem 10478:"Fermat's last theorem" 10462:"Fermat's Last Theorem" 10442:"Fermat's Last Theorem" 10374:"Fermat's last theorem" 10363:Freeman, Larry (2005). 10321:Daney, Charles (2003). 10068:Bell, Eric T. (1998) . 9923:Elemente der Mathematik 9894:Friberg, Joran (2007). 8742:, pp. 1–4, 126–128 8486:24 October 2012 at the 7723:"Intorno all'equazioni 6785:95, July 2011, 269–271. 6766:91, July 2007, 260–262. 6391:A. Tafelmacher (1893). 6234:. Gummbinnen: Programm. 5544:"Fermat's Last Theorem" 3843:Inverse Fermat equation 3460:with positive integers 3404:Subsequent developments 3395:algebraic number theory 2523:Johannes van der Corput 2479:and for all odd primes 2393:. The general equation 1474:without a modular form. 1244:A non-trivial solution 1207:Equivalent statement 3: 1121:Equivalent statement 2: 909:Equivalent statement 1: 538:"Fermat's Last Theorem" 390:algebraic number theory 10663:(popular science book) 6701:. New York: Macmillan. 5520:– The Washington Post. 4946:Proof of impossibility 4865:who bargains with the 4851: 4627: 4529: 4464: 4399: 4265: 4235: 4189: 4019:for positive integers 4010: 3961: 3924: 3813: 3680:being greater than 2. 3577: 3380: 3317:recently developed by 3267: 3263:British mathematician 2950:, and is now known as 2809:, which was proved by 2692:mathematical induction 2690:. Her goal was to use 2181: 2115: 1995: 1973: 1912: 1907: 1898: 1771: 1721: 709: 394:history of mathematics 10683:Fermat's Last Theorem 10660:Fermat's Last Theorem 10565:Fermat's Last Theorem 10315:Fermat's last theorem 9489:"It's As Easy As abc" 9443:"ABC implies Mordell" 8934:Annals of Mathematics 8854:Annals of Mathematics 8127:en nombres entiers". 6729:Reprinted in 1977 in 6443:Reprinted in 1965 in 5991:Ribenboim, pp. 13, 24 5656:could not be modular. 5581:Annals of Mathematics 4849: 4628: 4538:for coprime integers 4530: 4465: 4400: 4266: 4236: 4190: 4011: 3962: 3925: 3814: 3578: 3434:was already known by 3386:Annals of Mathematics 3280:Ribet's proof of the 3262: 3255:Wiles's general proof 2958:Computational studies 2924:regular prime numbers 2871:roots of the number 1 2797:Sophie Germain primes 2717:Adrien-Marie Legendre 2254:Adrien-Marie Legendre 2201:, since the equation 2182: 2101: 2013:Fermat's Last Theorem 1954:(the solutions being 1895: 1840:Diophantine equations 1772: 1722: 1720:{\displaystyle A=x+y} 1636:Diophantine equations 1572:(3 + 4 = 9 + 16 = 25) 805:where one or more of 478:Fermat's Last Theorem 306:satisfy the equation 276:Fermat's Last Theorem 111:Fermat's Last Theorem 10440:Shay, David (2003). 10317:at Wikimedia Commons 10261:on 22 September 2015 9386:Mathematical Gazette 9341:Mathematical Gazette 9217:. 106–107: 329–331. 9215:Discrete Mathematics 8969:on 27 November 2001. 8115:(1974). "L'équation 8049:Mathematics Magazine 7581:Ribenboim, pp. 57–63 7362:Ribenboim, pp. 55–57 7178:Diophantine Analysis 7158:Stockhaus H (1910). 7070:"Mathematical Notes" 7018:Calzolari L (1855). 6921:, pp. 40, 52–54 6885:Ribenboim, pp. 24–25 6818:Robertson, Edmund F. 6782:Mathematical Gazette 6764:Mathematical Gazette 6744:Mathematical Gazette 6447:by New York:Chelsea. 6345:Lebesgue VA (1862). 6337:Lebesgue VA (1859). 6123:Mém. Acad. Roy. Sci. 6108:Ribenboim, pp. 15–24 6058:"Fermat's One Proof" 4886:writes the equation 4857:' 1954 short story " 4575: 4475: 4410: 4325: 4264:{\displaystyle c=mk} 4246: 4200: 4154: 3972: 3935: 3898: 3764: 3531: 3209:) was identified by 2795:is prime are called 2706:; since the product 2545:Carl Friedrich Gauss 2497:was first stated by 2268:(1853, 1859, 1862), 2138: 1910:Problem II.8 of the 1732: 1699: 1666:Diophantine equation 1642:Diophantine equation 1549:Mathematical history 717:succeeded in proving 523:improve this article 417:Pythagorean equation 122:The 1670 edition of 66:improve this article 18:Fermats Last Theorem 10698:Pythagorean theorem 10652:Fermat's Last Tango 10252:2013arXiv1307.3459S 9913:Kleiner, I (2000). 8623:1990InMat.100..431R 8394:1983InMat..73..349F 8315:1985InMat..79..409A 7845:: 676–679, 743–747. 7681:: 276–279, 348–349. 7535:: 185–195, 305–317. 7499:Moskov. Math. Samml 7054:: 921–924, 961–965. 6816:O'Connor, John J.; 6603: = 4 and 6563:. Leipzig: Teubner. 6393:"Sobre la ecuación 6117:Frénicle de Bessy, 5702:1990InMat.100..431R 5542:Weisstein, Eric W. 5479:2016Natur.531..287C 5254:1993MaCom..61..151B 4896:significant figures 4804:bequeathed 100,000 2865:, specifically the 2499:Abu-Mahmud Khojandi 1888:Fermat's conjecture 1836:Euclidean algorithm 1813:Pythagorean triples 1646:Fermat's equation, 1580:Pythagorean theorem 1559:Pythagorean triples 451:Pythagorean triples 411:Pythagorean origins 280:Fermat's conjecture 112: 78:footnote references 10693:1637 introductions 10590:Fermat pseudoprime 10575:Fermat's principle 10459:Weisstein, Eric W. 10210:. WileyBlackwell. 10107:Brudner, Harvey J. 9936:10.1007/PL00000079 9694:Singh, pp. 295–296 9623:Singh, pp. 120–125 9496:Notices of the AMS 9316:, pp. 688–691 8822:, pp. 132–134 8810:Singh, pp. 175–185 8777:Singh, pp. 269–277 8754:, pp. 128–130 8730:Singh, pp. 244–253 8721:, pp. 122–125 8709:Singh, pp. 239–243 8700:, pp. 121–122 8688:Singh, pp. 237–238 8679:, pp. 117–118 8639:10338.dmlcz/147454 8631:10.1007/BF01231195 8579:, pp. 109–114 8567:Singh, pp. 194–198 8402:10.1007/BF01388432 8367:Singh, pp. 232–234 8323:10.1007/BF01388981 8046: = 10". 7753:10.1007/bf03198884 7180:. New York: Wiley. 6933:Mathematical Notes 6794:Ribenboim, pp. 1–2 6697:Hancock H (1931). 6129:, 1666–1699 (1729) 6080:, pp. 615–616 5888:, pp. 333–334 5810:, pp. 145–146 5798:, pp. 151–155 5718:10338.dmlcz/147454 5710:10.1007/BF01231195 5112:. Academic Press. 4957:Wall–Sun–Sun prime 4933:Mathematics portal 4888:3987 + 4365 = 4472 4852: 4829:In popular culture 4654:Pythagorean triple 4623: 4525: 4460: 4395: 4261: 4231: 4185: 4147:can be written as 4043:Rational exponents 4006: 3957: 3920: 3809: 3689:Catalan conjecture 3573: 3411:modularity theorem 3290:modularity theorem 3282:epsilon conjecture 3268: 3203:epsilon conjecture 3050:modularity theorem 3028:Modularity theorem 3016:modularity theorem 2952:Faltings's theorem 2934:Mordell conjecture 2813:in 1977. In 1985, 2515:Peter Guthrie Tait 2290:Gheorghe Vrănceanu 2215:can be written as 2177: 2123:Only one relevant 2116: 1908: 1767: 1717: 1565:Pythagorean triple 833:Original statement 383:modularity lifting 379:modularity theorem 278:(sometimes called 239:Modularity theorem 10670: 10669: 10436:Taniyama–Shimura. 10313:Media related to 10217:978-0-471-06261-5 10194:978-0-387-90432-0 10172:978-0-8218-2670-6 10120:978-0-9644785-0-3 10098:978-0-19-513919-8 10079:978-0-88385-451-8 10027:978-0-385-49362-8 10003:978-0-387-98508-4 9981:978-3-540-20364-3 9905:978-981-270-452-8 9886:978-0-387-90230-2 9852:978-1-56858-077-7 9811:Popular Mechanics 9791:978-1-4088-3530-2 9589:978-0-12-421171-1 9485:Granville, Andrew 9236:Newman M (1981). 9129:"Beal Conjecture" 8437:978-0-387-90432-0 8212:Singh, pp. 97–109 8199:978-0-387-90432-0 7529:Časopis Pěst. Mat 7195:van der Corput JG 7135:Krey, H. (1909). 6559:Sommer J (1907). 6457:Bendz TR (1901). 6009:van der Poorten, 5119:978-0-12-339251-0 5097:Yves Hellegouarch 3863:for some integer 3833: 3832: 3801: 3788: 3775: 3597: 3596: 3211:Jean-Pierre Serre 3126:Frey-Hellegouarch 3004:Jean-Pierre Serre 2905:Lejeune Dirichlet 2875:factored uniquely 2819:Roger Heath-Brown 2620:Niels Henrik Abel 2377:be factored into 2286:Robert Carmichael 2278:Leopold Kronecker 2242:Frénicle de Bessy 2004: 2003: 1884:natural numbers. 1811:are given by the 1071:is negative, and 1033:are negative and 894:has no solutions. 676:Jean-Pierre Serre 601:The special case 599: 598: 591: 573: 268: 267: 106: 105: 98: 16:(Redirected from 10730: 10551:Pierre de Fermat 10544: 10537: 10530: 10521: 10514: 10505: 10493: 10491: 10489: 10484:on 4 August 2004 10480:. Archived from 10472: 10471: 10452: 10450: 10448: 10434: 10408: 10387: 10368: 10359: 10342:Elkies, Noam D. 10338: 10336: 10334: 10329:on 3 August 2004 10325:. Archived from 10312: 10296: 10270: 10268: 10266: 10260: 10254:. Archived from 10245: 10231: 10221: 10209: 10198: 10176: 10163:The Fermat Diary 10157: 10137: 10124: 10102: 10083: 10070:The Last Problem 10055: 10031: 10007: 9985: 9966: 9954: 9952: 9946:. Archived from 9919: 9909: 9890: 9868: 9856: 9822: 9821: 9819: 9817: 9802: 9796: 9795: 9772: 9766: 9765: 9727: 9721: 9720: 9718: 9716: 9701: 9695: 9692: 9686: 9685:, Martin Gardner 9678: 9672: 9669: 9663: 9662: 9660: 9658: 9639: 9633: 9630: 9624: 9621: 9615: 9609: 9603: 9600: 9594: 9593: 9578:Koshy T (2001). 9575: 9566: 9563: 9557: 9551: 9542: 9541: 9514:Oesterlé, Joseph 9510: 9504: 9503: 9502:(10): 1224–1231. 9493: 9481: 9470: 9469: 9464: 9435: 9429: 9428: 9417: 9411: 9410: 9380: 9374: 9373: 9348:(497): 269–271. 