Knowledge (XXG)

Ferric uptake regulator family

Source 📝

26: 138: 311:. Iron is essential for most organisms, but its concentration must be carefully managed over a wide range of environmental conditions; high concentrations can be 358:
In addition to the ferric uptake regulator protein, members of the Fur family are also involved in maintaining homeostasis with respect to other ions:
347:
that prevents DNA binding and lifts the repression. In the case of the ferric uptake regulator protein itself, its immediate downstream target is a
776:"The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter" 1168: 86: 1023:"Severe zinc depletion of Escherichia coli: roles for high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins" 923:"Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor" 489:"Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator" 825:"The mntH gene encodes the major Mn(2+) transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein" 158: 582:
Gilston BA, Wang S, Marcus MD, Canalizo-Hernández MA, Swindell EP, Xue Y, Mondragón A, O'Halloran TV (November 2014).
970:
Lee JW, Helmann JD (March 2006). "The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation".
633:
Waldron KJ, Robinson NJ (January 2009). "How do bacterial cells ensure that metalloproteins get the correct metal?".
1295: 362: 543:"Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity" 439: 146: 372: 187: 316: 392: 344: 719:"Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti" 142: 1116:
O'Brian MR (2015). "Perception and Homeostatic Control of Iron in the Rhizobia and Related Bacteria".
678:"The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator" 979: 730: 328: 99: 462:, an observation with a particularly long history in the case of iron. In some cases, expression of 431: 1073: 1003: 952: 658: 518: 443: 1258: 1209: 1174: 1164: 1133: 1098: 1054: 995: 944: 903: 854: 805: 756: 699: 650: 615: 564: 510: 415: 262: 203: 133: 1248: 1240: 1201: 1156: 1125: 1088: 1044: 1034: 987: 934: 893: 885: 844: 836: 795: 787: 746: 738: 689: 642: 605: 595: 554: 500: 463: 1021:
Graham AI, Hunt S, Stokes SL, Bramall N, Bunch J, Cox AG, McLeod CW, Poole RK (July 2009).
125: 389:; PerR monomers contain two binding sites and occur in zinc/iron and zinc/manganese forms. 382: 340: 239: 874:"Mur regulates the gene encoding the manganese transporter MntH in Brucella abortus 2308" 1129: 983: 734: 487:
Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (February 2003).
1049: 1022: 898: 873: 849: 824: 610: 583: 426: 1253: 1228: 800: 775: 751: 718: 1289: 939: 922: 840: 791: 505: 488: 348: 300: 297: 91: 742: 584:"Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon" 522: 54: 1205: 1007: 956: 662: 121: 343:
of the genes they regulate, but under low concentrations of metal, they undergo a
67: 1281: 1151:
Bullen JJ, Rogers HJ, Griffiths E (1978). "Role of Iron in Bacterial Infection".
600: 559: 79: 1160: 676:
Díaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd JD, Johnston AW (May 2004).
281: 249: 1155:. Current Topics in Microbiology and Immunology. Vol. 80. pp. 1–35. 447: 215: 1039: 459: 420: 366: 332: 277: 1213: 1137: 1102: 1058: 999: 948: 907: 858: 809: 760: 703: 654: 619: 568: 514: 1262: 694: 677: 95: 25: 1277: 1178: 386: 308: 270: 220: 74: 1244: 991: 889: 646: 1192:
Ratledge C, Dover LG (2000). "Iron metabolism in pathogenic bacteria".
1093: 400: 273: 1074:"Advances in the molecular understanding of biological zinc transport" 208: 408: 376: 335:: when bound to their cognate metal ion, they are capable of binding 153: 542: 774:
Chao TC, Becker A, Buhrmester J, Pühler A, Weidner S (June 2004).
312: 921:
Ahn BE, Cha J, Lee EJ, Han AR, Thompson CJ, Roe JH (March 2006).
1273: 404: 396: 352: 304: 115: 61: 49: 872:
Menscher EA, Caswell CC, Anderson ES, Roop RM (February 2012).
336: 284:. The family is named for its founding member, known as the 418:. Has both activator and repressor function. Prevalent in 717:
Platero R, Peixoto L, O'Brian MR, Fabiano E (July 2004).
1272:
This article incorporates text from the public domain
466:
is under the regulatory control of the Fur protein.
