Knowledge (XXG)

Fiber-optic communication

Source đź“ť

49: 192:, optical fiber has advantages over copper wire in long-distance, high-bandwidth applications. However, infrastructure development within cities is relatively difficult and time-consuming, and fiber-optic systems can be complex and expensive to install and operate. Due to these difficulties, early fiber-optic communication systems were primarily installed in long-distance applications, where they can be used to their full transmission capacity, offsetting the increased cost. The prices of fiber-optic communications have dropped considerably since 2000. 836: 33: 6387: 5305: 5315: 523: 6397: 2596: 6376: 2608: 828: 6407: 1186:·km. This value is a product of bandwidth and distance because there is a trade-off between the bandwidth of the signal and the distance over which it can be carried. For example, a common multi-mode fiber with bandwidth–distance product of 500 MHz·km could carry a 500 MHz signal for 1 km or a 1000 MHz signal for 0.5 km. 1134:
replace all of the repeaters. Third, optical amplifiers are much simpler than a repeater with the same capabilities and are therefore significantly more reliable. Optical amplifiers have largely replaced repeaters in new installations, although electronic repeaters are still widely used when signal conditioning beyond amplification is required.
2369:. Material absorption for pure silica is only around 0.03 dB/km. Impurities in early optical fibers caused attenuation of about 1000 dB/km. Modern fiber has attenuation around 0.3 dB/km. Other forms of attenuation are caused by physical stresses to the fiber, microscopic fluctuations in density, and imperfect 2302:, the spreading of optical pulses as they travel along the fiber. Dispersion limits the bandwidth of the fiber because the spreading optical pulse limits the rate which pulses can follow one another on the fiber and still be distinguishable at the receiver. Dispersion in optical fibers is caused by a variety of factors. 2327:, another source of limitation, occurs because although the single-mode fiber can sustain only one transverse mode, it can carry this mode with two different polarizations, and slight imperfections or distortions in a fiber can alter the propagation velocities for the two polarizations. This phenomenon is called 2536:
has largely replaced DSL as a broadband Internet source. The largest FTTH deployments are in Japan, South Korea, and China. Singapore started implementation of their all-fiber Next Generation Nationwide Broadband Network (Next Gen NBN), which is slated for completion in 2012 and is being installed by
2483:
Historically, there was a window of wavelengths shorter than O band, called the first window, at 800–900 nm; however, losses are high in this region so this window is used primarily for short-distance communications. The current lower windows (O and E) around 1300 nm have much lower losses.
1148:
Wavelength-division multiplexing (WDM) is the technique of transmitting multiple channels of information through a single optical fiber by sending multiple light beams of different wavelengths through the fiber, each modulated with a separate information channel. This allows the available capacity of
328:
After a period of research starting from 1975, the first commercial fiber-optic telecommunications system was developed which operated at a wavelength around 0.8 ÎĽm and used GaAs semiconductor lasers. This first-generation system operated at a bit rate of 45 Mbit/s with repeater spacing of
180:
is used by telecommunications companies to transmit telephone signals, Internet communication and cable television signals. It is also used in other industries, including medical, defense, government, industrial and commercial. In addition to serving the purposes of telecommunications, it is used as
4785:
Hu, Hao; Da Ros, Francesco; Pu, Minhao; Ye, Feihong; Ingerslev, Kasper; Porto Da Silva, Edson; Nooruzzaman, Md.; Amma, Yoshimichi; Sasaki, Yusuke; Mizuno, Takayuki; Miyamoto, Yutaka; Ottaviano, Luisa; Semenova, Elizaveta; Guan, Pengyu; Zibar, Darko; Galili, Michael; Yvind, Kresten; Morioka, Toshio;
1098:
repeaters, these problems have been eliminated. These repeaters convert the signal into an electrical signal and then use a transmitter to send the signal again at a higher intensity than was received, thus counteracting the loss incurred in the previous segment. Because of the high complexity with
324:
in Huntsville, Alabama, the system was intended to allow a short-range missile with video processing to communicate by laser to the ground by means of a five-kilometer long optical fiber that unspooled from the missile as it flew. Optelecom then delivered the first commercial optical communications
2507:
of the optical signal is only needed over distances of hundreds of kilometers. This has greatly reduced the cost of optical networking, particularly over undersea spans where the cost and reliability of repeaters is one of the key factors determining the performance of the whole cable system. The
601:
rather than spontaneous emission, which results in high output power (~100 mW) as well as other benefits related to the nature of coherent light. The output of a laser is relatively directional, allowing high coupling efficiency (~50%) into single-mode fiber. Common VCSEL devices also couple
2630:
and power issues common to long parallel electric conductor runs (due to its reliance on light rather than electricity for transmission, and the dielectric nature of fiber optic), and its inherently high data-carrying capacity. Thousands of electrical links would be required to replace a single
1133:
channels, eliminating the need to demultiplex signals at each amplifier. Second, optical amplifiers operate independently of the data rate and modulation format, enabling multiple data rates and modulation formats to co-exist and enabling upgrading of the data rate of a system without having to
360:
was revealed to greatly improve system performance, however practical connectors capable of working with single mode fiber proved difficult to develop. Canadian service provider SaskTel had completed construction of what was then the world's longest commercial fiber optic network, which covered
248:
transmission between two buildings, some 213 meters apart. Due to its use of an atmospheric transmission medium, the Photophone would not prove practical until advances in laser and optical fiber technologies permitted the secure transport of light. The Photophone's first practical use came in
2289:
Research conducted by the RMIT University, Melbourne, Australia, have developed a nanophotonic device that carries data on light waves that have been twisted into a spiral form and achieved a 100-fold increase in current attainable fiber optic speeds. The technique is known as orbital angular
4696:
Jørgensen, A. A.; Kong, D.; Henriksen, M. R.; Klejs, F.; Ye, Z.; Helgason, Ò. B.; Hansen, H. E.; Hu, H.; Yankov, M.; Forchhammer, S.; Andrekson, P.; Larsson, A.; Karlsson, M.; Schröder, J.; Sasaki, Y.; Aikawa, K.; Thomsen, J. W.; Morioka, T.; Galili, M.; Torres-Company, V.; Oxenløwe, L. K.
586:(VCSEL) devices, which offer improved speed, power and spectral properties, at a similar cost. However, due to their relatively simple design, LEDs are very useful for very low-cost applications. Commonly used classes of semiconductor laser transmitters used in fiber optics include VCSEL, 212:/s was completed, and although specific network capacities are privileged information, telecommunications investment reports indicate that network capacity has increased dramatically since 2004. As of 2020, over 5 billion kilometers of fiber-optic cable has been deployed around the globe. 195:
The price for rolling out fiber to homes has currently become more cost-effective than that of rolling out a copper-based network. Prices have dropped to $ 850 per subscriber in the US and lower in countries like The Netherlands, where digging costs are low and housing density is high.
561:. The emitted light is incoherent with a relatively wide spectral width of 30–60 nm. The large spectrum width of LEDs is subject to higher fiber dispersion, considerably limiting their bit rate-distance product (a common measure of usefulness). LEDs are suitable primarily for 3402: 422:, as WDM became the technology of choice for fiber-optic bandwidth expansion. The first to market with a dense WDM system was Ciena Corp., in June 1996. The introduction of optical amplifiers and WDM caused system capacity to double every six months from 1992 until a bit rate of 2650:
For comparison, while single-line, voice-grade copper systems longer than a couple of kilometers require in-line signal repeaters for satisfactory performance, it is not unusual for optical systems to go over 100 kilometers (62 mi), with no active or passive processing.
2484:
This region has zero dispersion. The middle windows (S and C) around 1500 nm are the most widely used. This region has the lowest attenuation losses and achieves the longest range. It does have some dispersion, so dispersion compensator devices are used to address this.
2290:
momentum (OAM). The nanophotonic device uses ultra-thin sheets to measure a fraction of a millimeter of twisted light. Nano-electronic device is embedded within a connector smaller than the size of a USB connector and may be fitted at the end of an optical fiber cable.
1049:
and assembled into a cable. After that, it can be laid in the ground and then run through the walls of a building and deployed aerially in a manner similar to copper cables. These fibers require less maintenance than common twisted pair wires once they are deployed.
550:, while laser diodes produce coherent light. For use in optical communications, semiconductor optical transmitters must be designed to be compact, efficient and reliable, while operating in an optimal wavelength range and directly modulated at high frequencies. 3005: 2388:
Each effect that contributes to attenuation and dispersion depends on the optical wavelength. There are wavelength bands (or windows) where these effects are weakest, and these are the most favorable for transmission. These windows have been standardized.
712:
Coherent receivers use a local oscillator laser in combination with a pair of hybrid couplers and four photodetectors per polarization, followed by high-speed ADCs and digital signal processing to recover data modulated with QPSK, QAM, or OFDM.
3410: 2710:
Optical fiber cables can be installed in buildings using the same equipment that is used to install copper and coaxial cables, with some modifications due to the small size and limited allowable pull tension and bend radius of optical cables.