9323: 9317: 9311: 9305: 9304: 9268: 9262: 9261: 9259: 9233: 9227: 9226: 9211:Lenstra Jr. H.W. 9207: 9201: 9200: 9192: 9186: 9185: 9167: 9147: 9141: 9140: 9138: 9136: 9125: 9119: 9118: 9114:978-0387-25282-7 9100: 9094: 9093: 9075: 9055: 9049: 9048: 9038: 9029: 9023: 9022: 9020: 9018: 9007: 9001: 9000: 8980: 8971: 8970: 8965:. Archived from 8917: 8911: 8910: 8908: 8900: 8894: 8893: 8892:on 28 June 2003. 8891: 8885:. Archived from 8850: 8838: 8832: 8829: 8823: 8817: 8811: 8808: 8802: 8796: 8790: 8784: 8778: 8775: 8764: 8761: 8755: 8749: 8743: 8737: 8731: 8728: 8722: 8716: 8710: 8707: 8701: 8695: 8689: 8686: 8680: 8674: 8668: 8665: 8659: 8658: 8608: 8599: 8586: 8580: 8574: 8568: 8565: 8559: 8558: 8543: 8537: 8527: 8490: 8479: 8448: 8442: 8441: 8420: 8414: 8413: 8374: 8368: 8365: 8359: 8358:, pp. 84–88 8353: 8347: 8341: 8335: 8334: 8298: 8292: 8291: 8267: 8261: 8255: 8249: 8248: 8246: 8244: 8238: 8232:. Archived from 8231: 8222: 8213: 8210: 8204: 8203: 8182: 8176: 8170: 8164: 8158: 8149: 8148:, pp. 73–74 8143: 8137: 8136: 8109: 8103: 8097: 8080: 8074: 8073: 8042: = 6, 8032: 8023: 8022: 7992: 7986: 7985: 7973: 7964: 7963: 7951: 7945: 7944: 7918: 7912: 7906: 7891: 7885: 7884: 7853: 7847: 7846: 7817: 7811: 7810: 7781: 7764: 7715: 7709: 7708: 7706: 7704: 7689: 7683: 7682: 7653: 7647: 7646: 7617: 7600: 7594: 7588: 7582: 7579: 7573: 7572: 7570: 7568:10.5802/aif.1096 7543: 7537: 7536: 7513: 7507: 7506: 7479: 7473: 7472: 7460: 7454: 7453: 7424: 7418: 7417: 7388: 7382: 7380: 7369: 7363: 7360: 7354: 7351: 7342: 7336: 7330: 7329:Ribenboim, p. 49 7327: 7321: 7320: 7318: 7316: 7301: 7295: 7294: 7270: 7264: 7258: 7234: 7213: 7207: 7206: 7191: 7182: 7181: 7170: 7164: 7163: 7155: 7149: 7148: 7132: 7126: 7125: 7117: 7096: 7090: 7089: 7062: 7056: 7055: 7030: 7024: 7023: 7015: 7009: 6995: 6980: 6974: 6971: 6965: 6964: 6939:(3–4): 352–356. 6928: 6922: 6916: 6910: 6909:, pp. 39–40 6904: 6898: 6892: 6886: 6883: 6877: 6876: 6874: 6872: 6857: 6851: 6841: 6835: 6834: 6813: 6807: 6801: 6795: 6792: 6786: 6777:descente infinie 6773: 6767: 6761: 6753: 6747: 6740: 6734: 6731:Opera matematica 6728: 6718: 6709: 6703: 6702: 6694: 6688: 6687: 6654: 6648: 6647: 6623: 6617: 6616: 6593: 6584: 6583: 6571: 6565: 6564: 6556: 6550: 6549: 6531: 6515: 6509: 6507: 6496: 6490: 6489: 6477: 6466: 6465: 6462: 6454: 6448: 6442: 6425: 6419: 6418: 6388: 6382: 6381: 6357: 6351: 6350: 6342: 6334: 6284: 6278: 6277: 6266: 6260: 6259: 6242: 6236: 6235: 6230:Schopis (1825). 6227: 6221: 6219: 6208: 6199: 6198: 6187: 6181: 6180: 6168: 6157: 6151: 6136: 6130: 6115: 6109: 6106: 6100: 6094: 6081: 6075: 6069: 6068: 6066: 6064: 6053: 6047: 6046: 6037: 6031: 6030: 6019: 6013: 6007: 6001: 5998: 5992: 5989: 5983: 5977: 5971: 5968: 5962: 5961:Singh, pp. 62–66 5959: 5953: 5944: 5938: 5931: 5925: 5919: 5913: 5912:Singh, pp. 60–62 5910: 5904: 5898: 5889: 5883: 5877: 5876:, pp. 44–47 5871: 5865: 5864:, pp. 14–15 5859: 5853: 5852:Singh, pp. 56–58 5850: 5844: 5843:, pp. 44–45 5838: 5832: 5826: 5820: 5819:Singh, pp. 50–51 5817: 5811: 5805: 5799: 5793: 5787: 5786:, pp. 13–15 5781: 5775: 5774: 5772: 5770: 5744: 5738: 5737: 5687: 5678: 5665: 5659: 5658: 5655: 5626: 5624: 5618: 5612:. Archived from 5577: 5565: 5559: 5558: 5556: 5554: 5539: 5533: 5527: 5521: 5515: 5509: 5508: 5490: 5456: 5450: 5449: 5439: 5411: 5402: 5401: 5391: 5367: 5358: 5357: 5325: 5316: 5313: 5304: 5300: 5294: 5291: 5285: 5282: 5276: 5275: 5265: 5233: 5224: 5223: 5221: 5212: 5206: 5205: 5193: 5183: 5177: 5176: 5174: 5172: 5163:. Archived from 5157: 5146: 5145:Singh, pp. 18–20 5143: 5124: 5123: 5105: 5093: 5087: 5085: 5077: 5060: 5054: 5052: 5010: 4991: 4974:If the exponent 4972: 4935: 4930: 4929: 4889: 4759: 4715: 4699: 4687: 4680: 4651: 4632: 4630: 4629: 4624: 4619: 4618: 4609: 4608: 4596: 4595: 4555: 4534: 4532: 4531: 4526: 4518: 4517: 4505: 4504: 4469: 4467: 4466: 4461: 4453: 4452: 4440: 4439: 4404: 4402: 4401: 4396: 4388: 4387: 4375: 4374: 4359: 4358: 4346: 4345: 4317: 4299: 4270: 4268: 4267: 4262: 4240: 4238: 4237: 4232: 4227: 4226: 4194: 4192: 4191: 4186: 4181: 4180: 4146: 4101: 4095: 4089: 4071: 4060: 4015: 4013: 4012: 4007: 4005: 4004: 3966: 3964: 3963: 3958: 3956: 3955: 3929: 3927: 3926: 3921: 3919: 3918: 3882: 3868: 3862: 3852: 3827: 3818: 3816: 3815: 3810: 3802: 3794: 3789: 3781: 3776: 3768: 3758: 3625: 3591: 3582: 3580: 3579: 3574: 3569: 3568: 3556: 3555: 3543: 3542: 3525: 3489: 3483: 3477: 3471: 3465: 3459: 3433: 3426: 3378: 3319:Victor Kolyvagin 3205:", now known as 3157: 3124:(now known as a 3119: 3112: 3048:. The resulting 2890:cyclotomic field 2879:Joseph Liouville 2867:cyclotomic field 2860: 2859: 2853: 2847: 2808: 2794: 2782: 2774: 2766: 2758: 2750: 2742: 2727:does not divide 2665: 2655:by the equation 2607:infinite descent 2601: 2578: 2560: 2538: 2519:Siegmund Günther 2505:gave a proof of 2496: 2478: 2467: 2456: 2426: 2364: 2340: 2324: 2306: 2239: 2229: 2214: 2200: 2186: 2184: 2183: 2178: 2176: 2175: 2163: 2162: 2150: 2149: 2129:infinite descent 2104:infinite descent 2078:grand conjecture 2049: 2042: 2028: 1984: 1976: 1967: 1960: 1953: 1946: 1917: 1901: 1882:relatively prime 1871: 1833: 1821: 1818: 1810: 1776: 1774: 1773: 1768: 1763: 1762: 1750: 1749: 1726: 1724: 1723: 1718: 1692:, respectively: 1659: 1631: 1617: 1577: 1573: 1536: 1532: 1531: 1525: 1519: 1512: 1465: 1439:odd prime, then 1438: 1434: 1420: 1416: 1412: 1393: 1387: 1377: 1363: 1349: 1338: 1332: 1322: 1312: 1301: 1295: 1285: 1275: 1261: 1255: 1251: 1247: 1239: 1225: 1219:, where integer 1218: 1201: 1195: 1189: 1183: 1179: 1175: 1160: 1142: 1136:, where integer 1135: 1115: 1109: 1103: 1099: 1093: 1078: 1074: 1070: 1066: 1062: 1058: 1052: 1036: 1032: 1022: 1018: 1014: 1010: 1006: 1000: 985: 971: 957: 953: 945: 939: 935: 931: 927: 924:, where integer 923: 903: 893: 879: 856: 850: 846: 842: 838: 819:trivial solution 816: 812: 808: 804: 790: 783: 777: 773: 769: 759: 753: 747: 607: 594: 587: 583: 580: 574: 572: 531: 507: 499: 466: 432: 349:Pierre de Fermat 343: 336: 329: 325: 319: 305: 299: 293: 196: 185:Pierre de Fermat 175: 161: 155:For any integer 120: 113: 101: 94: 90: 87: 81: 49: 48: 41: 32:Fermat's theorem 21: 10738: 10737: 10733: 10732: 10731: 10729: 10728: 10727: 10718:1995 in science 10688:1637 in science 10673: 10672: 10671: 10666: 10619: 10610:Fermat's spiral 10553: 10548: 10518: 10509: 10496: 10487: 10485: 10475: 10457: 10456: 10446: 10444: 10439: 10390: 10372: 10362: 10341: 10332: 10330: 10320: 10304: 10299: 10293: 10273: 10264: 10262: 10258: 10229: 10224: 10218: 10201: 10195: 10179: 10173: 10160: 10135: 10127: 10121: 10105: 10099: 10086: 10080: 10067: 10063: 10061:Further reading 10058: 10052: 10034: 10028: 10017:Fermat's Enigma 10010: 10004: 9988: 9982: 9969: 9957: 9953:on 8 June 2011. 9950: 9917: 9912: 9906: 9893: 9887: 9871: 9859: 9853: 9835: 9831: 9826: 9825: 9815: 9813: 9804: 9803: 9799: 9792: 9774: 9773: 9769: 9729: 9728: 9724: 9714: 9712: 9703: 9702: 9698: 9693: 9689: 9679: 9675: 9670: 9666: 9656: 9654: 9641: 9640: 9636: 9631: 9627: 9622: 9618: 9610: 9606: 9601: 9597: 9590: 9577: 9576: 9569: 9564: 9560: 9552: 9545: 9512: 9511: 9507: 9491: 9483: 9482: 9473: 9437: 9436: 9432: 9419: 9418: 9414: 9382: 9381: 9377: 9354:10.2307/3619056 9325: 9324: 9320: 9312: 9308: 9285:10.2307/4145241 9270: 9269: 9265: 9235: 9234: 9230: 9209: 9208: 9204: 9194: 9193: 9189: 9149: 9148: 9144: 9134: 9132: 9127: 9126: 9122: 9115: 9102: 9101: 9097: 9057: 9056: 9052: 9036: 9031: 9030: 9026: 9016: 9014: 9013:. Prime Puzzles 9009: 9008: 9004: 8997: 8982: 8981: 8974: 8947:10.2307/2118560 8919: 8918: 8914: 8906: 8902: 8901: 8897: 8889: 8867:10.2307/2118559 8848: 8840: 8839: 8835: 8830: 8826: 8818: 8814: 8809: 8805: 8797: 8793: 8785: 8781: 8776: 8767: 8762: 8758: 8750: 8746: 8738: 8734: 8729: 8725: 8717: 8713: 8708: 8704: 8696: 8692: 8687: 8683: 8675: 8671: 8666: 8662: 8606: 8595: 8588: 8587: 8583: 8575: 8571: 8566: 8562: 8545: 8544: 8540: 8528: 8493: 8488:Wayback Machine 8468:10.2307/2006167 8452:Wagstaff SS Jr. 8450: 8449: 8445: 8438: 8422: 8421: 8417: 8376: 8375: 8371: 8366: 8362: 8354: 8350: 8342: 8338: 8300: 8299: 8295: 8269: 8268: 8264: 8256: 8252: 8242: 8240: 8239:on 5 April 2013 8236: 8229: 8224: 8223: 8216: 8211: 8207: 8200: 8184: 8183: 8179: 8171: 8167: 8159: 8152: 8144: 8140: 8111: 8110: 8106: 8082: 8081: 8077: 8062:10.2307/3029800 8034: 8033: 8026: 8011:10.2307/2972379 7994: 7993: 7989: 7975: 7974: 7967: 7953: 7952: 7948: 7920: 7919: 7915: 7893: 7892: 7888: 7855: 7854: 7850: 7819: 7818: 7814: 7783: 7782: 7766: 7765: 7717: 7716: 7712: 7702: 7700: 7698: = 7" 7691: 7690: 7686: 7655: 7654: 7650: 7619: 7618: 7602: 7601: 7597: 7589: 7585: 7580: 7576: 7545: 7544: 7540: 7523: = 5 7515: 7514: 7510: 7481: 7480: 7476: 7471:: 11–13, 41–42. 