296:). Fur proteins are responsible for controlling the 446:family of proteins involved in iron homeostasis in 245: 235: 230: 214: 202: 194: 182: 177: 172: 152: 132: 114: 109: 85: 73: 60: 48: 40: 35: 18: 327:Members of the ferric uptake regulator family are 331:that primarily exert their regulatory effects as 1229:"Role of iron in regulation of virulence genes" 458:Metal homeostasis can be a factor in bacterial 399:; Zur regulates uptake and transport through a 414:Irr, responsive to iron through the status of 8: 536: 534: 532: 227: 106: 24: 1252: 1092: 1048: 1038: 938: 897: 848: 799: 750: 693: 609: 599: 558: 504: 442:family is a functionally similar but non- 1227:Litwin CM, Calderwood SB (April 1993). 474: 723:Applied and Environmental Microbiology 541:Porcheron G, Dozois CM (August 2015). 482: 480: 478: 169: 15: 7: 1130:10.1146/annurev-micro-091014-104432 1027:The Journal of Biological Chemistry 823:Hohle TH, O'Brian MR (April 2009). 1153:Modern Aspects of Electrochemistry 14: 940:10.1111/j.1365-2958.2006.05065.x 841:10.1111/j.1365-2958.2009.06650.x 792:10.1128/JB.186.11.3609-3620.2004 506:10.1046/j.1365-2958.2003.03337.x 290:ferric uptake regulatory protein 173:Ferric uptake regulatory protein 743:10.1128/AEM.70.7.4349-4355.2004 1206:10.1146/annurev.micro.54.1.881 267:ferric uptake regulator family 1: 1233:Clinical Microbiology Reviews 1194:Annual Review of Microbiology 1118:Annual Review of Microbiology 110:Available protein structures: 635:Nature Reviews. Microbiology 601:10.1371/journal.pbio.1001987 560:10.1016/j.vetmic.2015.03.024 1161:10.1007/978-3-642-66956-9_1 1072:Blindauer CA (March 2015). 1312: 1271: 454:Relationship to virulence 226: 105: 23: 440:iron dependent repressor 315:due to the formation of 1081:Chemical Communications 1040:10.1074/jbc.M109.001503 878:Journal of Bacteriology 780:Journal of Bacteriology 547:Veterinary Microbiology 317:reactive oxygen species 286:ferric uptake regulator 276:involved in regulating 30:ferric uptake regulator 927:Molecular Microbiology 829:Molecular Microbiology 493:Molecular Microbiology 695:10.1099/mic.0.26961-0 345:conformational change 329:transcription factors 407:and the transporter 280:uptake and in metal 1245:10.1128/cmr.6.2.137 992:10.1038/nature04537 984:2006Natur.440..363L 890:10.1128/JB.05296-11 735:2004ApEnM..70.4349P 647:10.1038/nrmicro2057 432:alphaproteobacteria 1094:10.1039/c4cc10174j 1170:978-1-4612-9003-2 688:(Pt 5): 1447–56. 464:virulence factors 416:heme biosynthesis 263:molecular biology 259: 258: 255: 254: 168: 167: 164: 163: 159:structure summary 1303: 1296:Protein families 1267: 1266: 1256: 1224: 1218: 1217: 1189: 1183: 1182: 1148: 1142: 1141: 1113: 1107: 1106: 1096: 1078: 1069: 1063: 1062: 1052: 1042: 1033:(27): 18377–89. 1018: 1012: 1011: 967: 961: 960: 942: 918: 912: 911: 901: 869: 863: 862: 852: 820: 814: 813: 803: 771: 765: 764: 754: 714: 708: 707: 697: 673: 667: 666: 630: 624: 623: 613: 603: 594:(11): e1001987. 