3930: 1076:. This exploits power transmission rights of way effectively, ensures a power company can own and control the fiber required to monitor its own devices and lines, is effectively immune to tampering, and simplifies the deployment of 433:
was reached over a single 160 km (99 mi) line using optical amplifiers. As of 2021, Japanese scientists transmitted 319 terabits per second over 3,000 kilometers with four-core fiber cables with standard cable diameter.
641:
in directly modulated lasers, increasing the chromatic dispersion in the fiber. For very high bandwidth efficiency, coherent modulation can be used to vary the phase of the light in addition to the amplitude, enabling the use of
1157:
are commonly used for multiplexing and demultiplexing in WDM. Using WDM technology now commercially available, the bandwidth of a fiber can be divided into as many as 160 channels to support a combined bit rate in the range of
2835:(GaAs). Because InGaAsP LEDs operate at a longer wavelength than GaAs LEDs (1.3 micrometers vs. 0.81–0.87 micrometers), their output spectrum, while equivalent in energy is wider in wavelength terms by a factor of about 1.7. 2342:. This works by using a specially prepared length of fiber that has the opposite dispersion to that induced by the transmission fiber, and this sharpens the pulse so that it can be correctly decoded by the electronics. 2230:
is notable in that the team was able to reduce the power consumption of the optics to around 5% compared with more mainstream techniques, which could lead to a new generation of very power-efficient optic components.
3009: 2323:, which occurs because the index of the glass varies slightly depending on the wavelength of the light, and, due to modulation, light from optical transmitters necessarily occupies a (narrow) range of wavelengths. 351:
The second generation of fiber-optic communication was developed for commercial use in the early 1980s, operated at 1.3 ÎĽm and used InGaAsP semiconductor lasers. These early systems were initially limited by
902:
10 micrometers) and requires more expensive components and interconnection methods, but allows much longer and higher-performance links. Both single- and multi-mode fiber is offered in different grades.
203:
became commercially available, the telecommunications industry has laid a vast network of intercity and transoceanic fiber communication lines. By 2002, an intercontinental network of 250,000 km of
1198:, each fiber can carry many independent channels, each using a different wavelength of light. The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the 2703:
Much smaller cable size—important where the pathway is limited, such as networking an existing building, where smaller channels can be drilled and space can be saved in existing cable ducts and trays.
3934: 4091: 756:) diminishes the system performance due to linear and non-linear transmitter effects. These effects can be categorized as linear distortions due to DAC bandwidth limitation and transmitter I/Q 458:
In the late 1990s through 2000, industry promoters, and research companies such as KMI, and RHK predicted massive increases in demand for communications bandwidth due to increased use of the
4137: 2661:
In short-distance and relatively low-bandwidth applications, electrical transmission is often preferred because of its lower cost. Optical communication is not common in short box-to-box,
4187:
Corcoran, Bill; Tan, Mengxi; Xu, Xingyuan; Boes, Andreas; Wu, Jiayang; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J. (2020-05-22).
4262: 4650: 4604: 654:. "Dual-polarization quadrature phase shift keying is a modulation format that effectively sends four times as much information as traditional optical transmissions of the same speed." 4443: 4425: 4066: 1682:
The following summarizes research using specialized cables that allow spatial multiplexing to occur, use specialized tri-mode fiber cables or similar specialized fiber optic cables.
1099:
modern wavelength-division multiplexed signals, including the fact that they had to be installed about once every 20 km (12 mi), the cost of these repeaters is very high.
2719:
In order for various manufacturers to be able to develop components that function compatibly in fiber optic communication systems, a number of standards have been developed. The
344:
aimed to test fiber optics in an urban environment: in September 1977, the second cable in this test series, named COS-2, was experimentally deployed in two lines (9 km) in
1129:
Optical amplifiers have several significant advantages over electrical repeaters. First, an optical amplifier can amplify a very wide band at once which can include hundreds of
5134: 4031:
Hillerkuss, D.; Schmogrow, R.; Schellinger, T.; et al. (2011). "26 Tbit s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing".
3108: 568:
LED light transmission is inefficient, with only about 1% of input power, or about 100 microwatts, eventually converted into launched power coupled into the optical fiber.
617:, that is the light output is controlled by a current applied directly to the device. For very high data rates or very long distance links, a laser source may be operated 291:
showed that the losses of 1,000 dB/km in existing glass (compared to 5–10 dB/km in coaxial cable) were due to contaminants which could potentially be removed.
4750: 2508:
main advances contributing to these performance improvements are dispersion management, which seeks to balance the effects of dispersion against non-linearity; and
4787: 3674:
Berenguer, P. W.; Nölle, M.; Molle, L.; Raman, T.; Napoli, A.; Schubert, C.; Fischer, J. K. (2016). "Nonlinear Digital Pre-Distortion of Transmitter Components".
799:
use a memory polynomial to model the transmitter components jointly. In both approaches the Volterra series or the memory polynomial coefficients are found using
48: 807:
records, for each branch of the Mach-Zehnder modulator, several signals at different polarity and phases. The signals are used to calculate the optical field.
105:
Optical fiber is used by many telecommunications companies to transmit telephone signals, internet communication, and cable television signals. Researchers at
4468: 534:, a device combining a transmitter and a receiver in a single housing. The electrical connector is at top right and the optical connectors are at bottom left. 506:
to carry the signal, optical amplifiers, and optical receivers to convert the signal back into an electrical signal. The information transmitted is typically
6359: 6331: 6326: 5351: 2975: 2738:
Other standards specify performance criteria for fiber, transmitters, and receivers to be used together in conforming systems. Some of these standards are:
2631:
high-bandwidth fiber cable. Another benefit of fibers is that even when run alongside each other for long distances, fiber cables experience effectively no
1065:) typically have four strands of fiber and signals cross the Atlantic (NYC-London) in 60–70 ms. The cost of each such cable was about $ 300M in 2011. 3717:
Khanna, G.; Spinnler, B.; Calabro, S.; De Man, E.; Hanik, N. (2016). "A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters".
383:
Third-generation fiber-optic systems operated at 1.55 ÎĽm and had losses of about 0.2 dB/km. This development was spurred by the discovery of
4569: 4095: 1094:
The transmission distance of a fiber-optic communication system has traditionally been limited by fiber attenuation and by fiber distortion. By using
1106:
which amplify the optical signal directly without having to convert the signal to the electrical domain. One common type of optical amplifier is an
890:), allowing less precise, cheaper transmitters and receivers to connect to it as well as cheaper connectors. However, a multi-mode fiber introduces 4162: 4141: 5127: 3485: 2350: 1149:
optical fibers to be multiplied. This requires a wavelength division multiplexer in the transmitting equipment and a demultiplexer (essentially a
288: 2626:
The main benefits of fiber are its exceptionally low loss (allowing long distances between repeaters), its absence of ground currents and other
6353: 4266: 2619:) transmission for a particular system is made based on a number of trade-offs. Optical fiber is generally chosen for systems requiring higher 2354: 2332: 583: 4654: 4608: 2654:
Optical fibers are more difficult and expensive to splice than electrical conductors. And at higher powers, optical fibers are susceptible to
6348: 6338: 6318: 6120: 5041: 4546:"Success of ultra-high capacity optical fibre transmission breaking the world record by a factor of five and reaching 10 Petabits per second" 3877: 3833: 3817: 3356: 3196: 3038: 2933: 2904: 2720: 4447: 4070: 494:
have taken advantage of fiber-optic communications to deliver a variety of high-throughput data and broadband services to consumers' homes.
607: 5093: 3372: 6431: 6343: 6189: 5172: 4957:
Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies
4116: 3973: 3006:"Press release: Alcatel-Lucent Bell Labs announces new optical transmission record and breaks 100 Petabit per second kilometer barrier" 2568:
networks. All of the major access networks use fiber for the bulk of the distance from the service provider's network to the customer.
102:
is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.
6115: 5280: 5120: 5081: 3578: 1844: 1054: 502:
Modern fiber-optic communication systems generally include optical transmitters that convert electrical signals into optical signals,
6209: 5067: 4998: 3901: 3433: 2828: 1330: 330: 241: 3519: 1178:
Because the effect of dispersion increases with the length of the fiber, a fiber transmission system is often characterized by its
701:
to produce a digital signal in the electrical domain recovered from the incoming optical signal. Further signal processing such as
181:
light guides, for imaging tools, lasers, hydrophones for seismic waves, SONAR, and as sensors to measure pressure and temperature.
437:
The focus of development for the fifth generation of fiber-optic communications is on extending the wavelength range over which a
5994: 5542: 5344: 5237: 5101: 4949: 4514: 3158: 2808: 2668:
In certain situations, fiber may be used even for short-distance or low-bandwidth applications, due to other important features:
2572: 2549: 1195: 1143: 1130: 898:
content, multi-mode fibers are usually expensive and exhibit higher attenuation. The core of a single-mode fiber is smaller (<
576: 438: 411: 5005:
Optical sensors are advantageous in hazardous environments because there are no sparks when a fiber breaks or its cover is worn.
4836: 630: 441:
system can operate. The conventional wavelength window, known as the C band, covers the wavelength range 1525–1565 nm, and
6105: 5308: 5232: 2497: 2219: 2118: 1815: 871:
and requires special skills and interconnection technology due to the microscopic precision required to align the fiber cores.