7462: 7461: 7457: 7426: 7425: 7421: 7390: 7389: 7385: 7371: 7370: 7366: 7361: 7357: 7352: 7345: 7337: 7333: 7328: 7324: 7314: 7312: 7310: = 5" 7303: 7302: 7298: 7272: 7271: 7267: 7222: 7215: 7214: 7210: 7193: 7192: 7185: 7172: 7171: 7167: 7157: 7156: 7152: 7134: 7133: 7129: 7105: 7098: 7097: 7093: 7064: 7063: 7059: 7032: 7031: 7027: 7017: 7016: 7012: 6982: 6981: 6977: 6972: 6968: 6930: 6929: 6925: 6917: 6913: 6905: 6901: 6893: 6889: 6884: 6880: 6870: 6868: 6866: = 3" 6859: 6858: 6854: 6842: 6838: 6815: 6814: 6810: 6802: 6798: 6793: 6789: 6774: 6770: 6756: 6754: 6750: 6741: 6737: 6713: 6711: 6710: 6706: 6696: 6695: 6691: 6676:10.2307/2974106 6656: 6655: 6651: 6625: 6624: 6620: 6595: 6594: 6587: 6573: 6572: 6568: 6558: 6557: 6553: 6519: 6517: 6516: 6512: 6498: 6497: 6493: 6479: 6478: 6469: 6460: 6456: 6455: 6451: 6427: 6426: 6422: 6390: 6389: 6385: 6359: 6358: 6354: 6344: 6343: 6336: 6335: 6286: 6285: 6281: 6268: 6267: 6263: 6244: 6243: 6239: 6229: 6228: 6224: 6210: 6209: 6202: 6189: 6188: 6184: 6170: 6169: 6160: 6138: 6137: 6133: 6116: 6112: 6107: 6103: 6095: 6084: 6076: 6072: 6062: 6060: 6055: 6054: 6050: 6042:BBC Documentary 6039: 6038: 6034: 6021: 6020: 6016: 6008: 6004: 5999: 5995: 5990: 5986: 5978: 5974: 5969: 5965: 5960: 5956: 5945: 5941: 5932: 5928: 5920: 5916: 5911: 5907: 5899: 5892: 5884: 5880: 5872: 5868: 5860: 5856: 5851: 5847: 5839: 5835: 5827: 5823: 5818: 5814: 5806: 5802: 5794: 5790: 5782: 5778: 5768: 5766: 5764: 5746: 5745: 5741: 5685: 5674: 5667: 5666: 5662: 5630: 5622: 5620: 5616: 5594:10.2307/2118559 5575: 5567: 5566: 5562: 5552: 5550: 5541: 5540: 5536: 5528: 5524: 5516: 5512: 5458: 5457: 5453: 5413: 5412: 5405: 5369: 5368: 5361: 5346:10.2307/2118586 5327: 5326: 5319: 5314: 5307: 5301: 5297: 5292: 5288: 5283: 5279: 5263:10.2307/2152942 5235: 5234: 5227: 5219: 5214: 5213: 5209: 5202: 5185: 5184: 5180: 5170: 5168: 5159: 5158: 5149: 5144: 5137: 5132: 5127: 5120: 5107: 5099: 5094: 5090: 5079: 5063: 5061: 5057: 5044: 4997: 4983: 4973: 4969: 4965: 4931: 4924: 4921: 4887: 4837: 4831: 4790: 4747: 4728: 4722: 4701: 4689: 4682: 4668: 4665: 4637: 4610: 4600: 4587: 4573: 4572: 4547: 4509: 4496: 4473: 4472: 4444: 4431: 4408: 4407: 4379: 4366: 4350: 4337: 4323: 4322: 4305: 4294: 4291: 4244: 4243: 4218: 4198: 4197: 4172: 4152: 4151: 4134: 4116: 4108: 4097: 4091: 4085: 4066: 4048: 4045: 3996: 3970: 3969: 3947: 3933: 3932: 3910: 3896: 3895: 3885:Hendrik Lenstra 3870: 3864: 3854: 3848: 3845: 3837:known solutions 3825: 3762: 3761: 3630:Beal conjecture 3612: 3589: 3560: 3547: 3534: 3529: 3528: 3496: 3485: 3479: 3478:and an integer 3473: 3467: 3461: 3447: 3444: 3428: 3421: 3406: 3379: 3376: 3278: 3270:Main articles: 3257: 3207:Ribet's theorem 3136: 3114: 3098: 3091: 3089:Ribet's theorem 3083:Main articles: 3081: 3042:elliptic curves 3038:Yutaka Taniyama 3030: 3024: 2992: 2972:Samuel Wagstaff 2960: 2936: 2863:complex numbers 2855: 2849: 2843: 2842: 2835: 2815:Leonard Adleman 2800: 2788: 2776: 2768: 2760: 2752: 2744: 2736: 2656: 2641: 2636: 2596: 2573: 2563:Angelo Genocchi 2555: 2533: 2491: 2473: 2462: 2461:. Each integer 2451: 2412: 2350: 2326: 2312: 2301: 2298: 2296:Other exponents 2270:Théophile Pépin 2266:Victor Lebesgue 2262:Joseph Bertrand 2234: 2216: 2202: 2195: 2167: 2154: 2141: 2136: 2135: 2125:proof by Fermat 2121: 2096: 2090: 2074:Harvey Friedman 2044: 2037: 2023: 2000: 1992: 1962: 1955: 1948: 1934: 1920:rational number 1890: 1859: 1823: 1819: 1798: 1754: 1741: 1730: 1729: 1697: 1696: 1672:mathematician, 1647: 1644: 1638: 1619: 1603: 1575: 1571: 1567: 1561: 1556: 1551: 1534: 1527: 1521: 1515: 1514: 1487: 1480:Ribet's theorem 1440: 1436: 1422: 1418: 1414: 1410: 1389: 1383: 1365: 1351: 1340: 1334: 1324: 1314: 1303: 1297: 1287: 1277: 1263: 1257: 1253: 1249: 1245: 1227: 1220: 1209: 1197: 1196:, and hence in 1191: 1185: 1181: 1177: 1166: 1144: 1137: 1123: 1111: 1105: 1101: 1095: 1080: 1076: 1072: 1068: 1064: 1060: 1054: 1038: 1034: 1024: 1020: 1016: 1012: 1008: 1002: 987: 973: 959: 955: 951: 941: 937: 933: 929: 925: 911: 899: 881: 880:, the equation 874: 852: 848: 844: 840: 836: 814: 810: 806: 792: 785: 779: 775: 771: 761: 755: 749: 743: 737: 681:Ribet's Theorem 652:elliptic curves 648:Yutaka Taniyama 602: 595: 584: 578: 575: 532: 530: 520: 508: 497: 454: 420: 413: 408: 338: 331: 327: 321: 307: 301: 295: 289: 264: 255:Beal conjecture 248:Generalizations 243: 216: 191:First stated in 181:First stated by 163: 162:, the equation 156: 137: 102: 91: 85: 82: 63: 54:This article's 50: 46: 39: 28: 23: 22: 15: 12: 11: 5: 10736: 10734: 10726: 10725: 10723:Abc conjecture 10720: 10715: 10710: 10705: 10700: 10695: 10690: 10685: 10675: 10674: 10668: 10667: 10665: 10664: 10656: 10655:(2000 musical) 10648: 10643: 10638: 10633: 10627: 10625: 10621: 10620: 10618: 10617: 10612: 10607: 10602: 10597: 10592: 10587: 10582: 10577: 10572: 10567: 10561: 10559: 10555: 10554: 10549: 10547: 10546: 10539: 10532: 10524: 10517: 10516: 10507: 10494: 10473: 10454: 10437: 10399:(4): 375–402. 10395:. New Series. 10388: 10370: 10360: 10339: 10318: 10305: 10303: 10302:External links 10300: 10298: 10297: 10291: 10275:Stevens, Glenn 10271: 10222: 10216: 10199: 10193: 10177: 10171: 10158: 10148:(7): 743–746. 10125: 10119: 10103: 10097: 10084: 10078: 10064: 10062: 10059: 10057: 10056: 10050: 10032: 10026: 10008: 10002: 9986: 9980: 9967: 9955: 9910: 9904: 9891: 9885: 9869: 9857: 9851: 9832: 9830: 9827: 9824: 9823: 9797: 9790: 9767: 9722: 9696: 9687: 9673: 9664: 9653:on 20 May 2020 9647:The Abel Prize 9634: 9625: 9616: 9604: 9595: 9588: 9567: 9558: 9543: 9505: 9471: 9430: 9412: 9375: 9318: 9306: 9279:(4): 322–329. 9263: 9250:(4): 495–498. 9228: 9202: 9187: 9142: 9120: 9113: 9095: 9050: 9024: 9002: 8995: 8972: 8941:(3): 553–572. 8912: 8895: 8861:(3): 443–551. 8833: 8824: 8812: 8803: 8791: 8779: 8765: 8756: 8744: 8732: 8723: 8711: 8702: 8690: 8681: 8669: 8660: 8617:(2): 431–476. 8581: 8569: 8560: 8538: 8491: 8443: 8436: 8415: 8388:(3): 349–366. 8369: 8360: 8348: 8336: 8293: 8262: 8250: 8214: 8205: 8198: 8177: 8165: 8150: 8138: 8104: 8075: 8056:(5): 279–281. 8024: 8005:(7): 238–239. 7987: 7965: 7946: 7913: 7886: 7848: 7812: 7710: 7684: 7648: 7595: 7583: 7574: 7538: 7508: 7474: 7455: 7419: 7383: 7364: 7355: 7343: 7341:, pp. 8–9 7331: 7322: 7296: 7265: 7208: 7183: 7165: 7150: 7147:(12): 179–180. 7127: 7091: 7057: 7025: 7010: 6975: 6966: 6923: 6911: 6899: 6897:, pp. 6–8 6887: 6878: 6852: 6836: 6808: 6796: 6787: 6768: 6748: 6735: 6704: 6689: 6649: 6618: 6585: 6566: 6551: 6510: 6491: 6467: 6449: 6420: 6383: 6352: 6279: 6261: 6237: 6222: 6200: 6182: 6158: 6131: 6110: 6101: 6082: 6070: 6048: 6032: 6014: 6002: 5993: 5984: 5972: 5963: 5954: 5939: 5926: 5914: 5905: 5890: 5878: 5866: 5854: 5845: 5833: 5821: 5812: 5800: 5788: 5776: 5762: 5739: 5660: 5619:on 10 May 2011 5560: 5534: 5522: 5510: 5451: 5430:(4): 843–939. 5403: 5382:(2): 521–567. 5359: 5340:(1): 137–166. 5317: 5305: 5295: 5286: 5277: 5225: 5215:Nigel Boston. 5207: 5200: 5178: 5167:on 20 May 2020 5147: 5134: 5133: 5131: 5128: 5126: 5125: 5118: 5088: 5055: 4966: 4964: 4961: 4960: 4959: 4954: 4951:Sums of powers 4948: 4943: 4937: 4936: 4920: 4917: 4913:Captain Picard 4892:counterexample 4833:Main article: 4830: 4827: 4802:Paul Wolfskehl 4789: 4786: 4732:abc conjecture 4724:Main article: 4721: 4720:abc conjecture 4718: 4664: 4658: 4634: 4633: 4622: 4617: 4613: 4607: 4603: 4599: 4594: 4590: 4586: 4583: 4580: 4536: 4535: 4524: 4521: 4516: 4512: 4508: 4503: 4499: 4495: 4492: 4489: 4486: 4483: 4480: 4470: 4459: 4456: 4451: 4447: 4443: 4438: 4434: 4430: 4427: 4424: 4421: 4418: 4415: 4405: 4394: 4391: 4386: 4382: 4378: 4373: 4369: 4365: 4362: 4357: 4353: 4349: 4344: 4340: 4336: 4333: 4330: 4290: 4284: 4272: 4271: 4260: 4257: 4254: 4251: 4241: 4230: 4225: 4221: 4217: 4214: 4211: 4208: 4205: 4195: 4184: 4179: 4175: 4171: 4168: 4165: 4162: 4159: 4132:optic equation 4115: 4109: 4107: 4104: 4044: 4041: 4017: 4016: 4003: 3999: 3995: 3992: 3989: 3986: 3983: 3980: 3977: 3967: 3954: 3950: 3946: 3943: 3940: 3930: 3917: 3913: 3909: 3906: 3903: 3844: 3841: 3831: 3830: 3821: 3819: 3808: 3805: 3800: 3797: 3792: 3787: 3784: 3779: 3774: 3771: 3595: 3594: 3585: 3583: 3572: 3567: 3563: 3559: 3554: 3550: 3546: 3541: 3537: 3495: 3492: 3443: 3440: 3405: 3402: 3374: 3364:Iwasawa theory 3361: 3352:Richard Taylor 3323:Matthias Flach 3256: 3253: 3252: 3251: 3243: 3236: 3229: 3164:contraposition 3159: 3158: 3122:elliptic curve 3080: 3077: 3026:Main article: 3023: 3020: 2991: 2988: 2984:Skewes' number 2964:Harry Vandiver 2959: 2956: 2938:In the 1920s, 2935: 2932: 2913:Harold Edwards 2834: 2831: 2823:Étienne Fouvry 2645:Sophie Germain 2640: 2639:Sophie Germain 2637: 2635: 2632: 2628:Sophie Germain 2503:Leonhard Euler 2448: 2447: 2409: 2408: 2297: 2294: 2246:Leonhard Euler 2188: 2187: 2174: 2170: 2166: 2161: 2157: 2153: 2148: 2144: 2120: 2117: 2114:(pp. 338–339). 