579: 573: 572: 562: 538: 527: 526: 508: 484: 395:, responsive to 385:, responsive to 375:, responsive to 365:, responsive to 228: 190: 188:Escherichia coli 170: 107: 28: 16: 1311: 1310: 1306: 1305: 1304: 1302: 1301: 1300: 1286: 1285: 1284: 1270: 1226: 1225: 1221: 1191: 1190: 1186: 1171: 1150: 1149: 1145: 1115: 1114: 1110: 1087:(22): 4544–63. 1076: 1071: 1070: 1066: 1020: 1019: 1015: 978:(7082): 363–7. 969: 968: 964: 920: 919: 915: 871: 870: 866: 822: 821: 817: 786:(11): 3609–20. 773: 772: 768: 716: 715: 711: 675: 674: 670: 632: 631: 627: 581: 580: 576: 540: 539: 530: 486: 485: 476: 472: 456: 430:and many other 339:and preventing 325: 269:is a family of 186: 31: 12: 11: 5: 1309: 1307: 1299: 1298: 1288: 1287: 1269: 1268: 1219: 1184: 1169: 1143: 1108: 1064: 1013: 962: 933:(6): 1848–58. 913: 864: 835:(2): 399–409. 815: 766: 729:(7): 4349–55. 709: 668: 625: 574: 528: 473: 471: 468: 455: 452: 436: 435: 427:Bradyrhizobium 412: 390: 380: 370: 324: 321: 257: 256: 253: 252: 247: 243: 242: 237: 233: 232: 224: 223: 218: 212: 211: 206: 200: 199: 196: 192: 191: 184: 180: 179: 175: 174: 166: 165: 162: 161: 156: 150: 149: 136: 130: 129: 119: 112: 111: 103: 102: 89: 83: 82: 77: 71: 70: 65: 58: 57: 52: 46: 45: 42: 38: 37: 33: 32: 29: 21: 20: 13: 10: 9: 6: 4: 3: 2: 1308: 1297: 1294: 1293: 1291: 1283: 1279: 1275: 1264: 1260: 1255: 1250: 1246: 1242: 1239:(2): 137–49. 1238: 1234: 1230: 1223: 1220: 1215: 1211: 1207: 1203: 1199: 1195: 1188: 1185: 1180: 1176: 1172: 1166: 1162: 1158: 1154: 1147: 1144: 1139: 1135: 1131: 1127: 1123: 1119: 1112: 1109: 1104: 1100: 1095: 1090: 1086: 1082: 1075: 1068: 1065: 1060: 1056: 1051: 1046: 1041: 1036: 1032: 1028: 1024: 1017: 1014: 1009: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 966: 963: 958: 954: 950: 946: 941: 936: 932: 928: 924: 917: 914: 909: 905: 900: 895: 891: 887: 883: 879: 875: 868: 865: 860: 856: 851: 846: 842: 838: 834: 830: 826: 819: 816: 811: 807: 802: 797: 793: 789: 785: 781: 777: 770: 767: 762: 758: 753: 748: 744: 740: 736: 732: 728: 724: 720: 713: 710: 705: 701: 696: 691: 687: 683: 679: 672: 669: 664: 660: 656: 652: 648: 644: 640: 636: 629: 626: 621: 617: 612: 607: 602: 597: 593: 589: 585: 578: 575: 570: 566: 561: 556: 553:(1–2): 2–14. 552: 548: 544: 537: 535: 533: 529: 524: 520: 516: 512: 507: 502: 499:(4): 903–15. 498: 494: 490: 483: 481: 479: 475: 469: 467: 465: 461: 453: 451: 449: 445: 441: 433: 429: 428: 423: 422: 417: 413: 410: 406: 402: 398: 394: 391: 388: 384: 381: 378: 374: 371: 368: 364: 361: 360: 359: 356: 354: 350: 349:noncoding RNA 346: 342: 338: 334: 330: 322: 320: 318: 314: 310: 306: 302: 301:concentration 299: 298:intracellular 295: 291: 287: 283: 279: 275: 272: 268: 264: 251: 248: 244: 241: 238: 234: 229: 225: 222: 219: 217: 213: 210: 207: 205: 201: 197: 193: 189: 185: 181: 176: 171: 160: 157: 155: 151: 148: 144: 140: 137: 135: 131: 127: 123: 120: 117: 113: 108: 104: 101: 97: 93: 90: 88: 84: 81: 78: 76: 72: 69: 66: 63: 59: 56: 53: 51: 47: 43: 39: 34: 27: 22: 17: 1236: 1232: 1222: 1197: 1193: 1187: 1152: 1146: 1121: 1117: 1111: 1084: 1080: 1067: 1030: 1026: 1016: 975: 971: 965: 930: 926: 916: 884:(3): 561–6. 881: 877: 867: 832: 828: 818: 783: 779: 769: 726: 722: 712: 685: 682:Microbiology 681: 671: 641:(1): 25–35. 