780:
performs digital predistortion on the input signals using the inverse transmitter model before sending the samples to the DAC.
2700:
Not electromagnetically radiating, and difficult to tap without disrupting the signal—important in high-security environments.
2492:
When a communications link must span a larger distance than existing fiber-optic technology is capable of, the signal must be
309:
were developed that were compact and therefore suitable for transmitting light through fiber optic cables for long distances.
6100: 5651: 2772: 2521: 2227: 1919: 1394: 1278: 1045:
In order to package fiber into a commercially viable product, it typically is protectively coated by using ultraviolet cured
783:
Older digital predistortion methods only addressed linear effects. Recent publications also consider non-linear distortions.
205: 2537:
OpenNet. Since they began rolling out services in September 2010, network coverage in Singapore has reached 85% nationwide.
2480:
Note that this table shows that current technology has managed to bridge the E and S windows that were originally disjoint.
445:
has a low-loss window promising an extension of that range to 1300–1650 nm. Other developments include the concept of
6125: 2767: 1848: 851:, and a buffer (a protective outer coating), in which the cladding guides the light along the core by using the method of 369: 6410: 4426:"Researchers create fiber network that operates at 99.7% speed of light, smashes speed and latency records - ExtremeTech" 3294:
Bhatt, Jaimin; Jones, Adam; Foley, Stephen; Shah, Zaheer; Malone, Peter; Fawcett, Derek; Kumar, Sunil (27 October 2010).
693:
Since light may be attenuated and distorted while passing through the fiber, photodetectors are typically coupled with a
6400: 6161: 6058: 5601: 5368: 5252: 3931:"Alcatel-Lucent Bell Labs announces new optical transmission record and breaks 100 Petabit-per-second-kilometer barrier" 2640: 2324: 1107: 760:
as well as non-linear effects caused by gain saturation in the driver amplifier and the Mach–Zehnder modulator. Digital
626: 387:
and the development of the indium gallium arsenide photodiode by Pearsall. Engineers overcame earlier difficulties with
189: 99: 4336: 6390: 5897: 5337: 5242: 2647:, and railroad tracks. Nonmetallic all-dielectric cables are also ideal for areas of high lightning-strike incidence. 2584: 2298:
For modern glass optical fiber, the maximum transmission distance is limited not by direct material absorption but by
726: 273: 3061: 734: 361:
3,268 km (2,031 mi) and linked 52 communities. By 1987, these systems were operating at bit rates of up to
800: 333:
sent the first live telephone traffic through fiber optics at a 6 Mbit/s throughput in Long Beach, California.
6249: 6171: 6110: 5817: 5290: 4960: 4591:"Demonstration of World Record Transmission Capacity in a Single Optical Fiber over a 38-core 3-mode Optical Fiber" 2500:. Repeaters add substantial cost to a communication system, and so system designers attempt to minimize their use. 591: 470:
data traffic was increasing exponentially, at a faster rate than integrated circuit complexity had increased under
253: 4675: 6021: 5827: 5727: 5656: 5589: 5416: 5264: 3134: 2983: 2777: 2503:
Recent advances in fiber and optical communications technology have reduced signal degradation to the point that
1784: 1154: 879: 852: 679: 602:
well to multimode fiber. The narrow spectral width also allows for high bit rates since it reduces the effect of
37: 5021: 4630:"World's First Successful Transmission of 1 Petabit per Second in a Standard Cladding Diameter Multi-core Fiber" 3780: 3762:"Characterization and Pre-Distortion of Linear and Non-Linear Transmitter Impairments for PM-64QAM Applications" 6380: 5622: 5557: 5510: 5396: 5318: 3854: 1199: 875: 777: 694: 479: 392: 41: 1214:
The following summarizes research using standard telecoms-grade single-mode, single-solid-core fiber cables.
6219: 6204: 6048: 5999: 5922: 5822: 5500: 5386: 5381: 5223: 3270: 2533: 2366: 1607:
The following summarizes research using standard telecoms-grade multi-mode, single-solid-core fiber cables.
1111: 848: 671: 384: 2723:
publishes several standards related to the characteristics and performance of fibers themselves, including
2548:
to selected high-average-revenue-per-user markets within its existing territory. The other major surviving
6141: 5927: 5742: 5687: 5682: 5495: 5460: 4357: 2541: 2339: 507: 225: 52: 3505:
Wavelength Division Multiplexing: A Practical Engineering Guide (Wiley Series in Pure and Applied Optics)
6043: 5847: 5812: 5732: 5712: 5634: 5522: 5443: 5143: 4166: 3212: 2792: 2680: 2673: 2627: 2623:, operating in harsh environments or spanning longer distances than electrical cabling can accommodate. 2620: 2525: 2305: 407: 257: 221: 95: 4837:"Groundbreaking new technology could allow 100-times-faster internet by harnessing twisted light beams" 835: 2512:, which use nonlinear effects in the fiber to enable dispersion-free propagation over long distances. 1058: 678:. Several types of photodiodes include p–n photodiodes, p–i–n photodiodes, and avalanche photodiodes. 5957: 5917: 5887: 5644: 5579: 5470: 5285: 5033: 4870: 4802: 4710: 4210: 4040: 3985: 3726: 3683: 3638: 3228: 2742: 2684: 2565: 2320: 2194: 891: 667: 603: 575:
to emit light at different wavelengths over a broad spectrum and are currently in use for local-area
554: 539: 321: 306: 2316:. Because single-mode fiber supports only one transverse mode, intermodal dispersion is eliminated. 5967: 5907: 5666: 5628: 5485: 5426: 5411: 5167: 2747: 2358: 2299: 1951: 1888: 1625: 1232: 1073: 863:
glass, although they can both be made of plastic as well. Connecting two optical fibers is done by
844: 687: 606:. Furthermore, semiconductor lasers can be modulated directly at high frequencies because of short 598: 558: 547: 503: 388: 299: 162:
relaying the signal along the fiber, ensuring that the signal does not become too distorted or weak
5314: 3841: 587: 565:
applications with bit rates of 10–100 Mbit/s and transmission distances of a few kilometers.
395:
designed to have minimal dispersion at 1.55 ÎĽm or by limiting the laser spectrum to a single
320:, received a contract from ARPA for one of the first optical communication systems. Developed for 6436: 6194: 6151: 6082: 5952: 5882: 5857: 5792: 5639: 5360: 4930: 4818: 4726: 4244: 4200: 3742: 3699: 3325: 3244: 2920: 2658:, resulting in catastrophic destruction of the fiber core and damage to transmission components. 1161: 1069: 816: 683: 562: 419: 377: 261: 130: 67: 5016: 3465: 3188: 6234: 6156: 6070: 6053: 6016: 5902: 5862: 5692: 5661: 5527: 5421: 5218: 5177: 5077: 5063: 5037: 4994: 4896: 4469:"255Tbps: World's fastest network could carry all of the internet's traffic on a single fiber" 4236: 3883: 3873: 3813: 3656: 3527: 3429: 3380: 3352: 3317: 3192: 3034: 2929: 2900: 2636: 2557: 2529: 1955: 1884: 1103: 1089: 1062: 1046: 1030: 1016: 894:, which often limits the bandwidth and length of the link. Furthermore, because of its higher 868: 808: 706: 622: 511: 467: 396: 357: 265: 200: 157: 4570:"Researchers in Japan 'break transmission record' over 1,045km with three-mode optical fibre" 3909: 3760:
Duthel, T.; Hermann, P.; Schiel, J.; Fludger, C. R. S.; Bisplinghoff, A.; Kupfer, T. (2016).