2092:Main article: 2089: 2086: 2052:Marin Mersenne 2002: 2001: 1993: 1889: 1886: 1820: 1800 BC 1778: 1777: 1766: 1761: 1757: 1753: 1748: 1744: 1740: 1737: 1727: 1716: 1713: 1710: 1707: 1704: 1660:with positive 1640:Main article: 1637: 1634: 1563:Main article: 1560: 1557: 1555: 1552: 1550: 1547: 1476: 1475: 1472:elliptic curve 1242: 1241: 1180:are equal (to 1163: 1162: 948: 947: 896: 895: 857:(meaning that 736: 733: 725:Richard Taylor 637:regular primes 629:Sophie Germain 615:that is not a 597: 596: 511: 509: 502: 496: 493: 437:solutions for 412: 409: 407: 404: 266: 265: 263: 262: 257: 251: 249: 245: 244: 242: 241: 236: 231: 225: 223: 219: 218: 217:Published 1995 213: 212:First proof in 209: 208: 203: 202:First proof by 199: 198: 192: 188: 187: 182: 178: 177: 153: 149: 148: 143: 139: 138: 121: 104: 103: 58:external links 53: 51: 44: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 10735: 10724: 10721: 10719: 10716: 10714: 10711: 10709: 10706: 10704: 10701: 10699: 10696: 10694: 10691: 10689: 10686: 10684: 10681: 10680: 10678: 10662: 10661: 10657: 10654: 10653: 10649: 10647: 10644: 10642: 10639: 10637: 10634: 10632: 10629: 10628: 10626: 10622: 10616: 10613: 10611: 10608: 10606: 10603: 10601: 10598: 10596: 10593: 10591: 10588: 10586: 10583: 10581: 10578: 10576: 10573: 10571: 10570:Fermat number 10568: 10566: 10563: 10562: 10560: 10556: 10552: 10545: 10540: 10538: 10533: 10531: 10526: 10525: 10522: 10512: 10508: 10503: 10499: 10495: 10483: 10479: 10474: 10469: 10468: 10463: 10460: 10455: 10443: 10438: 10432: 10428: 10424: 10420: 10416: 10412: 10407: 10402: 10398: 10394: 10389: 10385: 10381: 10380: 10375: 10371: 10366: 10361: 10357: 10355: 10351: 10347: 10340: 10328: 10324: 10319: 10316: 10311: 10307: 10306: 10301: 10294: 10292:0-387-94609-8 10288: 10284: 10280: 10276: 10272: 10257: 10253: 10249: 10244: 10239: 10235: 10228: 10223: 10219: 10213: 10208: 10207: 10200: 10196: 10190: 10186: 10182: 10178: 10174: 10168: 10164: 10159: 10155: 10151: 10147: 10143: 10142: 10134: 10131:(July 1995). 10130: 10126: 10122: 10116: 10112: 10108: 10104: 10100: 10094: 10090: 10085: 10081: 10075: 10071: 10066: 10065: 10060: 10053: 10051:0-262-69060-8 10047: 10044:. MIT Press. 10043: 10042: 10037: 10033: 10029: 10023: 10019: 10018: 10013: 10009: 10005: 9999: 9995: 9991: 9987: 9983: 9977: 9973: 9968: 9964: 9960: 9956: 9949: 9945: 9941: 9937: 9933: 9929: 9925: 9924: 9916: 9911: 9907: 9901: 9897: 9892: 9888: 9882: 9878: 9874: 9870: 9866: 9862: 9858: 9854: 9848: 9844: 9843: 9838: 9834: 9833: 9828: 9812: 9808: 9801: 9798: 9793: 9787: 9783: 9782: 9777: 9771: 9768: 9763: 9759: 9755: 9751: 9747: 9743: 9739: 9735: 9734: 9726: 9723: 9711: 9707: 9700: 9697: 9691: 9688: 9684: 9683: 9677: 9674: 9671:Singh, p. 295 9668: 9665: 9652: 9648: 9644: 9638: 9635: 9632:Singh, p. 284 9629: 9626: 9620: 9617: 9613: 9608: 9605: 9599: 9596: 9591: 9585: 9581: 9574: 9572: 9568: 9565:Singh, p. 105 9562: 9559: 9555: 9550: 9548: 9544: 9539: 9535: 9531: 9527: 9523: 9519: 9515: 9509: 9506: 9501: 9497: 9490: 9486: 9480: 9478: 9476: 9472: 9468: 9463: 9458: 9455:(7): 99–109. 9454: 9450: 9449: 9444: 9440: 9434: 9431: 9426: 9422: 9416: 9413: 9408: 9404: 9400: 9396: 9392: 9388: 9387: 9379: 9376: 9371: 9367: 9363: 9359: 9355: 9351: 9347: 9343: 9342: 9337: 9334: =  9333: 9330: +  9329: 9322: 9319: 9315: 9310: 9307: 9302: 9298: 9294: 9290: 9286: 9282: 9278: 9274: 9267: 9264: 9258: 9253: 9249: 9245: 9244: 9239: 9232: 9229: 9224: 9220: 9216: 9212: 9206: 9203: 9198: 9191: 9188: 9183: 9179: 9175: 9171: 9166: 9161: 9157: 9153: 9146: 9143: 9130: 9124: 9121: 9116: 9110: 9106: 9099: 9096: 9091: 9087: 9083: 9079: 9074: 9069: 9065: 9061: 9054: 9051: 9046: 9042: 9035: 9028: 9025: 9012: 9006: 9003: 8998: 8996:9781400830398 8992: 8988: 8987: 8979: 8977: 8973: 8968: 8964: 8960: 8956: 8952: 8948: 8944: 8940: 8936: 8935: 8930: 8926: 8922: 8916: 8913: 8905: 8899: 8896: 8888: 8884: 8880: 8876: 8872: 8868: 8864: 8860: 8856: 8855: 8847: 8843: 8842:Wiles, Andrew 8837: 8834: 8828: 8825: 8821: 8816: 8813: 8807: 8804: 8800: 8795: 8792: 8788: 8783: 8780: 8774: 8772: 8770: 8766: 8763:Singh, p. 257 8760: 8757: 8753: 8748: 8745: 8741: 8736: 8733: 8727: 8724: 8720: 8715: 8712: 8706: 8703: 8699: 8694: 8691: 8685: 8682: 8678: 8673: 8670: 8667:Singh, p. 205 8664: 8661: 8656: 8652: 8648: 8644: 8640: 8636: 8632: 8628: 8624: 8620: 8616: 8612: 8605: 8603: 8598: 8591: 8585: 8582: 8578: 8573: 8570: 8564: 8561: 8556: 8552: 8548: 8542: 8539: 8536: 8535:1-85702-521-0 8532: 8526: 8524: 8522: 8520: 8518: 8516: 8514: 8512: 8510: 8508: 8506: 8504: 8502: 8500: 8498: 8496: 8492: 8489: 8485: 8482: 8477: 8473: 8469: 8465: 8461: 8457: 8453: 8447: 8444: 8439: 8433: 8429: 8425: 8419: 8416: 8411: 8407: 8403: 8399: 8395: 8391: 8387: 8383: 8379: 8373: 8370: 8364: 8361: 8357: 8352: 8349: 8345: 8340: 8337: 8332: 8328: 8324: 8320: 8316: 8312: 8308: 8304: 8297: 8294: 8289: 8285: 8281: 8277: 8273: 8266: 8263: 8259: 8254: 8251: 8235: 8228: 8221: 8219: 8215: 8209: 8206: 8201: 8195: 8191: 8187: 8181: 8178: 8175:, p. 733 8174: 8169: 8166: 8162: 8157: 8155: 8151: 8147: 8142: 8139: 8134: 8130: 8126: 8122: 8118: 8114: 8108: 8105: 8101: 8098:Reprinted in 8095: 8091: 8090: 8085: 8084:Dirichlet PGL 8079: 8076: 8071: 8067: 8063: 8059: 8055: 8051: 8050: 8045: 8041: 8037: 8031: 8029: 8025: 8020: 8016: 8012: 8008: 8004: 8000: 7999: 7991: 7988: 7983: 7979: 7972: 7970: 7966: 7961: 7957: 7950: 7947: 7942: 7938: 7937: 7932: 7928: 7924: 7917: 7914: 7910: 7907:Reprinted in 7904: 7900: 7896: 7890: 7887: 7882: 7878: 7874: 7872: 7868: 7864: 7858: 7852: 7849: 7844: 7840: 7839: 7834: 7830: 7826: 7822: 7816: 7813: 7808: 7804: 7803: 7798: 7794: 7790: 7786: 7779: 7775: 7774: 7769: 7762: 7758: 7754: 7750: 7746: 7742: 7741: 7736: 7734: 7730: 7726: 7720: 7714: 7711: 7699: 7697: 7688: 7685: 7680: 7676: 7675: 7670: 7666: 7662: 7658: 7652: 7649: 7644: 7640: 7639: 7634: 7630: 7626: 7622: 7615: 7611: 7610: 7605: 7599: 7596: 7592: 7587: 7584: 7578: 7575: 7569: 7564: 7560: 7556: 7552: 7548: 7542: 7539: 7534: 7530: 7526: 7525:(in Bohemian) 7522: 7518: 7512: 7509: 7504: 7500: 7496: 7493: 7489: 7485: 7478: 7475: 7470: 7466: 7459: 7456: 7451: 7447: 7446: 7441: 7437: 7433: 7429: 7423: 7420: 7415: 7411: 7410: 7405: 7401: 7397: 7393: 7387: 7384: 7378: 7374: 7368: 7365: 7359: 7356: 7353:Singh, p. 106 7350: 7348: 7344: 7340: 7335: 7332: 7326: 7323: 7311: 7309: 7300: 7297: 7292: 7288: 7284: 7280: 7276: 7269: 7266: 7262: 7259:Reprinted in 7256: 7252: 7248: 7246: 7242: 7238: 7233: 7229: 7225: 7218: 7212: 7209: 7204: 7200: 7196: 7190: 7188: 7184: 7179: 7175: 7174:Carmichael RD 7169: 7166: 7161: 7154: 7151: 7146: 7142: 7138: 7131: 7128: 7123: 7119: 7116: 7112: 7108: 7101: 7095: 7092: 7087: 7083: 7079: 7075: 7071: 7067: 7061: 7058: 7053: 7049: 7048: 7043: 7039: 7035: 7029: 7026: 7021: 7014: 7011: 7007: 7003: 7002:Sphinx-Oedipe 6999: 6993: 6989: 6985: 6979: 6976: 6970: 6967: 6962: 6958: 6954: 6950: 6946: 6942: 6938: 6934: 6927: 6924: 6920: 6915: 6912: 6908: 6903: 6900: 6896: 6891: 6888: 6882: 6879: 6867: 6865: 6856: 6853: 6849: 6845: 6840: 6837: 6832: 6828: 6827: 6822: 6819: 6812: 6809: 6806:, p. 545 6805: 6800: 6797: 6791: 6788: 6784: 6783: 6778: 6772: 6769: 6765: 6759: 6752: 6749: 6745: 6739: 6736: 6732: 6726: 6722: 6716: 6708: 6705: 6700: 6693: 6690: 6685: 6681: 6677: 6673: 6669: 6665: 6664: 6659: 6658:Carmichael RD 6653: 6650: 6645: 6641: 6637: 6633: 6629: 6622: 6619: 6614: 6610: 6606: 6602: 6598: 6592: 6590: 6586: 6581: 6577: 6570: 6567: 6562: 6555: 6552: 6547: 6543: 6539: 6535: 6530: 6526: 6522: 6514: 6511: 6505: 6501: 6495: 6492: 6487: 6483: 6476: 6474: 6472: 6468: 6463: 6453: 6450: 6446: 6440: 6436: 6435: 6430: 6424: 6421: 6416: 6412: 6411: 6406: 6404: 6400: 6396: 6387: 6384: 6379: 6375: 6371: 6367: 6363: 6356: 6353: 6348: 6340: 6332: 6328: 6327: 6322: 6318: 6314: 6310: 6306: 6302: 6298: 6294: 6290: 6283: 6280: 6275: 6271: 6265: 6262: 6257: 6253: 6252: 6247: 6241: 6238: 6233: 6226: 6223: 6217: 6213: 6207: 6205: 6201: 6196: 6192: 6186: 6183: 6178: 6174: 6167: 6165: 6163: 6159: 6155: 6149: 6145: 6141: 6135: 6132: 6128: 6124: 6120: 6114: 6111: 6105: 6102: 6098: 6093: 6091: 6089: 6087: 6083: 6079: 6074: 6071: 6059: 6052: 6049: 6044: 6043: 6036: 6033: 6028: 6024: 6018: 6015: 6012: 6006: 6003: 5997: 5994: 5988: 5985: 5981: 5976: 5973: 5967: 5964: 5958: 5955: 5952: 5948: 5943: 5940: 5936: 5930: 5927: 5923: 5918: 5915: 5909: 5906: 5903:, p. 731 5902: 5897: 5895: 5891: 5887: 5882: 5879: 5875: 5870: 5867: 5863: 5858: 5855: 5849: 5846: 5842: 5837: 5834: 5831:, p. 145 5830: 5825: 5822: 5816: 5813: 5809: 5804: 5801: 5797: 5792: 5789: 5785: 5780: 5777: 5765: 5763:0-387-95587-9 5759: 5755: 5754: 5749: 5743: 5740: 5735: 5731: 5727: 5723: 5719: 5715: 5711: 5707: 5703: 5699: 5695: 5691: 5684: 5682: 5677: 5670: 5664: 5661: 5657: 5653: 5649: 5645: 5641: 5637: 5633: 5615: 5611: 5607: 5603: 5599: 5595: 5591: 5587: 5583: 5582: 5574: 5570: 5569:Wiles, Andrew 5564: 5561: 5549: 5545: 5538: 5535: 5531: 5526: 5523: 5519: 5514: 5511: 5506: 5502: 5498: 5494: 5489: 5484: 5480: 5476: 5473:(7594): 287. 