638: 634: 628: 591: 588:PLOS Biology 587: 577: 550: 546: 496: 492: 457: 437: 425: 419: 357: 326: 293: 289: 285: 266: 260: 1200:: 881–941. 448:prokaryotes 282:homeostasis 240:Swiss-model 178:Identifiers 36:Identifiers 1124:: 229–45. 470:References 444:homologous 403:involving 341:expression 333:repressors 236:Structures 231:Search for 122:structures 1282:IPR002481 460:virulence 421:Rhizobium 367:manganese 278:metal ion 271:bacterial 80:IPR002481 1290:Category 1278:InterPro 1214:11018148 1138:26195304 1103:25627157 1059:19377097 1000:16541078 949:16553888 908:22101848 859:19298371 810:15150249 761:15240318 704:15133106 655:19079350 620:25369000 569:25888312 523:38938808 515:12581348 387:peroxide 323:Function 309:bacteria 307:in many 274:proteins 250:InterPro 183:Organism 139:RCSB PDB 75:InterPro 1263:8472246 1050:2709383 1008:4390980 980:Bibcode 957:2728024 899:3264066 850:2675660 731:Bibcode 663:7253420 611:4219657 401:regulon 351:called 246:Domains 216:UniProt 55:PF01475 1261:  1254:358274 1251:  1212:  1179:352628 1177:  1167:  1136:  1101:  1057:  1047:  1006:  998:  972:Nature 955:  947:  906:  896:  857:  847:  808:  801:415740 798:  759:  752:444773 749:  702:  661:  653:  618:  608:  567:  521:  513:  409:ZnuABC 377:nickel 265:, the 221:P0A9A9 195:Symbol 154:PDBsum 128:  118:  100:SUPFAM 68:CL0123 41:Symbol 1077:(PDF) 1004:S2CID 953:S2CID 659:S2CID 519:S2CID 313:toxic 96:SCOPe 87:SCOP2 1276:and 1274:Pfam 1259:PMID 1210:PMID 1175:PMID 1165:ISBN 1134:PMID 1099:PMID 1055:PMID 996:PMID 945:PMID 904:PMID 855:PMID 806:PMID 757:PMID 700:PMID 651:PMID 616:PMID 565:PMID 511:PMID 438:The 405:ZinT 397:zinc 383:PerR 353:RyhB 305:iron 209:2FU4 147:PDBj 143:PDBe 126:ECOD 116:Pfam 92:1mzb 64:clan 62:Pfam 50:Pfam 1249:PMC 1241:doi 1202:doi 1157:doi 1126:doi 1089:doi 1045:PMC 1035:doi 1031:284 988:doi 976:440 935:doi 894:PMC 886:doi 882:194 845:PMC 837:doi 796:PMC 788:doi 784:186 747:PMC 739:doi 690:doi 686:150 643:doi 606:PMC 596:doi 555:doi 551:179 501:doi 393:Zur 373:Nur 363:Mur 337:DNA 303:of 294:Fur 288:or 261:In 204:PDB 198:Fur 134:PDB 44:FUR 19:FUR 1292:: 1280:: 1257:. 1247:. 1235:. 1231:. 1208:. 1198:54 1196:. 1173:. 1163:. 1132:. 1122:69 1120:. 1097:. 1085:51 1083:. 1079:. 1053:. 1043:. 1029:. 1025:. 1002:. 994:. 986:. 974:. 951:. 943:. 931:59 929:. 925:. 902:. 892:. 880:. 876:. 853:. 843:. 833:72 831:. 827:. 804:. 794:. 782:. 778:. 755:. 745:. 737:. 727:70 725:. 721:. 698:. 684:. 680:. 657:. 649:. 637:. 614:. 604:. 592:12 590:. 586:. 563:. 549:. 545:. 531:^ 517:. 509:. 497:47 495:. 491:. 477:^ 450:. 424:, 355:. 319:. 145:; 141:; 124:/ 98:/ 94:/ 1265:. 1243:: 1237:6 1216:. 1204:: 1181:. 1159:: 1140:. 1128:: 1105:. 1091:: 1061:. 1037:: 1010:. 990:: 982:: 959:. 937:: 910:. 888:: 861:. 839:: 812:. 790:: 763:. 741:: 733:: 706:. 692:: 665:. 645:: 639:7 622:. 598:: 571:. 557:: 525:. 503:: 434:. 411:. 379:. 369:. 292:(

Index


Pfam
PF01475
Pfam
CL0123
InterPro
IPR002481
SCOP2
1mzb
SCOPe
SUPFAM
Pfam
structures
ECOD
PDB
RCSB PDB
PDBe
PDBj
PDBsum
structure summary
Escherichia coli
PDB
2FU4
UniProt
P0A9A9
Swiss-model
InterPro
molecular biology
bacterial
proteins

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.