3552:"14 Tbit/s over a single optical fiber: successful demonstration of world's largest capacity" 3344: 2727:
ITU-T G.651, "Characteristics of a 50/125 ÎĽm multimode graded index optical fibre cable"
6239: 6199: 6179: 6146: 6075: 6033: 5947: 5802: 5787: 5762: 5737: 5697: 5547: 5406: 5401: 5391: 4886: 4878: 4810: 4718: 4226: 4218: 4048: 3993: 3734: 3691: 3646: 3307: 3255: 3236: 2832: 2796: 2757: 2509: 2382: 2313: 1390: 856: 452: 447: 415: 399:. These developments eventually allowed third-generation systems to operate commercially at 353: 237: 233: 142: 32: 3024: 1122:
it with light with a shorter wavelength than the communications signal (typically 980 
5867: 5722: 5490: 5453: 4991:
Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare
4698: 4017: 2600: 2309: 1386: 1002: 988: 974: 957: 940: 923: 864: 792: 618: 463: 146: 134: 5465: 4699:"Petabit-per-second data transmission using a chip-scale microcomb ring resonator source" 3602: 1202:(FEC) overhead, multiplied by the number of channels (usually up to eighty in commercial 491: 4874: 4806: 4714: 4214: 4044: 3989: 3730: 3687: 3642: 3232: 3086: 268:, proposed the use of optical fibers for communications in 1963. Nishizawa invented the 244:
of sound on a beam of light. On June 3, 1880, Bell conducted the world's first wireless
6065: 5937: 5912: 5872: 5842: 5717: 5552: 5438: 4891: 4858: 4316:"1.53 Petabit per Second Transmission in 55-mode Fiber with Standard Cladding Diameter" 4302:"World Record 402 Tb/s Transmission in a Standard Commercially Available Optical Fiber" 4288:"World Record 301 Tb/s Transmission in a Standard Commercially Available Optical Fiber" 4231: 4188: 3949:"World Record 69-Terabit Capacity for Optical Transmission over a Single Optical Fiber" 3181: 2892: 2362: 1419: 1252: 1095: 702: 475: 471: 451:, pulses that preserve their shape by counteracting the effects of dispersion with the 284: 280: 5105: 4964: 4772:"World Record Optical Fiber Transmission Capacity Doubles to 22.9 Petabits per Second" 4545: 4521: 4403: 4163:"Researchers just recorded world's fastest internet speed using a single optical chip" 3997: 3551: 2949: 6425: 6214: 5987: 5977: 5892: 5782: 5777: 5767: 5752: 5574: 5433: 5213: 4859:"Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film" 4822: 4788:"Single-source chip-based frequency comb enabling extreme parallel data transmission" 4730: 4248: 4189:"Ultra-dense optical data transmission over standard fibre with a single chip source" 3312: 3295: 3248: 3109:"Fiber Optics Market by Application and Region – Global Forecast to 2024 | Technavio" 2880: 2788: 2752: 2576: 2328: 1597: 1119: 788: 761: 663: 177: 79: 75: 4771: 4751:"Record 1.84 Petabit/s Data Transfer Achieved With Photonic Chip, Fibre Optic Cable" 4629: 4590: 4315: 4301: 4287: 3703: 3329: 2683:, making it safe to use near high-voltage equipment or between areas with different 294:
Optical fiber with attenuation low enough for communication purposes (about 20 
152:
The process of communicating using fiber optics involves the following basic steps:
6092: 5932: 5877: 5807: 5772: 5707: 5606: 5596: 5448: 5157: 4092:"Scientists Successfully Push Fibre Optic Transmissions Close to the Shannon Limit" 3948: 3746: 2884: 2370: 1755: 1150: 1068:
Another common practice is to bundle many fiber optic strands within long-distance
572: 487: 317: 83: 17: 3579:"With 319 Tb/s, Japan Absolutely Smashes World Record For Data Transmission Speed" 633:. External modulation increases the achievable link distance by eliminating laser 462:, and commercialization of various bandwidth-intensive consumer services, such as 2564:
with twisted-pair to the home. Their MSO competitors employ FTTN with coax using
819:
and the non-linear effects are determined by the indirect-learning architecture.
6292: 5942: 5852: 5837: 5797: 5757: 5616: 5257: 5187: 3030: 2896: 2580: 812: 791:
and the DAC and the driver amplifier are modeled by a truncated, time-invariant
757: 722: 543: 531: 522: 276:, both of which contributed to the development of optical fiber communications. 185: 156:
creating the optical signal involving the use of a transmitter, usually from an
4882: 4722: 4493: 4222: 3761: 2595: 6297: 6004: 5702: 5611: 5567: 5537: 5515: 5505: 5480: 5192: 5182: 4950:"The Fiber Fuse Phenomenon in Polarization-Maintaining Fibers at 1.55 ÎĽm" 4915: 4814: 3240: 2655: 2644: 1077: 887: 738: 675: 538:
The most commonly used optical transmitters are semiconductor devices such as
483: 229: 56: 3887: 3738: 3695: 3660: 3603:"The FOA Reference For Fiber Optics – Fiber Optic Transmitters and Receivers" 3531: 2887:; Parker, Philip; Gibson, Carrie; Grant, R. G.; Regan, Sally (October 2014). 2856: 1053:
Specialized cables are used for long-distance subsea data transmission, e.g.
6282: 5747: 5562: 5112: 4515:"One Petabit per Second Fiber Transmission over a Record Distance of 200 km" 4052: 3651: 3626: 2662: 2632: 1203: 1123: 746: 730: 698: 638: 614: 391:
using conventional InGaAsP semiconductor lasers at that wavelength by using
313: 269: 245: 240:
Bell considered it his most important invention. The device allowed for the
106: 87: 4900: 4240: 3321: 4358:"Speed record shattered for data transmission over standard optical fiber" 4337:"Speed record shattered for data transmission over standard optical fiber" 4067:"BT Trial 5.6Tbps on a Single Optical Fibre and 2Tbps on a Live Core Link" 3867: 3159:"Corning Celebrates Delivering its 1 Billionth Kilometer of Optical Fiber" 2607: 827: 380:
optimized laser amplification technology. It went into operation in 1988.
6277: 6267: 6184: 6009: 5832: 4857:
Yue, Zengji; Ren, Haoran; Wei, Shibiao; Lin, Jiao; Gu, Min (2018-10-24).
4117:"65Tbps over a single fibre: Nokia sets new submarine cable speed record" 2223: 1443: 1356: 530:
module (shown here with its cover removed), is an optical and electrical
459: 71: 3766:
42nd European Conference and Exhibition on Optical Communications (ECOC)
2193:
New record for throughput using a single core cable, that is, not using
6272: 6257: 3451:
Laser: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War
2784: 2561: 2553: 2520:
Although fiber-optic systems excel in high-bandwidth applications, the
773: 341: 295: 209: 116: 4676:"Blistering data transmission record clocks over 1 petabit per second" 3345:"Terahertz wave generation and light amplification using Raman effect" 6302: 6262: 5584: 5376: 5329: 5162: 4494:"Realization of World Record Fiber-Capacity of 2.15Pb/s Transmission" 2694: 2616: 1447: 1360: 1115: 895: 874:
Two main types of optical fiber used in optic communications include
860: 769: 141:, optical fibers have largely replaced copper wire communications in 3467:
Optical fibre field experiments in Italy: COS1, COS2 and COS3/FOSTER
3216: 2976:"What are the Basic Elements of a Fibre Optic Communication System?" 2575:(EPON). In Europe, and among telcos in the United States, ATM-based 546:. The difference between LEDs and laser diodes is that LEDs produce 4916:"Fiber Optic Technology and its Role in the Information Revolution" 4869:(1). Nature Communications (volume 9, Article number: 4413): 4413. 4205: 3426:
Laser: The Inventor, the Nobel Laureate, the Thirty-year Patent War
2338:
Some dispersion, notably chromatic dispersion, can be removed by a
348:, for the first time in a big city, at a speed of 140 Mbit/s. 129:
First developed in the 1970s, fiber-optics have revolutionized the
44:: 62.5/125 ÎĽm OM1 and 50/125 ÎĽm OM3 fibers, respectively. 6287: 6224: 5532: 5247: 2762: 2731: 2606: 2594: 834: 826: 742: 670:. The primary photodetectors for telecommunications are made from 634: 521: 373: 345: 337: 336:
In October 1973, Corning Glass signed a development contract with
228:
created a very early precursor to fiber-optic communications, the
47: 31: 6229: 4444:"A Single Laser and Cable Delivers Fibre Optic Speeds of 43Tbps" 4382: 3187:. Sterling Biographies. New York: Sterling Publishing. pp.  2545: 1989: 1880: 1723: 1648: 1011:
3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
682:(MSM) photodetectors are also used due to their suitability for 651: 643: 527: 425: 406:
The fourth generation of fiber-optic communication systems used
303: 260:
showed that rolled fiber glass allowed light to be transmitted.
59:
cable underneath the streets of Midtown Manhattan, New York City
5333: 5116: 4361: 3062:"As telecom demands grow, optical fibers will need to level up" 2706:
Resistance to corrosion due to non-metallic transmission medium
764:
counteracts the degrading effects and enables Baud rates up to
478:
through 2006, however, the main trend in the industry has been
5475: 2587:(FSAN) and ITU-T standards organizations under their control. 1751: 1304: 1183: 831:
A cable reel trailer with conduit that can carry optical fiber
752: 647: 1057:. New (2011–2013) cables operated by commercial enterprises ( 403:
with repeater spacing in excess of 100 km (62 mi).
5102:"Fiber Optics – Internet, Cable and Telephone Communication" 3023:
Alwayn, Vivek (April 23, 2004). "Fiber-Optic Technologies".
2672:
Immunity to electromagnetic interference, including nuclear
776:
with the commercially available components. The transmitter
138: 91: 4801:(8). Nature Photonics (volume 12, pages 469–473): 469–473. 4263:"London UK Team Achieves Record 178Tbps Single Fibre Speed" 3933:(Press release). Alcatel-Lucent. 2009-10-28. Archived from 133:
industry and have played a major role in the advent of the
4651:"New Record Fibre Optic Speed of 1.02Pbps Hit Over 51.7km" 4605:"New World Record as Fibre Optic Speeds Pushed to 319Tbps" 3403:"New Medal Honors Japanese Microelectrics Industry Leader" 2532:(FTTH) deployment has accelerated. In Japan, for instance 4948:
Lee, M. M.; J. M. Roth; T. G. Ulmer; C. V. Cryan (2006).