5472: 5468: 5467: 5462: 5455: 5452: 5447: 5443: 5438: 5433: 5429: 5425: 5421: 5419: 5410: 5408: 5404: 5399: 5395: 5390: 5385: 5381: 5377: 5373: 5366: 5364: 5360: 5355: 5351: 5347: 5343: 5339: 5335: 5331: 5324: 5322: 5318: 5315:Singh, p. 144 5312: 5310: 5306: 5299: 5296: 5290: 5287: 5284:Singh, p. 223 5281: 5278: 5273: 5269: 5264: 5259: 5255: 5251: 5247: 5243: 5239: 5232: 5230: 5226: 5218: 5211: 5208: 5203: 5201:9780965238304 5197: 5192: 5191: 5182: 5179: 5166: 5162: 5156: 5154: 5152: 5148: 5142: 5140: 5136: 5129: 5121: 5115: 5111: 5103: 5098: 5092: 5089: 5083: 5075: 5071: 5067: 5062:For example, 5059: 5056: 5051: 5047: 5042: 5039:; or else as 5038: 5034: 5030: 5026: 5022: 5018: 5014: 5008: 5004: 5000: 4995: 4990: 4986: 4981: 4977: 4971: 4968: 4962: 4958: 4955: 4952: 4949: 4947: 4944: 4942: 4939: 4938: 4934: 4928: 4923: 4918: 4916: 4914: 4910: 4906: 4905: 4899: 4897: 4893: 4885: 4884:Homer Simpson 4881: 4877: 4876: 4870: 4868: 4864: 4863:mathematician 4861:" features a 4860: 4856: 4855:Arthur Porges 4848: 4844: 4842: 4836: 4828: 4826: 4824: 4819: 4818:Edmund Landau 4813: 4811: 4807: 4803: 4798: 4795: 4787: 4785: 4782: 4778: 4774: 4770: 4766: 4763: 4758: 4754: 4750: 4745: 4741: 4737: 4733: 4727: 4719: 4717: 4713: 4709: 4705: 4698: 4695: 4692: 4685: 4681:for integers 4679: 4675: 4671: 4662: 4659: 4657: 4655: 4649: 4645: 4641: 4620: 4615: 4605: 4601: 4597: 4592: 4588: 4581: 4578: 4571: 4570: 4569: 4567: 4563: 4559: 4554: 4550: 4545: 4541: 4522: 4514: 4510: 4506: 4501: 4497: 4490: 4487: 4484: 4481: 4478: 4471: 4457: 4449: 4445: 4441: 4436: 4432: 4425: 4422: 4419: 4416: 4413: 4406: 4392: 4384: 4380: 4376: 4371: 4367: 4355: 4351: 4347: 4342: 4338: 4331: 4328: 4321: 4320: 4319: 4318:are given by 4316: 4312: 4308: 4303: 4297: 4288: 4285: 4283: 4281: 4277: 4258: 4255: 4252: 4249: 4242: 4228: 4223: 4219: 4215: 4212: 4209: 4206: 4203: 4196: 4182: 4177: 4173: 4169: 4166: 4163: 4160: 4157: 4150: 4149: 4148: 4145: 4141: 4137: 4133: 4129: 4125: 4121: 4113: 4110: 4105: 4103: 4100: 4094: 4088: 4083: 4079: 4075: 4069: 4064: 4059: 4055: 4051: 4042: 4040: 4038: 4034: 4030: 4026: 4022: 4001: 3993: 3990: 3987: 3981: 3978: 3975: 3968: 3952: 3948: 3944: 3941: 3938: 3931: 3915: 3911: 3907: 3904: 3901: 3894: 3893: 3892: 3890: 3886: 3881: 3877: 3873: 3867: 3861: 3857: 3851: 3842: 3840: 3838: 3829: 3822: 3820: 3806: 3803: 3798: 3795: 3790: 3785: 3782: 3777: 3772: 3769: 3760: 3759: 3756: 3754: 3750: 3746: 3742: 3738: 3734: 3730: 3726: 3722: 3718: 3714: 3710: 3706: 3702: 3698: 3694: 3693:finitely many 3690: 3686: 3681: 3679: 3675: 3671: 3667: 3663: 3659: 3655: 3651: 3647: 3643: 3639: 3635: 3631: 3626: 3623: 3619: 3615: 3610: 3606: 3602: 3593: 3586: 3584: 3570: 3565: 3561: 3557: 3552: 3548: 3544: 3539: 3535: 3527: 3526: 3523: 3521: 3517: 3513: 3509: 3505: 3501: 3493: 3491: 3488: 3482: 3476: 3470: 3464: 3458: 3454: 3450: 3441: 3439: 3437: 3431: 3424: 3419: 3414: 3412: 3403: 3401: 3398: 3396: 3392: 3388: 3387: 3373: 3368: 3365: 3359: 3355: 3353: 3347: 3345: 3341: 3337: 3331: 3329: 3324: 3320: 3316: 3311: 3307: 3306:Galois theory 3303: 3299: 3293: 3291: 3287: 3283: 3277: 3273: 3266: 3261: 3248: 3244: 3241: 3237: 3234: 3230: 3227: 3223: 3222: 3221: 3218: 3216: 3212: 3208: 3204: 3200: 3196: 3190: 3188: 3184: 3180: 3176: 3171: 3169: 3165: 3155: 3151: 3147: 3143: 3139: 3134: 3131: 3130: 3129: 3127: 3123: 3117: 3113:for exponent 3110: 3106: 3102: 3096: 3090: 3086: 3076: 3073: 3068: 3066: 3061: 3059: 3055: 3051: 3047: 3046:modular forms 3043: 3039: 3035: 3029: 3021: 3019: 3017: 3013: 3009: 3005: 3001: 2997: 2989: 2987: 2985: 2980: 2975: 2973: 2969: 2968:SWAC computer 2965: 2957: 2955: 2953: 2949: 2948:Gerd Faltings 2945: 2941: 2940:Louis Mordell 2933: 2931: 2929: 2925: 2920: 2918: 2914: 2910: 2906: 2902: 2897: 2895: 2894:ideal numbers 2891: 2886: 2884: 2880: 2876: 2872: 2869:based on the 2868: 2864: 2858: 2852: 2846: 2840: 2832: 2830: 2828: 2824: 2820: 2816: 2812: 2811:Guy Terjanian 2807: 2803: 2798: 2792: 2786: 2780: 2772: 2764: 2756: 2748: 2740: 2734: 2730: 2726: 2722: 2718: 2714: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2663: 2659: 2654: 2650: 2646: 2638: 2633: 2631: 2629: 2625: 2621: 2616: 2612: 2608: 2603: 2599: 2594: 2590: 2586: 2582: 2576: 2571: 2566: 2564: 2558: 2552: 2550: 2549:Guy Terjanian 2546: 2542: 2536: 2530: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2500: 2494: 2489: 2484: 2482: 2476: 2471: 2465: 2460: 2454: 2445: 2441: 2437: 2433: 2432: 2431: 2430: 2424: 2420: 2416: 2411:implies that 2407: 2403: 2399: 2396: 2395: 2394: 2392: 2389: =  2388: 2384: 2380: 2376: 2372: 2368: 2362: 2358: 2354: 2348: 2344: 2338: 2334: 2330: 2323: 2319: 2315: 2310: 2304: 2295: 2293: 2291: 2287: 2283: 2282:Karel Rychlík 2279: 2275: 2274:David Hilbert 2271: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2237: 2231: 2227: 2223: 2219: 2213: 2209: 2205: 2198: 2193: 2172: 2168: 2164: 2159: 2155: 2151: 2146: 2142: 2134: 2133: 2132: 2130: 2126: 2118: 2113: 2109: 2105: 2100: 2095: 2087: 2085: 2083: 2079: 2075: 2070: 2067: 2065: 2061: 2057: 2056:Blaise Pascal 2053: 2047: 2040: 2034: 2032: 2026: 2021: 2016: 2014: 2010: 1999: 1994: 1991: 1986: 1985: 1982: 1980: 1975: 1969: 1965: 1958: 1951: 1945: 1941: 1937: 1932: 1928: 1924: 1921: 1916: 1915: 1905: 1900: 1894: 1885: 1883: 1879: 1875: 1870: 1866: 1862: 1857: 1853: 1849: 1845: 1841: 1837: 1831: 1827: 1814: 1809: 1805: 1801: 1795: 1793: 1792:Claude Bachet 1789: 1785: 1784: 1764: 1759: 1755: 1751: 1746: 1742: 1738: 1735: 1728: 1714: 1711: 1708: 1705: 1702: 1695: 1694: 1693: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1658: 1654: 1650: 1643: 1635: 1633: 1630: 1626: 1622: 1615: 1611: 1607: 1601: 1597: 1593: 1592:ancient Greek 1589: 1585: 1581: 1566: 1558: 1553: 1548: 1546: 1542: 1540: 1539:contradiction 1530: 1524: 1518: 1510: 1506: 1502: 1498: 1494: 1490: 1485: 1481: 1473: 1470:) will be an 1469: 1463: 1459: 1455: 1451: 1447: 1443: 1433: 1429: 1425: 1408: 1405: 1404: 1403: 1401: 1397: 1392: 1386: 1379: 1376: 1372: 1368: 1362: 1358: 1354: 1347: 1343: 1337: 1331: 1327: 1321: 1317: 1310: 1306: 1300: 1294: 1290: 1284: 1280: 1274: 1270: 1266: 1260: 1238: 1234: 1230: 1223: 1216: 1212: 1208: 1205: 1204: 1203: 1200: 1194: 1188: 1173: 1169: 1159: 1155: 1151: 1147: 1140: 1134: 1130: 1126: 1122: 1119: 1118: 1117: 1114: 1108: 1098: 1092: 1088: 1084: 1057: 1050: 1046: 1042: 1031: 1027: 1005: 999: 995: 991: 984: 980: 976: 970: 966: 962: 944: 922: 918: 914: 910: 907: 906: 905: 902: 892: 888: 884: 877: 872: 868: 864: 860: 855: 834: 831: 830: 829: 826: 824: 820: 803: 799: 795: 788: 782: 768: 764: 758: 752: 746: 740: 734: 732: 730: 726: 722: 718: 714: 708: 703: 701: 695: 693: 689: 688: 683: 682: 677: 673: 668: 663: 661: 657: 656:modular forms 653: 649: 645: 640: 638: 634: 630: 626: 622: 618: 614: 611: 605: 593: 590: 582: 571: 568: 564: 561: 557: 554: 550: 547: 543: 540: –  539: 535: 534:Find sources: 528: 524: 518: 517: 512:This section 510: 506: 501: 500: 494: 492: 490: 486: 485:number theory 481: 479: 474: 470: 465: 461: 457: 452: 448: 444: 440: 436: 431: 427: 423: 418: 410: 405: 403: 401: 400: 395: 391: 386: 384: 380: 376: 372: 368: 364: 360: 356: 355: 350: 345: 341: 334: 326:greater than 324: 318: 314: 310: 304: 298: 292: 288: 285: 281: 277: 273: 272:number theory 261: 258: 256: 253: 252: 250: 246: 240: 237: 235: 232: 230: 227: 226: 224: 220: 215:Released 1994 214: 210: 207: 204: 200: 193: 189: 186: 183: 179: 174: 170: 166: 159: 154: 150: 147: 146:Number theory 144: 140: 135: 131: 130: 125: 119: 114: 108: 100: 97: 89: 79: 75: 74:inappropriate 71: 67: 61: 59: 52: 43: 42: 37: 33: 19: 10658: 10650: 10646:Fermat Prize 10595:Fermat point 10564: 10486:. Retrieved 10482:the original 10465: 10445:. Retrieved 10406:math/9503219 10396: 10392: 10377: 10353: 10349: 10345: 10331:. Retrieved 10327:the original 10282: 10263:. Retrieved 10256:the original 10233: 10205: 10184: 10162: 10145: 10139: 10113:. WLC, Inc. 10110: 10088: 10069: 10040: 10016: 9993: 9990:Ribenboim, P 9971: 9962: 9948:the original 9927: 9921: 9895: 9876: 9864: 9841: 9829:Bibliography 9814:. Retrieved 9810: 9800: 9780: 9776:Singh, Simon 9770: 9737: 9731: 9725: 9713:. Retrieved 9710:TechRepublic 9709: 9699: 9690: 9680: 9676: 9667: 9655:. Retrieved 9651:the original 9646: 9637: 9628: 9619: 9614:, p. 70 9607: 9598: 9579: 9561: 9556:, p. 69 9521: 9508: 9499: 9495: 9466: 9452: 9446: 9439:Elkies, Noam 9433: 9424: 9415: 9390: 9384: 9378: 9345: 9339: 9335: 9331: 9327: 9321: 9314:Dickson 1919 9309: 9276: 9272: 9266: 9247: 9241: 9231: 9214: 9205: 9196: 9190: 9155: 9151: 9145: 9133:. Retrieved 9123: 9104: 9098: 9073:math/0312440 9063: 9059: 9053: 9044: 9040: 9027: 9015:. Retrieved 9005: 8985: 8967:the original 8938: 8932: 8915: 8898: 8887:the original 8858: 8852: 8836: 8827: 8815: 8806: 8794: 8789:28 June 1994 8782: 8759: 8747: 8735: 8726: 8714: 8705: 8693: 8684: 8672: 8663: 8614: 8610: 8601: 8596: 8584: 8572: 8563: 8554: 8550: 8541: 8459: 8455: 8446: 8427: 8418: 8385: 8381: 8372: 8363: 8351: 8346:, p. 79 8344:Edwards 1996 8339: 8306: 8302: 8296: 8287: 8283: 8279: 8275: 8271: 8265: 8260:, p. 57 8253: 8241:. Retrieved 8234:the original 8208: 8189: 8180: 8173:Dickson 1919 8168: 8163:, p. 74 8161:Edwards 1996 8146:Edwards 1996 8141: 8132: 8128: 8124: 8120: 8116: 8107: 8099: 8093: 8087: 8078: 8053: 8047: 8043: 8039: 8002: 7996: 7990: 7981: 7977: 7959: 7955: 7949: 7940: 7934: 7930: 7926: 7922: 7916: 7908: 7902: 7898: 7889: 7880: 7876: 7870: 7866: 7862: 7851: 7842: 7836: 7832: 7828: 7824: 7815: 7806: 7800: 7796: 7792: 7788: 7777: 7771: 7744: 7738: 7732: 7728: 7724: 7713: 7701:. Retrieved 7695: 7687: 7678: 7672: 7668: 7664: 7660: 7651: 7642: 7636: 7632: 7628: 7624: 7613: 7607: 7598: 7591:Mordell 1921 7586: 7577: 7561:(3): 19–37. 