4138:"BT Labs delivers ultra-efficient terabit 'superchannel'" 3351:. New Delhi, India: Narosa Publishing House. p. 27. 2319:
In single-mode fiber performance is primarily limited by
1126:). EDFAs provide gain in the ITU C band at 1550 nm. 36:
An optical fiber patching cabinet. The yellow cables are
2734:, "Characteristics of a single-mode optical fibre cable" 2381:"Optical band" redirects here. Not to be confused with 674:. The photodetector is typically a semiconductor-based 121:
kilometers per second using fiber-optic communication.
4383:"NEC and Corning achieve petabit optical transmission" 3473:. International Conference on Communications. Seattle. 3217:"On the Production and Reproduction of Sound by Light" 2697:—important in flammable or explosive gas environments. 839:
Multi-mode optical fiber in an underground service pit
5074:
Optical Fiber Communications: Principles and Practice
3796:
An optical fiber will break if it is bent too sharply
2611:
An underground fiber optic splice enclosure opened up
365:
with repeater spacing up to 50 km (31 mi).
3008:. Alcatel-Lucent. September 28, 2009. Archived from 2615:
The choice between optical fiber and electrical (or
2308:, caused by the different axial speeds of different 787:
models the Mach–Zehnder modulator as an independent
621:, and the light modulated by an external device, an 486:
of manufacturing to reduce costs. Companies such as
6311: 6248: 6170: 6134: 6091: 6032: 5966: 5675: 5367: 5273: 5201: 5150: 3869:
Advanced optical communication systems and networks
3253:also published as "Selenium and the Photophone" in 2690:
Lighter weight—important, for example, in aircraft.
2571:The globally dominant access network technology is 249:military communication systems many decades later. 3180: 709:may also be applied before the data is passed on. 455:of the fiber by using pulses of a specific shape. 3520:"Fiber-Optic Technology Draws Record Stock Value" 3407:Institute of Electrical and Electronics Engineers 3347:. In Bhat, K. N. & DasGupta, Amitava (eds.). 882:. A multi-mode optical fiber has a larger core (≥ 553:In its simplest form, an LED emits light through 316:, Inc., co-founded by the inventor of the laser, 3834:"Fiber Optic Upgrade Will Upturn Yards, Streets" 3428:(reprint ed.). Universe. pp. 169–171. 3183:Alexander Graham Bell: Giving Voice To The World 2827:Communications LEDs are most commonly made from 2603:lab used to access and splice underground cables 2393:Standard bands for optical fiber communications 2206:New record for throughput using a photonic chip. 1583: 1581: 666:which converts light into electricity using the 3135:"15 Largest Fiber Optic Companies in the World" 855:. The core and the cladding (which has a lower- 662:The main component of an optical receiver is a 110: 70:from one place to another by sending pulses of 3087:"Guide To Fiber Optics & Permises Cabling" 1114:a length of fiber with the rare-earth mineral 811:in-phase and quadrature fields identifies the 5345: 5128: 4165:. www.rmit.edu.au. 2020-05-22. Archived from 3974:"Ultrafast fibre optics set new speed record" 8: 5017:Encyclopedia of Laser Physics and Technology 3866:Cvijetic, Milorad; Djordjevic, Ivan (2013). 3343:Nishizawa, Jun-ichi & Suto, Ken (2004). 2639:. Fiber can be installed in areas with high 6360:Global telecommunications regulation bodies 4018:"Laser puts record data rate through fibre" 3627:"Ultrafast networks gear-up for deployment" 2922:Future Trends in Fiber Optics Communication 2857:"Understanding Wavelengths In Fiber Optics" 1587:Used a single source to drive all channels. 429:was reached by 2001. In 2006 a bit-rate of 418:. The introduction of WDM was the start of 27:Transmitting information over optical fiber 6396: 5352: 5338: 5330: 5135: 5121: 5113: 3296:"Harold Horace Hopkins: A Short Biography" 3271:"A Brief History Of Optical Communication" 2635:, in contrast to some types of electrical 1474:RMIT, Monash & Swinburne Universities 597:A semiconductor laser emits light through 571:LEDs have been developed that use several 4890: 4230: 4204: 3650: 3311: 3026:Optical Network Design and Implementation 2266:Hao Hu, et al. (DTU, Fujikura & NTT) 329:up to 10 km. Soon on 22 April 1977, 3967: 3965: 2391: 2233: 1684: 1609: 1216: 905: 4653:. ISPreview. 2022-06-07. Archived from 4607:. ISPreview. 2021-07-16. Archived from 4446:. ISPreview. 2014-07-03. Archived from 4360:. ISPreview. 2022-11-12. Archived from 4265:. ISPreview. 2020-08-15. Archived from 4094:. ISPreview. 2016-09-19. Archived from 4069:. ISPreview. 2016-05-25. Archived from 2848: 2820: 2591:Comparison with electrical transmission 2186: 1577: 289:Standard Telecommunication Laboratories 168:converting it into an electrical signal 139:advantages over electrical transmission 5094:"Understanding Optical Communications" 3503:Grobe, Klaus; Eiselt, Michael (2013). 2795:to connect digital sources to digital 2528:has experienced slow uptake. However, 2496:at intermediate points in the link by 2333:polarization-maintaining optical fiber 1596:First result that pushes close to the 690:and wavelength-division multiplexers. 584:vertical-cavity surface-emitting laser 4424:Anthony, Sebastian (March 25, 2013). 4404:"Big data, now at the speed of light" 3902:"Infinera Introduces New Line System" 2889:History of the World in 1,000 Objects 2721:International Telecommunication Union 582:LEDs have been largely superseded by 410:to reduce the need for repeaters and 7: 6406: 3453:. Simon & Schuster. p. 226. 3484:Rigby, Pauline (January 22, 2014). 1039:0.4 dB/km @ 1300/1550 nm 1025:1.0 dB/km @ 1300/1550 nm 859:) are usually made of high-quality 4774:(Press release). NICT. 2023-11-05. 4593:(Press release). NICT. 2020-02-14. 4304:(Press release). NICT. 2024-06-26. 4290:(Press release). NICT. 2024-01-29. 3768:: 785–787 – via IEEE Xplore. 3464:Buzzelli, S.; et al. (1980). 3133:Novicio, Trish (3 December 2020). 1845:Eindhoven University of Technology 1102:An alternative approach is to use 1055:transatlantic communications cable 55:fiber crew installing a 432-count 25: 5062:, 4th ed. New York: McGraw-Hill, 5030:Fiber-optic communication systems 4520:. NTT. 2017-03-23. Archived from 3719:IEEE Photonics Technology Letters 2829:Indium gallium arsenide phosphide 331:General Telephone and Electronics 92:preferred over electrical cabling 40:; the orange and blue cables are 6405: 6395: 6386: 6385: 6374: 5995:Free-space optical communication 5313: 5304: 5303: 4786:Oxenløwe, Leif K. (2018-07-02). 4140:. BT. 2017-06-19. Archived from 3951:(Press release). NTT. 2010-03-25 3812:(2nd ed.). O'Reilly Media. 3577:Starr, Michelle (16 July 2021). 3349:Physics of semiconductor devices 3313:10.1111/j.1464-410X.2010.09717.x 3060:Jacoby, Mitch (March 16, 2020). 2928:. WCE, London UK. July 2, 2014. 2809:Free-space optical communication 2665:, or chip-to-chip applications. 