7558: 7554: 7541: 7532: 7528: 7524: 7520: 7511: 7502: 7498: 7495:(in Russian) 7494: 7491: 7487: 7483: 7477: 7468: 7464: 7458: 7449: 7443: 7439: 7435: 7431: 7422: 7413: 7407: 7403: 7399: 7395: 7386: 7376: 7367: 7358: 7339:Mordell 1921 7334: 7325: 7313:. Retrieved 7307: 7299: 7290: 7286: 7282: 7278: 7274: 7268: 7260: 7254: 7250: 7244: 7240: 7236: 7231: 7227: 7223: 7211: 7202: 7198: 7177: 7168: 7159: 7153: 7144: 7140: 7130: 7121: 7114: 7110: 7106: 7094: 7077: 7073: 7060: 7051: 7045: 7041: 7037: 7028: 7019: 7013: 7005: 7001: 6997: 6991: 6987: 6978: 6969: 6936: 6932: 6926: 6919:Edwards 1996 6914: 6907:Edwards 1996 6902: 6895:Mordell 1921 6890: 6881: 6869:. Retrieved 6863: 6855: 6847: 6839: 6824: 6811: 6804:Dickson 1919 6799: 6790: 6780: 6776: 6771: 6763: 6757: 6751: 6743: 6738: 6730: 6724: 6720: 6714: 6707: 6698: 6692: 6667: 6661: 6652: 6643: 6639: 6635: 6631: 6627: 6621: 6612: 6608: 6604: 6600: 6579: 6575: 6569: 6560: 6554: 6537: 6533: 6528: 6524: 6520: 6513: 6503: 6494: 6485: 6481: 6458: 6452: 6444: 6438: 6432: 6423: 6414: 6408: 6402: 6398: 6394: 6386: 6377: 6373: 6369: 6365: 6361: 6355: 6346: 6338: 6330: 6324: 6320: 6316: 6312: 6308: 6304: 6300: 6296: 6292: 6288: 6282: 6273: 6264: 6255: 6249: 6240: 6231: 6225: 6215: 6194: 6185: 6176: 6172: 6153: 6152:. Reprinted 6147: 6143: 6134: 6126: 6122: 6118: 6113: 6104: 6099:, p. 44 6078:Dickson 1919 6073: 6061:. Retrieved 6051: 6041: 6035: 6026: 6017: 6010: 6005: 5996: 5987: 5982:, p. 10 5975: 5970:Singh, p. 67 5966: 5957: 5942: 5934: 5929: 5917: 5908: 5901:Dickson 1919 5886:Friberg 2007 5881: 5869: 5857: 5848: 5836: 5824: 5815: 5803: 5791: 5779: 5767:. Retrieved 5752: 5742: 5693: 5689: 5680: 5675: 5663: 5651: 5647: 5643: 5639: 5635: 5631: 5628: 5621:. Retrieved 5614:the original 5585: 5579: 5563: 5551:. Retrieved 5547: 5537: 5525: 5513: 5470: 5464: 5454: 5427: 5423: 5417: 5379: 5375: 5337: 5333: 5298: 5289: 5280: 5245: 5241: 5222:. p. 5. 5210: 5189: 5181: 5169:. Retrieved 5165:the original 5109: 5091: 5081: 5073: 5069: 5065: 5058: 5049: 5045: 5040: 5036: 5032: 5028: 5024: 5020: 5016: 5012: 5011:for each of 5006: 5002: 4998: 4993: 4992:), in which 4988: 4984: 4979: 4975: 4970: 4902: 4900: 4875:The Simpsons 4873: 4871: 4853: 4838: 4814: 4799: 4791: 4776: 4772: 4768: 4764: 4756: 4752: 4748: 4743: 4739: 4735: 4729: 4711: 4707: 4703: 4696: 4693: 4690: 4683: 4677: 4673: 4669: 4666: 4660: 4647: 4643: 4639: 4635: 4565: 4561: 4557: 4552: 4548: 4543: 4539: 4537: 4314: 4310: 4306: 4295: 4292: 4286: 4279: 4275: 4273: 4143: 4139: 4135: 4127: 4123: 4119: 4117: 4111: 4098: 4092: 4086: 4081: 4077: 4073: 4067: 4062: 4057: 4053: 4049: 4046: 4036: 4032: 4028: 4024: 4020: 4018: 3888: 3879: 3875: 3871: 3865: 3859: 3855: 3849: 3846: 3834: 3823: 3752: 3748: 3744: 3740: 3736: 3732: 3728: 3724: 3720: 3716: 3712: 3708: 3704: 3700: 3696: 3692: 3682: 3677: 3673: 3669: 3665: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3633: 3627: 3621: 3617: 3613: 3608: 3604: 3600: 3598: 3587: 3519: 3515: 3511: 3507: 3503: 3499: 3497: 3486: 3480: 3474: 3468: 3462: 3456: 3452: 3448: 3445: 3429: 3427:. (The case 3422: 3417: 3415: 3407: 3399: 3390: 3384: 3381: 3370: 3356: 3348: 3332: 3315:Euler system 3294: 3286:Andrew Wiles 3279: 3272:Andrew Wiles 3265:Andrew Wiles 3246: 3239: 3232: 3225: 3219: 3198: 3191: 3186: 3182: 3178: 3174: 3172: 3167: 3162:Theorem. By 3160: 3153: 3149: 3145: 3141: 3137: 3132: 3115: 3108: 3104: 3100: 3095:Gerhard Frey 3092: 3069: 3062: 3058:modular form 3034:Goro Shimura 3031: 3012:Andrew Wiles 3000:Gerhard Frey 2993: 2978: 2976: 2961: 2943: 2937: 2921: 2898: 2887: 2883:Ernst Kummer 2856: 2850: 2844: 2839:Gabriel Lamé 2836: 2826: 2805: 2801: 2790: 2784: 2778: 2770: 2762: 2754: 2746: 2738: 2732: 2728: 2724: 2712: 2707: 2703: 2699: 2695: 2687: 2683: 2679: 2675: 2671: 2667: 2661: 2657: 2652: 2648: 2642: 2624:Peter Barlow 2614: 2610: 2604: 2597: 2592: 2588: 2584: 2580: 2574: 2569: 2567: 2556: 2553: 2534: 2531: 2511:Gabriel Lamé 2506: 2492: 2487: 2485: 2480: 2474: 2469: 2463: 2458: 2452: 2449: 2443: 2439: 2435: 2428: 2422: 2418: 2414: 2410: 2405: 2401: 2397: 2390: 2386: 2382: 2378: 2374: 2370: 2366: 2365:for a given 2360: 2356: 2352: 2347:prime number 2342: 2336: 2332: 2328: 2321: 2317: 2313: 2308: 2302: 2299: 2258:Olry Terquem 2250:Peter Barlow 2235: 2232: 2225: 2221: 2217: 2211: 2207: 2203: 2196: 2189: 2122: 2119:Exponent = 4 2107: 2071: 2068: 2045: 2038: 2035: 2024: 2019: 2017: 2012: 2005: 1996: 1988: 1970: 1963: 1956: 1949: 1943: 1939: 1935: 1930: 1926: 1922: 1909: 1877: 1873: 1868: 1864: 1860: 1855: 1851: 1847: 1843: 1829: 1825: 1807: 1803: 1799: 1796: 1787: 1781: 1779: 1689: 1685: 1681: 1677: 1656: 1652: 1648: 1645: 1628: 1624: 1620: 1613: 1609: 1605: 1568: 1543: 1528: 1522: 1516: 1508: 1504: 1500: 1496: 1492: 1488: 1484:modular form 1477: 1461: 1457: 1453: 1449: 1445: 1441: 1431: 1427: 1423: 1406: 1390: 1384: 1380: 1374: 1370: 1366: 1360: 1356: 1352: 1345: 1341: 1335: 1329: 1325: 1319: 1315: 1308: 1304: 1298: 1292: 1288: 1282: 1278: 1272: 1268: 1264: 1258: 1243: 1236: 1232: 1228: 1221: 1214: 1210: 1206: 1198: 1192: 1186: 1171: 1167: 1164: 1157: 1153: 1149: 1145: 1138: 1132: 1128: 1124: 1120: 1112: 1106: 1096: 1090: 1086: 1082: 1055: 1048: 1044: 1040: 1029: 1025: 1003: 997: 993: 989: 982: 978: 974: 968: 964: 960: 954:is even. If 949: 942: 920: 916: 912: 908: 900: 897: 890: 886: 882: 875: 870: 866: 862: 858: 853: 832: 827: 822: 818: 801: 797: 793: 786: 780: 766: 762: 756: 750: 744: 741: 738: 713:Andrew Wiles 710: 705: 696: 685: 679: 667:Gerhard Frey 664: 644:Goro Shimura 641: 633:Ernst Kummer 624: 620: 617:prime number 612: 603: 600: 585: 576: 566: 559: 552: 545: 533: 521:Please help 516:verification 513: 482: 477: 468: 463: 459: 455: 446: 442: 438: 429: 425: 421: 414: 397: 387: 385:techniques. 371:Andrew Wiles 352: 346: 339: 332: 330:. The cases 322: 316: 312: 308: 302: 296: 290: 279: 275: 269: 206:Andrew Wiles 172: 168: 164: 157: 133: 127: 107: 92: 83: 68:by removing 55: 10498:"The Proof" 10181:Ribenboim P 9959:Mordell, LJ 9873:Edwards, HM 9861:Dickson, LE 9837:Aczel, Amir 9740:(1): 1–16. 9421:Lang, Serge 9393:: 313–317. 9066:: 245–305. 8801:3 July 1994 8424:Ribenboim P 8186:Ribenboim P 8131:. Série 2. 8113:Terjanian G 7747:: 287–288. 7657:Lebesgue VA 7593:, p. 8 7547:Terjanian G 7465:Il Pitagora 7392:Lebesgue VA 7100:Günther, S. 6984:Legendre AM 6500:Kronecker L 6212:Legendre AM 6154:Opera omnia 5924:, p. 9 5748:Stillwell J 5100: [ 4841:pop culture 4823:Howard Eves 4760:, then the 3695:solutions ( 3522:satisfying 3420:th powers, 3391:R=T theorem 3340:peer review 3242:be modular; 3235:be modular. 3072:John Coates 2909:Kurt Hensel 2108:Arithmetica 2060:John Wallis 1974:Arithmetica 1914:Arithmetica 1899:Arithmetica 1844:cross terms 1788:Arithmetica 1783:Arithmetica 1670:Alexandrian 1588:Babylonians 823:non-trivial 721:peer review 700:John Coates 579:August 2020 354:Arithmetica 129:Arithmetica 10677:Categories 10447:14 January 10129:Faltings G 9612:Aczel 1996 9554:Aczel 1996 9522:Astérisque 8820:Aczel 1996 8752:Aczel 1996 8740:Aczel 1996 8719:Aczel 1996 8698:Aczel 1996 8677:Aczel 1996 8590:Ribet, Ken 8577:Aczel 1996 8378:Faltings G 8356:Aczel 1996 8290:: 973–975. 8258:Aczel 1996 8096:: 390–393. 7984:: 143–146. 7962:: 368–369. 7883:: 156–168. 7809:: 910–913. 7785:Genocchi A 7780:: 433–436. 7768:Genocchi A 7719:Genocchi A 7645:: 195–211. 7505:: 466–473. 7452:: 137–171. 7293:: 971–979. 7257:(15): 3–7. 7217:Thue, Axel 7022:. Ferrara. 6727:: 334–335. 6582:: 104–110. 6488:: 145–192. 6441:: 175–546. 6417:: 307–320. 6270:Bertrand J 6179:: 245–253. 6150:: 125–146. 6097:Aczel 1996 6023:André Weil 5980:Aczel 1996 5933:T. Heath, 5922:Aczel 1996 5874:Stark 1978 5862:Aczel 1996 5841:Aczel 1996 5829:Stark 1978 5808:Stark 1978 5796:Stark 1978 5784:Aczel 1996 5696:(2): 432. 5669:Ribet, Ken 5588:(3): 448. 