2573:Ethernet passive optical network 2550:incumbent local exchange carrier 2498:optical communications repeaters 1700:Spectral efficiency, (bit/s)/Hz 1196:wavelength-division multiplexing 1182:, usually expressed in units of 1144:Wavelength-division multiplexing 1138:Wavelength-division multiplexing 721:An optical communication system 613:Laser diodes are often directly 577:wavelength-division multiplexing 412:wavelength-division multiplexing 98:, long distance, or immunity to 3676:Journal of Lightwave Technology 3066:Chemical & Engineering News 2544:provides a FTTH service called 2119:Technical University of Denmark 1816:Technical University of Denmark 997:3500 MHz·km @ 850 nm 983:1500 MHz·km @ 850 nm 90:to carry information. Fiber is 4931:"Optical Fiber Communications" 3810:Ethernet: The Definitive Guide 3089:. The Fiber Optics Association 2787:is the most common format for 2773:Synchronous Optical Networking 2353:is caused by a combination of 1564:1505 (O, E, S, C, L, U bands) 1395:Technical University of Munich 1153:) in the receiving equipment. 1072:cable using, for instance, an 969:500 MHz·km @ 850 nm 952:200 MHz·km @ 850 nm 935:160 MHz·km @ 850 nm 801:indirect-learning architecture 557:, a phenomenon referred to as 298:/km) was developed in 1970 by 232:, at Bell's newly established 206:submarine communications cable 1: 4989:McAulay, Alastair D. (2011). 3998:10.1016/S0262-4079(11)60912-3 3486:"Three decades of innovation" 2768:Synchronous Digital Hierarchy 2269:768 Tbit/s (661 Tbit/s) 1849:University of Central Florida 370:transatlantic telephone cable 201:optical-amplification systems 6381:Telecommunication portal 6162:Telecommunications equipment 5060:Optical fiber communications 4753:. Tom's Hardware. 2022-10-20 3808:Charles E. Spurgeon (2014). 3779:Alwayn, Vivek (2004-04-23). 3518:Markoff, John (1997-03-03). 2641:electromagnetic interference 2524:problem remains unsolved as 2325:Polarization mode dispersion 2312:, limits the performance of 1108:erbium-doped fiber amplifier 768:and modulation formats like 627:electro-absorption modulator 356:dispersion, and in 1981 the 165:receiving the optical signal 100:electromagnetic interference 5898:Alexander Stepanovich Popov 5028:Agrawal, Govind P. (2002). 4572:. Fibre Systems. 2018-04-16 4406:. New Scientist. 2013-03-30 3906:Infinera Corp press release 3221:American Journal of Science 2585:Full Service Access Network 2331:and can be counteracted by 2078:3001 km (69.8 km) 907:Comparison of fiber grades 737:. The deployment of higher 727:digital-to-analog converter 631:Mach–Zehnder interferometer 274:static induction transistor 6453: 6432:Fiber-optic communications 5602:Telecommunications history 5291:Modulating retro-reflector 4961:Optical Society of America 4883:10.1038/s41467-018-06952-1 4723:10.1038/s41566-022-01082-z 4223:10.1038/s41467-020-16265-x 4119:. ARS Technica. 2016-12-10 3972:Hecht, Jeff (2011-04-29). 2380: 1662:55 (110-MIMO multiplexer) 1180:bandwidth–distance product 1174:Bandwidth–distance product 1155:Arrayed waveguide gratings 1141: 1110:(EDFA). These are made by 1087: 880:single-mode optical fibers 592:distributed-feedback laser 510:generated by computers or 264:, a Japanese scientist at 111:bandwidth–distance product 6369: 6210:Public Switched Telephone 6022:telecommunication circuit 5983:Fiber-optic communication 5728:Francis Blake (telephone) 5523:Optical telecommunication 5299: 5265:Optical Transport Network 5144:Optical telecommunication 5076:, 3rd ed. Prentice Hall. 4993:. John Wiley & Sons. 4815:10.1038/s41566-018-0205-5 3558:. NTT. September 29, 2006 3241:10.2475/ajs.s3-20.118.305 2778:Optical transport network 2643:(EMI), such as alongside 2246:No. of Propagation Modes 2071:552 (S, C & L bands) 1785:University of Southampton 1703:No. of propagation modes 1598:Shannon theoretical limit 1378:about 140 km ? 876:multi-mode optical fibers 853:total internal reflection 705:from data performed by a 680:Metal-semiconductor-metal 393:dispersion-shifted fibers 372:to use optical fiber was 82:. The light is a form of 64:Fiber-optic communication 6121:Orbital angular-momentum 5558:Satellite communications 5397:Communications satellite 5022:Fiber-Optic Technologies 4551:. Global Sei. 2017-10-13 4385:. Optics.org. 2013-01-22 3872:. Boston: Artech House. 3855:Halifax Chronicle Herald 3785:Fiber-Optic Technologies 3749:– via IEEE Xplore. 3739:10.1109/LPT.2015.2509158 3706:– via IEEE Xplore. 3696:10.1109/JLT.2015.2510962 3179:Mary Kay Carson (2007). 2583:(GPON) had roots in the 2252:WDM channels (per core) 1709:WDM channels (per core) 1538:1097 (E, S, C, L bands) 1200:forward error correction 778:digital signal processor 695:transimpedance amplifier 208:with a capacity of 2.56 68:transmitting information 6000:Molecular communication 5823:Gardiner Greene Hubbard 5652:Undersea telegraph line 5387:Cable protection system 4929:Paschotta, Dr RĂĽdiger. 4709:(11). Nature: 798–802. 4339:. New Atlas. 2022-11-10 4053:10.1038/NPHOTON.2011.74 3652:10.1038/nphoton.2010.23 2950:"How Fiber Optics Work" 672:Indium gallium arsenide 474:. From the bust of the 385:indium gallium arsenide 6142:Communication protocol 5928:Charles Sumner Tainter 5743:Walter Houser Brattain 5688:Edwin Howard Armstrong 5496:Information revolution 5072:Senior, John. (2008). 5058:Keiser, Gerd. (2011). 4914:Christopher C. Davis. 4839:. Phys.org. 2018-10-24 4678:. newatlas. 2022-06-01 3637:(3): 144. March 2010. 2674:electromagnetic pulses 2612: 2604: 2560:(FTTN) service called 2542:Verizon Communications 2471:Ultralong wavelengths 2340:dispersion compensator 840: 832: 735:Mach–Zehnder modulator 535: 226:Charles Sumner Tainter 109:have reached a record 60: 53:Stealth Communications 45: 6116:Polarization-division 5848:Narinder Singh Kapany 5813:Erna Schneider Hoover 5733:Jagadish Chandra Bose 5713:Alexander Graham Bell 5444:online video platform 5034:John Wiley & Sons 4863:Nature Communications 4193:Nature Communications 3449:Taylor, Nick (2000). 3424:Taylor, Nick (2007). 3383:on September 29, 2009 3213:Alexander Graham Bell 3161:. Corning. 2017-09-28 2793:plastic optical fiber 2681:electrical resistance 2610: 2598: 2526:fiber to the premises 2377:Transmission windows 2306:Intermodal dispersion 1210:Standard fiber cables 1206:systems as of 2008). 926:FDDI 62.5/125 Âµm 838: 830: 717:Digital predistortion 637:, which broadens the 540:light-emitting diodes 525: 408:optical amplification 258:Narinder Singh Kapany 222:Alexander Graham Bell 51: 35: 5958:Vladimir K. Zworykin 5918:Almon Brown Strowger 5888:Charles Grafton Page 5543:Prepaid mobile phone 5471:Electrical telegraph 5286:Intensity modulation 3012:on October 18, 2009. 2743:100 Gigabit Ethernet 2566:hybrid fiber-coaxial 2321:chromatic dispersion 2195:spatial multiplexing 2171:750 (S, C, L bands) 1512:660 (S, C, L bands) 1420:Nokia-Alcatel-Lucent 943:OM1 62.5/125 Âµm 892:multimode distortion 847:consists of a core, 668:photoelectric effect 604:chromatic dispersion 579:(WDM) applications. 555:spontaneous emission 504:optical fiber cables 322:Army Missile Command 307:semiconductor lasers 302:. At the same time, 5908:Johann Philipp Reis 5667:Wireless revolution 5629:The Telephone Cases 5486:Hydraulic telegraph 5168:Hydraulic telegraph 4875:2018NatCo...9.4413Y 4807:2018NaPho..12..469H 4715:2022NaPho..16..798J 4215:2020NatCo..11.2568C 4199:(1). Nature: 2568. 4045:2011NaPho...5..364H 3990:2011NewSc.210R..24H 3731:2016IPTL...28..752K 3688:2016JLwT...34.1739B 3643:2010NaPho...4..144. 3507:. Wiley. p. 2. 3233:1880AmJS...20..305B 2748:10 Gigabit Ethernet 2715:Governing standards 2394: 2359:Rayleigh scattering 2355:material absorption 1626:Spectral efficiency 1233:Spectral efficiency 1074:optical ground wire 908: 869:mechanical splicing 845:optical fiber cable 684:circuit integration 599:stimulated emission 559:electroluminescence 508:digital information 325:system to Chevron. 300:Corning Glass Works 18:Fiber-optic network 6106:Frequency-division 6083:Telephone exchange 5953:Charles Wheatstone 5883:Jun-ichi Nishizawa 5858:Innocenzo Manzetti 5793:Reginald Fessenden 5528:Optical telegraphy 5361:Telecommunications 4632:. NICT. 2022-05-30 4496:. NICT. 2015-10-13 4318:. NICT. 2022-11-10 4020:. BBC. 2011-05-22. 3524:The New York Times 2637:transmission lines 2613: 2605: 2474:1625–1675 nm 2463:1565–1625 nm 2452:1530–1565 nm 2437:1460–1530 nm 2434:Short wavelengths 2426:1360–1460 nm 2415:1260–1360 nm 2392: 2255:Per channel speed 1960:10.16 Pbit/s 1712:Per channel speed 1678:Specialized cables 1637:Per-channel speed 1241:Per-channel speed 1104:optical amplifiers 1070:power transmission 1033:OS2 9/125 Âµm 1019:OS1 9/125 Âµm 1005:OM5 50/125 Âµm 991:OM4 50/125 Âµm 977:OM3 50/125 Âµm 960:OM2 50/125 Âµm 906: 841: 833: 817:frequency response 739:modulation formats 608:recombination time 563:local-area-network 536: 420:optical networking 414:(WDM) to increase 262:Jun-ichi Nishizawa 224:and his assistant 131:telecommunications 61: 46: 38:single mode fibers 6419: 6418: 6157:Store and forward 6152:Data transmission 6066:Network switching 6017:Transmission line 5863:Guglielmo Marconi 5828:Internet pioneers 5693:Mohamed M. Atalla 5662:Whistled language 5327: 5326: 5178:Optical telegraph 5043:978-0-471-21571-4 3879:978-1-60807-556-0 3819:978-1-4493-6184-6 3413:on June 29, 2011. 3358:978-81-7319-567-9 3306:(10): 1425–1428. 3300:BJU International 3269:By (2021-02-18). 3259:, September 1880. 3198:978-1-4027-3230-0 3139:finance.yahoo.com 3040:978-1-58705-105-0 2986:on 15 August 2020 2935:978-988-19252-7-5 2906:978-1-4654-2289-7 2693:No potential for 2558:fiber to the node 2530:fiber to the home 2478: 2477: 2460:Long wavelengths 2404:Wavelength range 2351:Fiber attenuation 2287: 2286: 2183: 2182: 2041:368 (C, L bands) 1956:Sumitomo Electric 1893:2.15 Pbit/s 1885:Sumitomo Electric 1869:~728 Gbit/s 1675: 1674: 1574: 1573: 1483:10.4 (10.1–10.4) 1477:39.0–40.1 Tbit/s 1452:11.2 Tbit/s 1090:Optical amplifier 1063:Hibernia Atlantic 1047:acrylate polymers 1043: 1042: 823:Fiber cable types 809:Cross-correlating 707:phase-locked loop 623:optical modulator 512:telephone systems 468:Internet Protocol 453:nonlinear effects 397:longitudinal mode 358:single-mode fiber 266:Tohoku University 199:Since 1990, when 158:electrical signal 143:backbone networks 137:. Because of its 42:multi-mode fibers 16:(Redirected from 6444: 6409: 6408: 6399: 6398: 6389: 6388: 6379: 6378: 6377: 6250:Notable networks 6240:Wireless network 6180:Cellular network 6172:Types of network 6147:Computer network 6034:Network topology 5948:Thomas A. Watson 5803:Oliver Heaviside 5788:Philo Farnsworth 5763:Daniel Davis Jr. 5738:Charles Bourseul 5698:John Logie Baird 5407:Data compression 5402:Computer network 5354: 5347: 5340: 5331: 5317: 5307: 5306: 5233:Optical wireless 5137: 5130: 5123: 5114: 5109: 5104:. Archived from 5047: 5008: 5007: 4986: 4980: 4979: 4977: 4975: 4970:on July 17, 2011 4969: 4963:. Archived from 4954: 4945: 4939: 4938: 4935:rp-photonics.com 4926: 4920: 4919: 4911: 4905: 4904: 4894: 4854: 4848: 4847: 4845: 4844: 4833: 4827: 4826: 4795:Nature Photonics 4792: 4782: 4776: 4775: 4768: 4762: 4761: 4759: 4758: 4747: 4741: 4740: 4738: 4737: 4703:Nature Photonics 4693: 4687: 4686: 4684: 4683: 4672: 4666: 4665: 4663: 4662: 4647: 4641: 4640: 4638: 4637: 4626: 4620: 4619: 4617: 4616: 4601: 4595: 4594: 4587: 4581: 4580: 4578: 4577: 4566: 4560: 4559: 4557: 4556: 4550: 4542: 4536: 4535: 4533: 4532: 4526: 4519: 4511: 4505: 4504: 4502: 4501: 4490: 4484: 4483: 4481: 4480: 4465: 4459: 4458: 4456: 4455: 4440: 4434: 4433: 4421: 4415: 4414: 4412: 4411: 4400: 4394: 4393: 4391: 4390: 4379: 4373: 4372: 4370: 4369: 4354: 4348: 4347: 4345: 4344: 4333: 4327: 4326: 4324: 4323: 4312: 4306: 4305: 4298: 4292: 4291: 4284: 4278: 4277: 4275: 4274: 4259: 4253: 4252: 4234: 4208: 4184: 4178: 4177: 4175: 4174: 4159: 4153: 4152: 4150: 4149: 4134: 4128: 4127: 4125: 4124: 4113: 4107: 4106: 4104: 4103: 4088: 4082: 4081: 4079: 4078: 4063: 4057: 4056: 4033:Nature Photonics 4028: 4022: 4021: 4014: 4008: 4007: 4005: 4004: 3969: 3960: 3959: 3957: 3956: 3945: 3939: 3938: 3927: 3921: 3920: 3918: 3917: 3908:. Archived from 3898: 3892: 3891: 3863: 3857: 3852: 3846: 3845: 3840:. Archived from 3830: 3824: 3823: 3805: 3799: 3798: 3793: 3792: 3776: 3770: 3769: 3757: 3751: 3750: 3714: 3708: 3707: 3682:(8): 1739–1745. 3671: 3665: 3664: 3654: 3631:Nature Photonics 3623: 3617: 3616: 3614: 3613: 3599: 3593: 3592: 3590: 3589: 3574: 3568: 3567: 3565: 3563: 3548: 3542: 3541: 3539: 3538: 3515: 3509: 3508: 3500: 3494: 3493: 3481: 3475: 3474: 3472: 3461: 3455: 3454: 3446: 3440: 3439: 3421: 3415: 3414: 3409:. Archived from 3399: 3393: 3392: 3390: 3388: 3379:. Archived from 3369: 3363: 3362: 3340: 3334: 3333: 3315: 3291: 3285: 3284: 3282: 3281: 3266: 3260: 3252: 3227:(118): 305–324. 3223:. Third Series. 3215:(October 1880). 3209: 3203: 3202: 3186: 3176: 3170: 3169: 3167: 3166: 3155: 3149: 3148: 3146: 3145: 3130: 3124: 3123: 3121: 3120: 3105: 3099: 3098: 3096: 3094: 3083: 3077: 3076: 3074: 3072: 3057: 3051: 3050: 3048: 3047: 3020: 3014: 3013: 3002: 2996: 2995: 2993: 2991: 2982:. Archived from 2972: 2966: 2965: 2963: 2961: 2946: 2940: 2939: 2927: 2917: 2911: 2910: 2877: 2871: 2870: 2868: 2867: 2853: 2836: 2833:gallium arsenide 2825: 2758:Gigabit Ethernet 2685:earth potentials 2395: 2383:Optical spectrum 2365:, and losses in 2314:multi-mode fiber 2310:transverse modes 2281:320 Gbit/s 2243:Effective speed 2234: 2207: 2204: 2198: 2191: 2010:414 Gbit/s 1978:120 Gbit/s 1975:739 (C+L bands) 1940:680 Gbit/s 1908:243 Gbit/s 1905:402 (C+L bands) 1804:256 Gbit/s 1694:Aggregate speed 1685: 1631:Number of modes 1619:Aggregate speed 1610: 1601: 1594: 1588: 1585: 1463:400 Gbit/s 1391:Deutsche Telekom 1226:Aggregate speed 1217: 1164: 1059:Emerald Atlantis 968: 951: 934: 909: 901: 885: 857:refractive-index 767: 755: 731:driver amplifier 548:incoherent light 448:optical solitons 432: 428: 402: 364: 354:multi-mode fiber 238:Washington, D.C. 234:Volta Laboratory 120: 21: 6452: 6451: 6447: 6446: 6445: 6443: 6442: 6441: 6422: 6421: 6420: 6415: 6375: 6373: 6365: 6307: 6244: 6166: 6130: 6087: 6036: 6028: 5969: 5962: 5868:Robert Metcalfe 5723:Tim Berners-Lee 5671: 5491:Information Age 5363: 5358: 5328: 5323: 5295: 5269: 5197: 5146: 5141: 5099: 5090: 5055: 5053:Further reading 5050: 5044: 5027: 5024:by Vivek Alwayn 5012: 5011: 5001: 4988: 4987: 4983: 4973: 4971: 4967: 4959:. paper JWB66. 