5532:– CNN.com. 5130:References 4909:The Royale 4810:Abel prize 4806:gold marks 4700:to obtain 4072:, that if 3085:Frey curve 3065:André Weil 2787:such that 2345:is an odd 2112:Diophantus 1933:such that 1904:Diophantus 1858:such that 1674:Diophantus 1590:and later 1584:Pythagoras 1468:Frey curve 825:solution. 817:is zero a 729:Abel Prize 687:Frey curve 549:newspapers 375:Abel Prize 363:conjecture 222:Implied by 124:Diophantus 10467:MathWorld 10384:EMS Press 10243:1307.3459 10154:0002-9920 9930:: 19–37. 9875:(1996) . 9762:122365046 9754:1051-1970 9530:0303-1179 9407:125989951 9370:123267065 9182:119732583 9165:1310.0897 9158:: 33–45. 9135:21 August 9017:1 October 8655:120614740 8410:121049418 8331:122537472 8036:Breusch R 7857:Maillet E 7761:124916552 7517:Rychlik K 7008:, 97–128. 6961:121798358 6597:Rychlik K 6540:: 31–35. 6461:x + y = z 6429:Hilbert D 6246:Terquem O 6011:loc. cit. 5734:120614740 5623:11 August 5446:0894-0347 5398:0894-0347 5068:+ 1)) + ( 4963:Footnotes 4907:episode " 4878:episode " 4507:− 4348:− 4293:The case 4130:) to the 4039:coprime. 3731:), where 3328:Nick Katz 3302:induction 3240:could not 3215:Ken Ribet 3199:plausible 3093:In 1984, 3008:Ken Ribet 2837:In 1847, 2554:The case 2532:The case 2527:Axel Thue 2152:− 2102:Fermat's 672:Ken Ribet 665:In 1984, 152:Statement 86:June 2021 70:excessive 10488:5 August 10431:16786407 10386:. 2001 . 10333:5 August 10277:(1997). 10183:(1979). 10109:(1994). 10038:(1978). 10036:Stark, H 10014:(1998). 10012:Singh, S 9992:(2000). 9961:(1921). 9944:53319514 9863:(1919). 9839:(1996). 9778:(2013). 9657:16 March 9516:(1988). 9441:(1991). 9423:(2002). 9090:11845578 8963:37032255 8927:(1995). 8921:Taylor R 8883:37032255 8844:(1995). 8592:(1990). 8484:Archived 8426:(1979). 8188:(1979). 8135:: 91–95. 7943:: 63–80. 7859:(1897). 7721:(1864). 7616:: 45–46. 7549:(1987). 7416:: 49–70. 7373:Gauss CF 7219:(1917). 7205:: 45–75. 7176:(1915). 7102:(1878). 7068:(1872). 6646:: 33–38. 6615:: 65–86. 6546:24528323 6502:(1901). 6380:: 34–70. 6333:: 73–86. 6272:(1851). 6258:: 70–87. 6214:(1830). 6193:(1811). 6191:Barlow P 6025:(1984). 5769:17 March 5750:(2003). 5671:(1990). 5610:37032255 5571:(1995). 5497:26983518 5171:16 March 5031:that is 4919:See also 3375:—  3168:disproof 2682:), then 2666:, where 2551:(1987). 2525:(1915), 2517:(1872), 2513:(1865), 2264:(1851), 2260:(1846), 2252:(1811), 2244:(1676), 1977:next to 1872:, where 1576:(5 = 25) 770:, where 610:exponent 406:Overview 287:integers 284:positive 10624:Related 10423:1322785 10265:9 March 10248:Bibcode 9538:0992208 9425:Algebra 9362:3619056 9301:2057186 9293:4145241 8955:2118560 8925:Wiles A 8875:2118559 8647:1047143 8619:Bibcode 8557:: 1–40. 8476:2006167 8390:Bibcode 8311:Bibcode 8070:3029800 8019:2972379 7821:Pepin T 7080:: 144. 7066:Tait PG 6994:: 1–60. 6953:2364600 6846:(1770) 6844:Euler L 6684:2974106 6140:Euler L 5726:1047143 5698:Bibcode 5602:2118559 5505:4383161 5475:Bibcode 5354:2118586 5272:2152942 5250:Bibcode 5033:smaller 4901:In the 4762:radical 4686:< −2 4663:< −2 3054:modular 2979:general 2966:used a 2192:coprime 2043:and of 1662:integer 1596:Chinese 835:. With 778:are in 563:scholar 435:integer 64:Please 56:use of 10429:  10421:  10289:  10214:  10191:  10169:  10152:  10117:  10095:  10076:  10048:  10024:  10000:  9978:  9942:  9902:  9883:  9849:  9816:9 June 9788:  9760:  9752:  9733:PRIMUS 9715:21 May 9586:  9536:  9528:  9405:  9368:  9360:  9299:  9291:  9180:  9111:  9088:  8993:  8961:  8953:  8881:  8873:  8653:  8645:  8547:Frey G 8533:  8474:  8434:  8408:  8329:  8243:19 May 8196:  8068:  8017:  7895:Thue A 7835:= 0". 7799:= 0". 7759:  7703:23 May 7621:Lamé G 7604:Lamé G 7442:= 0". 7428:Lamé G 7315:23 May 7285:= 0". 7034:Lamé G 6959:  6951:  6871:23 May 6682:  6544:  6063:23 May 5951:p. 341 5760:  5732:  5724:  5608:  5600:  5503:  5495:  5466:Nature 5444:  5396:  5352:  5270:  5198:  5116:  5019:, and 4126:, and 4096:, and 4084:, and 4070:> 2 3664:, and 3472:, and 3118:> 2 2611:ad hoc 2466:> 2 2455:> 2 2072:While 2058:, and 1966:= 12/5 1959:= 16/5 1854:, and 1600:Indian 1598:, and 1533:(with 1396:fields 878:> 2 565:  558:  551:  544:  536:  445:, and 300:, and 160:> 2 10427:S2CID 10401:arXiv 10259:(PDF) 10238:arXiv 10230:(PDF) 10136:(PDF) 9951:(PDF) 9940:S2CID 9918:(PDF) 9758:S2CID 9492:(PDF) 9403:S2CID 9366:S2CID 9358:JSTOR 9289:JSTOR 9178:S2CID 9160:arXiv 9086:S2CID 9068:arXiv 9037:(PDF) 8951:JSTOR 8907:(PDF) 8890:(PDF) 8871:JSTOR 8849:(PDF) 8651:S2CID 8607:(PDF) 8481:(PDF) 8472:JSTOR 8406:S2CID 8327:S2CID 8237:(PDF) 8230:(PDF) 8100:Werke 8066:JSTOR 8015:JSTOR 7757:S2CID 6957:S2CID 6680:JSTOR 6542:JSTOR 5730:S2CID 5686:(PDF) 5617:(PDF) 5598:JSTOR 5576:(PDF) 5553:7 May 5501:S2CID 5350:JSTOR 5268:JSTOR 5220:(PDF) 5104:] 5076:+ 1)) 5035:than 4867:Devil 4710:) = ( 4706:) + ( 4652:is a 4551:> 4546:with 4061:with 4031:with 3656:with 3436:Euler 3344:group 3298:proof 3250:well. 2678:(the 2442:) = ( 2438:) + ( 2341:when 2009:proof 1400:rings 1100:; if 1067:. If 1023:. If 986:with 813:, or 784:with 692:below 570:JSTOR 556:books 473:proof 142:Field 10558:Work 10490:2004 10449:2017 10335:2004 10287:ISBN 10267:2014 10212:ISBN 10189:ISBN 10167:ISBN 10150:ISSN 10115:ISBN 10093:ISBN 10074:ISBN 10046:ISBN 10022:ISBN 9998:ISBN 9976:ISBN 9900:ISBN 9881:ISBN 9847:ISBN 9818:2023 9786:ISBN 9750:ISSN 9717:2022 9659:2016 9584:ISBN 9526:ISSN 9453:1991 9137:2016 9109:ISBN 9047:(1). 9019:2016 8991:ISBN 8959:OCLC 8879:OCLC 8531:ISBN 8432:ISBN 8245:2009 8194:ISBN 7735:= 0" 7705:2009 7317:2009 6873:2009 6065:2009 5771:2016 5758:ISBN 5625:2003 5606:OCLC 5555:2021 5493:PMID 5442:ISSN 5394:ISSN 5196:ISBN 5173:2016 5114:ISBN 5084:+ 1) 5025:also 4742:and 4730:The 4560:and 4298:= −2 4289:= −2 4114:= −1 4076:and 4035:and 3858:= 1/ 3804:< 3683:The 3628:The 3360:also 3321:and 3274:and 3233:must 3166:, a 3087:and 3044:and 3036:and 3006:and 2901:Lamé 2821:and 2775:and 2622:and 2381:and 2064:Weil 1961:and 1929:and 1880:are 1876:and 1832:= 13 1828:+ 65 1688:and 1680:and 1364:for 1302:for 1176:and 1085:) + 1075:and 1047:= (− 1043:) + 1019:and 1011:and 774:and 684:and 654:and 646:and 542:news 415:The 337:and 197:1637 10502:PBS 10411:doi 9932:doi 9742:doi 9457:doi 9395:doi 9350:doi 9338:". 9281:doi 9277:111 9252:doi 9219:doi 9170:doi 9156:149 9078:doi 8943:doi 8939:141 8863:doi 8859:141 8635:hdl 8627:doi 8615:100 8464:doi 8398:doi 8319:doi 8288:285 8282:". 8058:doi 8007:doi 7749:doi 7563:doi 7527:". 7497:". 7406:". 7243:og 7082:doi 7044:". 6941:doi 6779:", 6762:", 6760:= 4 6719:". 6717:= 4 6672:doi 6644:23B 6638:". 6538:16B 6372:". 6323:". 6311:, 2 6303:= 2 6295:± 2 5714:hdl 5706:doi 5694:100 5590:doi 5586:141 5483:doi 5471:531 5432:doi 5384:doi 5342:doi 5338:144 5258:doi 5048:= 4 5005:= ( 4911:", 4882:", 4872:In 4769:abc 4767:of 4636:so 3438:.) 3432:= 3 3425:≥ 3 3300:by 3075:." 2919:.) 2861:in 2804:= 2 2793:+ 1 2781:+ 1 2773:+ 1 2765:+ 1 2757:+ 1 2749:+ 1 2741:+ 1 2729:xyz 2708:xyz 2704:xyz 2688:xyz 2664:+ 1 2660:= 2 2600:= 7 2577:= 6 2559:= 7 2537:= 5 2495:= 3 2477:= 4 2305:= 4 2238:= 4 2224:= ( 2199:= 4 2110:of 2076:'s 2048:= 3 2041:= 4 2027:= 4 1968:). 1952:= 4 1902:of 1409:If 1348:= 1 1339:to 1311:= 1 1262:to 1224:≥ 3 1217:= 1 1141:≥ 3 1063:or 1015:or 996:, − 992:, − 789:≠ 0 606:= 4 525:by 342:= 2 335:= 1 270:In 126:'s 72:or 10679:: 10500:. 10464:. 10425:. 10419:MR 10417:. 10409:. 10397:32 10382:. 10376:. 10352:= 10348:+ 10281:. 10246:. 10236:. 10232:. 10146:42 10144:. 10138:. 9938:. 9928:55 9926:. 9920:. 9809:. 9756:. 9748:. 9738:13 9736:. 9708:. 9645:. 9570:^ 9546:^ 9534:MR 9532:. 9520:. 9500:49 9498:. 9494:. 9474:^ 9465:. 9451:. 9445:. 9401:. 9391:92 9389:. 9364:. 9356:. 9346:83 9344:. 9297:MR 9295:. 9287:. 9275:. 9248:13 9246:. 9240:. 9176:. 9168:. 9154:. 9084:. 9076:. 9062:. 9043:. 9039:. 8975:^ 8957:. 8949:. 8937:. 8931:. 8923:, 8877:. 8869:. 8857:. 8851:. 8768:^ 8649:. 8643:MR 8641:. 8633:. 8625:. 8613:. 8609:. 8553:. 8494:^ 8470:. 8460:32 8458:. 8404:. 8396:. 8386:73 8384:. 8325:. 8317:. 8307:79 8305:. 8286:. 8278:= 8274:+ 8217:^ 8153:^ 8133:98 8123:= 8119:+ 8092:. 8064:. 8054:33 8052:. 8027:^ 8013:. 8003:21 8001:. 7982:21 7980:. 7968:^ 7960:15 7958:. 7941:97 7939:. 7929:= 7925:+ 7901:. 7881:26 7879:. 7875:. 7871:cz 7869:= 7867:by 7865:+ 7863:ax 7843:82 7841:. 7831:+ 7827:+ 7807:82 7805:. 7795:+ 7791:+ 7778:78 7776:. 7755:. 7743:. 7737:. 7731:+ 7727:+ 7677:. 7667:+ 7663:+ 7641:. 7631:= 7627:+ 7612:. 7559:37 7557:. 7553:. 7533:39 7531:. 7503:25 7501:. 7492:Az 7490:= 7486:+ 7469:10 7467:. 7450:12 7448:. 7438:+ 7434:+ 7412:. 7404:az 7402:= 7398:+ 7346:^ 7289:. 7281:+ 7277:+ 7255:34 7253:. 7249:. 7239:, 7230:= 7226:+ 7203:11 7201:. 7186:^ 7143:. 7139:. 7120:. 7113:= 7109:+ 7076:. 7072:. 7052:61 7050:. 7040:± 7004:, 6990:. 6955:. 6949:MR 6947:. 6937:82 6935:. 6829:. 6823:. 6725:71 6723:. 6678:. 6668:20 6666:. 6642:. 6634:= 6630:+ 6613:39 6611:. 6588:^ 6580:23 6578:. 6536:. 6527:= 6523:− 6486:16 6484:. 6470:^ 6437:. 6415:84 6413:. 6407:. 6401:= 6397:+ 6378:36 6376:. 6370:cz 6368:= 6366:by 6364:+ 6362:ax 6331:18 6329:. 6319:± 6315:= 6307:− 6299:, 6291:= 6254:. 6203:^ 6177:13 6175:. 6161:^ 6148:10 6146:. 6125:, 6085:^ 5949:, 5893:^ 5728:. 5722:MR 5720:. 5712:. 5704:. 5692:. 5688:. 5650:– 5646:)( 5642:+ 5634:= 5627:. 5604:. 5596:. 5584:. 5578:. 5546:. 5499:. 5491:. 5481:. 5469:. 5463:. 5440:. 5428:14 5426:. 5422:. 5406:^ 5392:. 5380:12 5378:. 5374:. 5362:^ 5348:. 5336:. 5332:. 5320:^ 5308:^ 5266:. 5256:. 5246:61 5244:. 5240:. 5228:^ 5150:^ 5138:^ 5102:de 5078:= 5064:(( 5015:, 5001:= 4989:PQ 4987:= 4898:. 4843:." 4755:= 4751:+ 4738:, 4712:ab 4708:ac 4704:bc 4676:= 4672:+ 4656:. 4646:, 4642:, 4542:, 4313:= 4309:+ 4282:. 4278:, 4142:= 4138:+ 4122:, 4090:, 4056:= 4052:+ 4027:, 4023:, 3878:= 3874:+ 3839:. 3807:1. 3751:, 3747:, 3739:, 3735:, 3727:, 3723:, 3715:, 3711:, 3707:, 3703:, 3699:, 3676:, 3672:, 3660:, 3652:, 3648:, 3644:, 3640:, 3636:, 3620:= 3616:= 3607:, 3603:, 3518:, 3514:, 3510:, 3506:, 3502:, 3466:, 3455:= 3451:+ 3413:. 3397:. 3247:no 3217:. 3185:, 3181:, 3177:, 3152:+ 3148:)( 3144:− 3135:= 3128:) 3107:, 3103:, 3060:. 3018:. 3002:, 2954:. 2896:. 2885:. 2854:= 2848:+ 2829:. 2817:, 2777:16 2769:14 2767:, 2761:10 2759:, 2751:, 2743:, 2662:hp 2630:. 2602:. 2483:. 2446:). 2421:, 2417:, 2404:= 2400:+ 2391:de 2385:, 2359:, 2355:, 2335:, 2331:, 2320:= 2316:+ 2230:. 2220:− 2210:= 2206:+ 2054:, 2033:. 1981:: 1942:+ 1938:= 1867:= 1863:+ 1850:, 1824:26 1817:c. 1806:= 1802:+ 1794:. 1655:= 1651:+ 1632:. 1627:= 1623:+ 1612:, 1608:, 1594:, 1526:= 1520:+ 1507:+ 1503:)( 1499:− 1491:= 1460:+ 1456:)( 1452:− 1444:= 1435:, 1430:= 1426:+ 1417:, 1413:, 1394:; 1378:. 1373:= 1369:+ 1361:bd 1359:, 1357:cb 1355:, 1353:ad 1344:+ 1333:∈ 1323:, 1307:+ 1296:∈ 1286:, 1271:= 1267:+ 1256:∈ 1252:, 1248:, 1235:∈ 1231:, 1213:+ 1202:. 1170:, 1156:∈ 1152:, 1148:, 1131:= 1127:+ 1089:= 1081:(− 1039:(− 1028:, 981:, 977:, 967:, 963:, 940:∈ 936:, 932:, 919:= 915:+ 904:: 889:= 885:+ 869:, 865:, 861:, 851:∈ 847:, 843:, 839:, 809:, 800:= 796:+ 731:. 491:. 462:= 458:+ 441:, 428:= 424:+ 419:, 315:= 311:+ 294:, 274:, 195:c. 171:= 167:+ 10543:e 10536:t 10529:v 10513:. 10504:. 10492:. 10470:. 10451:. 10433:. 10413:: 10403:: 10367:. 10358:. 10356:" 10354:z 10350:y 10346:x 10337:. 10295:. 10269:. 10250:: 10240:: 10220:. 10197:. 10175:. 10156:. 10123:. 10101:. 10082:. 10054:. 10030:. 10006:. 9984:. 9934:: 9908:. 9889:. 9855:. 9820:. 9794:. 9764:. 9744:: 9719:. 9661:. 9592:. 9540:. 9459:: 9409:. 9397:: 9372:. 9352:: 9336:d 9332:b 9328:a 9303:. 9283:: 9260:. 9254:: 9225:. 9221:: 9199:. 9184:. 9172:: 9162:: 9139:. 9117:. 9092:. 9080:: 9070:: 9064:4 9045:1 9021:. 8999:. 8945:: 8909:. 8865:: 8657:. 8637:: 8629:: 8621:: 8602:Q 8600:/ 8597:Q 8555:1 8478:. 8466:: 8440:. 8412:. 8400:: 8392:: 8333:. 8321:: 8313:: 8280:z 8276:y 8272:x 8247:. 8202:. 8125:z 8121:y 8117:x 8094:9 8072:. 8060:: 8044:n 8040:n 8021:. 8009:: 7931:z 7927:y 7923:x 7905:. 7903:7 7873:" 7833:z 7829:y 7825:x 7797:z 7793:y 7789:x 7763:. 7751:: 7745:6 7733:z 7729:y 7725:x 7707:. 7696:n 7679:5 7669:z 7665:y 7661:x 7643:5 7633:z 7629:y 7625:x 7614:9 7571:. 7565:: 7521:n 7488:y 7484:x 7440:C 7436:B 7432:A 7414:8 7400:y 7396:x 7319:. 7308:n 7291:8 7283:z 7279:y 7275:x 7247:" 7245:C 7241:B 7237:A 7232:C 7228:B 7224:A 7145:6 7118:" 7115:a 7111:y 7107:x 7088:. 7084:: 7078:7 7042:y 7038:x 7006:4 6992:6 6963:. 6943:: 6875:. 6864:n 6833:. 6758:n 6715:n 6686:. 6674:: 6636:z 6632:y 6628:x 6605:n 6601:n 6548:. 6529:z 6525:y 6521:x 6439:4 6405:" 6403:z 6399:y 6395:x 6321:y 6317:x 6313:z 6309:y 6305:x 6301:z 6297:y 6293:x 6289:z 6256:5 6127:5 6067:. 6045:. 5773:. 5736:. 5716:: 5708:: 5700:: 5681:Q 5679:/ 5676:Q 5654:) 5652:v 5648:x 5644:u 5640:x 5638:( 5636:x 5632:y 5592:: 5557:. 5507:. 5485:: 5477:: 5448:. 5434:: 5418:Q 5400:. 5386:: 5356:. 5344:: 5274:. 5260:: 5252:: 5204:. 5175:. 5122:. 5086:. 5082:j 5080:( 5074:j 5072:( 5070:j 5066:j 5050:Q 5046:n 5041:n 5037:n 5029:P 5021:c 5017:b 5013:a 5009:) 5007:a 5003:a 4999:a 4994:P 4985:n 4980:n 4976:n 4777:n 4773:c 4765:d 4757:c 4753:b 4749:a 4744:c 4740:b 4736:a 4714:) 4702:( 4697:c 4694:b 4691:a 4684:n 4678:c 4674:b 4670:a 4661:n 4650:) 4648:c 4644:b 4640:a 4638:( 4621:, 4616:2 4612:) 4606:2 4602:u 4598:+ 4593:2 4589:v 4585:( 4582:= 4579:c 4566:d 4562:b 4558:a 4553:u 4549:v 4544:v 4540:u 4523:, 4520:) 4515:2 4511:u 4502:2 4498:v 4494:( 4491:v 4488:u 4485:2 4482:= 4479:d 4458:, 4455:) 4450:2 4446:u 4442:+ 4437:2 4433:v 4429:( 4426:v 4423:u 4420:2 4417:= 4414:b 4393:, 4390:) 4385:2 4381:u 4377:+ 4372:2 4368:v 4364:( 4361:) 4356:2 4352:u 4343:2 4339:v 4335:( 4332:= 4329:a 4315:d 4311:b 4307:a 4296:n 4287:n 4280:k 4276:m 4259:k 4256:m 4253:= 4250:c 4229:, 4224:2 4220:k 4216:+ 4213:k 4210:m 4207:= 4204:b 4183:, 4178:2 4174:m 4170:+ 4167:k 4164:m 4161:= 4158:a 4144:c 4140:b 4136:a 4128:c 4124:b 4120:a 4112:n 4099:c 4093:b 4087:a 4082:m 4078:m 4074:n 4068:n 4063:n 4058:c 4054:b 4050:a 4037:t 4033:s 4029:t 4025:s 4021:r 4002:m 3998:) 3994:t 3991:+ 3988:s 3985:( 3982:r 3979:= 3976:c 3953:m 3949:t 3945:r 3942:= 3939:b 3916:m 3912:s 3908:r 3905:= 3902:a 3889:m 3880:c 3876:b 3872:a 3866:m 3860:m 3856:n 3850:n 3828:) 3826:2 3824:( 3799:k 3796:1 3791:+ 3786:n 3783:1 3778:+ 3773:m 3770:1 3753:k 3749:n 3745:m 3741:c 3737:b 3733:a 3729:c 3725:b 3721:a 3717:k 3713:n 3709:m 3705:c 3701:b 3697:a 3678:k 3674:n 3670:m 3666:c 3662:b 3658:a 3654:k 3650:n 3646:m 3642:c 3638:b 3634:a 3624:. 3622:k 3618:n 3614:m 3609:k 3605:n 3601:m 3592:) 3590:1 3588:( 3571:. 3566:k 3562:c 3558:= 3553:n 3549:b 3545:+ 3540:m 3536:a 3520:k 3516:n 3512:m 3508:c 3504:b 3500:a 3487:n 3481:n 3475:c 3469:b 3463:a 3457:c 3453:b 3449:a 3430:n 3423:n 3418:n 3226:n 3187:n 3183:c 3179:b 3175:a 3156:) 3154:b 3150:x 3146:a 3142:x 3140:( 3138:x 3133:y 3116:p 3111:) 3109:c 3105:b 3101:a 3099:( 2944:n 2857:z 2851:y 2845:x 2827:p 2806:p 2802:n 2791:p 2789:2 2785:p 2779:p 2771:p 2763:p 2755:p 2753:8 2747:p 2745:4 2739:p 2737:2 2733:p 2725:p 2713:p 2700:θ 2696:p 2684:θ 2676:θ 2672:p 2668:h 2658:θ 2653:p 2649:θ 2615:p 2598:n 2593:n 2589:n 2585:n 2581:n 2575:n 2570:n 2557:p 2535:p 2507:p 2493:p 2488:p 2481:p 2475:n 2470:n 2464:n 2459:n 2453:n 2444:c 2440:b 2436:a 2434:( 2429:e 2425:) 2423:c 2419:b 2415:a 2413:( 2406:c 2402:b 2398:a 2387:n 2383:e 2379:d 2375:n 2371:n 2367:n 2363:) 2361:c 2357:b 2353:a 2351:( 2343:n 2339:) 2337:c 2333:b 2329:a 2327:( 2322:c 2318:b 2314:a 2309:n 2303:n 2236:n 2228:) 2226:a 2222:b 2218:c 2212:c 2208:b 2204:a 2197:n 2173:2 2169:z 2165:= 2160:4 2156:y 2147:4 2143:x 2046:n 2039:n 2025:n 2020:n 1964:v 1957:u 1950:k 1944:v 1940:u 1936:k 1931:v 1927:u 1923:k 1878:m 1874:n 1869:z 1865:y 1861:x 1856:z 1852:y 1848:x 1830:y 1826:x 1808:z 1804:y 1800:x 1765:. 1760:2 1756:y 1752:+ 1747:2 1743:x 1739:= 1736:B 1715:y 1712:+ 1709:x 1706:= 1703:A 1690:B 1686:A 1682:y 1678:x 1657:z 1653:y 1649:x 1629:c 1625:b 1621:a 1616:) 1614:c 1610:b 1606:a 1604:( 1535:p 1529:z 1523:y 1517:x 1511:) 1509:b 1505:x 1501:a 1497:x 1495:( 1493:x 1489:y 1466:( 1464:) 1462:b 1458:x 1454:a 1450:x 1448:( 1446:x 1442:y 1437:p 1432:c 1428:b 1424:a 1419:c 1415:b 1411:a 1391:Z 1385:Q 1375:z 1371:y 1367:x 1346:w 1342:v 1336:Q 1330:d 1328:/ 1326:c 1320:b 1318:/ 1316:a 1309:w 1305:v 1299:Q 1293:c 1291:/ 1289:b 1283:c 1281:/ 1279:a 1273:z 1269:y 1265:x 1259:Z 1254:c 1250:b 1246:a 1240:. 1237:Q 1233:y 1229:x 1222:n 1215:y 1211:x 1199:N 1193:Z 1187:Q 1182:n 1178:z 1174:, 1172:y 1168:x 1161:. 1158:Q 1154:z 1150:y 1146:x 1139:n 1133:z 1129:y 1125:x 1113:N 1107:Z 1102:y 1097:N 1091:y 1087:z 1083:x 1077:z 1073:y 1069:x 1065:y 1061:x 1056:N 1051:) 1049:x 1045:y 1041:z 1035:y 1030:z 1026:x 1021:z 1017:y 1013:z 1009:x 1004:N 998:z 994:y 990:x 988:− 983:z 979:y 975:x 969:z 965:y 961:x 956:n 952:n 946:. 943:Z 938:z 934:y 930:x 926:n 921:z 917:y 913:x 901:Z 891:z 887:y 883:x 876:n 871:z 867:y 863:x 859:n 854:N 849:z 845:y 841:x 837:n 815:z 811:y 807:x 802:z 798:y 794:x 787:b 781:Z 776:b 772:a 767:b 765:/ 763:a 757:Q 751:Z 745:N 625:n 621:n 613:n 604:n 592:) 586:( 581:) 577:( 567:· 560:· 553:· 546:· 519:. 469:n 464:c 460:b 456:a 447:z 443:y 439:x 430:z 426:y 422:x 340:n 333:n 328:2 323:n 317:c 313:b 309:a 303:c 297:b 291:a 173:c 169:b 165:a 158:n 99:) 93:( 88:) 84:( 80:. 62:. 38:. 20:)

Index

Fermats Last Theorem
Fermat's theorem
Fermat's Last Theorem (book)
external links
improve this article
excessive
inappropriate
footnote references
Learn how and when to remove this message

Diophantus
Arithmetica
Number theory
Pierre de Fermat
Andrew Wiles
Effective abc conjecture
Effective modified Szpiro conjecture
Modularity theorem
Beal conjecture
Fermat–Catalan conjecture
number theory
positive
integers
Pierre de Fermat
Arithmetica
Fermat's theorem on sums of two squares
conjecture
the first successful proof
Andrew Wiles
Abel Prize

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.