4952: 4947: 4946: 4942: 4928: 4927: 4923: 4913: 4912: 4908: 4856: 4855: 4851: 4842: 4840: 4835: 4834: 4830: 4790: 4784: 4783: 4779: 4770: 4769: 4765: 4756: 4754: 4749: 4748: 4744: 4735: 4733: 4695: 4694: 4690: 4681: 4679: 4674: 4673: 4669: 4660: 4658: 4649: 4648: 4644: 4635: 4633: 4628: 4627: 4623: 4614: 4612: 4603: 4602: 4598: 4589: 4588: 4584: 4575: 4573: 4568: 4567: 4563: 4554: 4552: 4548: 4544: 4543: 4539: 4530: 4528: 4524: 4517: 4513: 4512: 4508: 4499: 4497: 4492: 4491: 4487: 4478: 4476: 4467: 4466: 4462: 4453: 4451: 4442: 4441: 4437: 4423: 4422: 4418: 4409: 4407: 4402: 4401: 4397: 4388: 4386: 4381: 4380: 4376: 4367: 4365: 4356: 4355: 4351: 4342: 4340: 4335: 4334: 4330: 4321: 4319: 4314: 4313: 4309: 4300: 4299: 4295: 4286: 4285: 4281: 4272: 4270: 4261: 4260: 4256: 4186: 4185: 4181: 4172: 4170: 4161: 4160: 4156: 4147: 4145: 4136: 4135: 4131: 4122: 4120: 4115: 4114: 4110: 4101: 4099: 4090: 4089: 4085: 4076: 4074: 4065: 4064: 4060: 4030: 4029: 4025: 4016: 4015: 4011: 4002: 4000: 3971: 3970: 3963: 3954: 3952: 3947: 3946: 3942: 3929: 3928: 3924: 3915: 3913: 3900: 3899: 3895: 3880: 3865: 3864: 3860: 3853: 3849: 3838:Observer Online 3832: 3831: 3827: 3820: 3807: 3806: 3802: 3790: 3788: 3787:. Cisco Systems 3778: 3777: 3773: 3759: 3758: 3754: 3716: 3715: 3711: 3673: 3672: 3668: 3625: 3624: 3620: 3611: 3609: 3601: 3600: 3596: 3587: 3585: 3576: 3575: 3571: 3561: 3559: 3550: 3549: 3545: 3536: 3534: 3517: 3516: 3512: 3502: 3501: 3497: 3483: 3482: 3478: 3470: 3463: 3462: 3458: 3448: 3447: 3443: 3436: 3423: 3422: 3418: 3401: 3400: 3396: 3386: 3384: 3373:"Optical Fiber" 3371: 3370: 3366: 3359: 3342: 3341: 3337: 3293: 3292: 3288: 3279: 3277: 3268: 3267: 3263: 3211: 3210: 3206: 3199: 3178: 3177: 3173: 3164: 3162: 3157: 3156: 3152: 3143: 3141: 3132: 3131: 3127: 3118: 3116: 3107: 3106: 3102: 3092: 3090: 3085: 3084: 3080: 3070: 3068: 3059: 3058: 3054: 3045: 3043: 3041: 3022: 3021: 3017: 3004: 3003: 2999: 2989: 2987: 2974: 2973: 2969: 2959: 2957: 2954:How Stuff Works 2948: 2947: 2943: 2936: 2925: 2919: 2918: 2914: 2907: 2899:. p. 382. 2879: 2878: 2874: 2865: 2863: 2855: 2854: 2850: 2845: 2840: 2839: 2826: 2822: 2817: 2805: 2717: 2628:parasite signal 2599:A mobile fiber 2593: 2518: 2490: 2386: 2379: 2348: 2296: 2216: 2211: 2210: 2205: 2201: 2192: 2188: 1801:3x96 (mode DM) 1680: 1605: 1604: 1595: 1591: 1586: 1579: 1567:170–320 Gbit/s 1544:50–150 km 1541:250–300 Gbit/s 1424:65 Tbit/s 1387:Nokia Bell Labs 1212: 1192: 1176: 1171: 1159: 1146: 1140: 1092: 1086: 966: 949: 932: 899: 883: 865:fusion splicing 825: 793:Volterra series 785:Berenguer et al 765: 750: 719: 697:and a limiting 660: 619:continuous wave 520: 500: 464:video on demand 430: 423: 401:2.5 Gbit/s 400: 389:pulse-spreading 363:1.7 Gbit/s 362: 218: 175: 147:developed world 135:Information Age 127: 114: 66:is a method of 28: 23: 22: 15: 12: 11: 5: 6450: 6448: 6440: 6439: 6434: 6424: 6423: 6417: 6416: 6414: 6413: 6403: 6393: 6383: 6370: 6367: 6366: 6364: 6363: 6356: 6351: 6346: 6341: 6336: 6335: 6334: 6329: 6321: 6315: 6313: 6309: 6308: 6306: 6305: 6300: 6295: 6290: 6285: 6280: 6275: 6270: 6265: 6260: 6254: 6252: 6246: 6245: 6243: 6242: 6237: 6232: 6227: 6222: 6217: 6212: 6207: 6202: 6197: 6192: 6187: 6182: 6176: 6174: 6168: 6167: 6165: 6164: 6159: 6154: 6149: 6144: 6138: 6136: 6132: 6131: 6129: 6128: 6123: 6118: 6113: 6108: 6103: 6101:Space-division 6097: 6095: 6089: 6088: 6086: 6085: 6080: 6079: 6078: 6073: 6063: 6062: 6061: 6051: 6046: 6040: 6038: 6030: 6029: 6027: 6026: 6025: 6024: 6014: 6013: 6012: 6002: 5997: 5992: 5991: 5990: 5980: 5974: 5972: 5964: 5963: 5961: 5960: 5955: 5950: 5945: 5940: 5938:Camille Tissot 5935: 5930: 5925: 5920: 5915: 5913:Claude Shannon 5910: 5905: 5903:Tivadar Puskás 5900: 5895: 5890: 5885: 5880: 5875: 5873:Antonio Meucci 5870: 5865: 5860: 5855: 5850: 5845: 5843:Charles K. Kao 5840: 5835: 5830: 5825: 5820: 5818:Harold Hopkins 5815: 5810: 5805: 5800: 5795: 5790: 5785: 5780: 5775: 5770: 5765: 5760: 5755: 5750: 5745: 5740: 5735: 5730: 5725: 5720: 5718:Emile Berliner 5715: 5710: 5705: 5700: 5695: 5690: 5685: 5679: 5677: 5673: 5672: 5670: 5669: 5664: 5659: 5657:Videotelephony 5654: 5649: 5648: 5647: 5642: 5632: 5625: 5620: 5614: 5609: 5604: 5599: 5594: 5593: 5592: 5587: 5582: 5572: 5571: 5570: 5560: 5555: 5553:Radiotelephone 5550: 5545: 5540: 5535: 5530: 5525: 5520: 5519: 5518: 5508: 5503: 5498: 5493: 5488: 5483: 5478: 5473: 5468: 5463: 5458: 5457: 5456: 5451: 5446: 5441: 5439:Internet video 5431: 5430: 5429: 5424: 5419: 5414: 5404: 5399: 5394: 5389: 5384: 5379: 5373: 5371: 5365: 5364: 5359: 5357: 5356: 5349: 5342: 5334: 5325: 5324: 5322: 5321: 5311: 5300: 5297: 5296: 5294: 5293: 5288: 5283: 5277: 5275: 5271: 5270: 5268: 5267: 5262: 5261: 5260: 5255: 5250: 5245: 5240: 5230: 5229: 5228: 5227: 5226: 5221: 5205: 5203: 5199: 5198: 5196: 5195: 5190: 5185: 5180: 5175: 5170: 5165: 5160: 5154: 5152: 5148: 5147: 5142: 5140: 5139: 5132: 5125: 5117: 5111: 5110: 5108:on 2016-10-22. 5097: 5096:An IBM redbook 5089: 5088:External links 5086: 5085: 5084: 5082:978-0130326812 5070: 5054: 5051: 5049: 5048: 5042: 5025: 5019: 5013: 5010: 5009: 4999: 4981: 4940: 4921: 4906: 4849: 4828: 4777: 4763: 4742: 4697:(2022-10-20). 4688: 4667: 4642: 4621: 4596: 4582: 4561: 4537: 4506: 4485: 4460: 4435: 4416: 4395: 4374: 4349: 4328: 4307: 4293: 4279: 4254: 4179: 4154: 4129: 4108: 4083: 4058: 4023: 4009: 3961: 3940: 3937:on 2013-07-18. 3922: 3893: 3878: 3858: 3847: 3844:on 2007-09-27. 3825: 3818: 3800: 3771: 3752: 3725:(7): 752–755. 3709: 3666: 3618: 3594: 3569: 3543: 3510: 3495: 3476: 3456: 3441: 3434: 3416: 3394: 3364: 3357: 3335: 3286: 3261: 3204: 3197: 3171: 3150: 3125: 3100: 3078: 3052: 3039: 3015: 2997: 2967: 2956:. 6 March 2001 2941: 2934: 2912: 2905: 2881:McIntosh, Jane 2872: 2847: 2846: 2844: 2841: 2838: 2837: 2819: 2818: 2816: 2813: 2812: 2811: 2804: 2801: 2782: 2781: 2775: 2770: 2765: 2760: 2755: 2750: 2745: 2736: 2735: 2728: 2716: 2713: 2708: 2707: 2704: 2701: 2698: 2691: 2688: 2677: 2592: 2589: 2517: 2514: 2489: 2486: 2476: 2475: 2472: 2469: 2465: 2464: 2461: 2458: 2454: 2453: 2450: 2445:Conventional ( 2443: 2439: 2438: 2435: 2432: 2428: 2427: 2424: 2421: 2417: 2416: 2413: 2410: 2406: 2405: 2402: 2399: 2378: 2375: 2363:Mie scattering 2347: 2344: 2295: 2292: 2285: 2284: 2282: 2279: 2276: 2273: 2270: 2267: 2264: 2260: 2259: 2256: 2253: 2250: 2247: 2244: 2241: 2238: 2218:Research from 2215: 2214:New techniques 2212: 2209: 2208: 2199: 2185: 2184: 2181: 2180: 2177: 2172: 2169: 2164: 2161: 2158: 2155: 2150: 2147: 2143: 2142: 2139: 2136: 2133: 2130: 2128: 2126: 2124: 2121: 2116: 2112: 2111: 2108: 2106: 2105:(S+C+L bands) 2100: 2097: 2095: 2093: 2091: 2088: 2085: 2081: 2080: 2075: 2072: 2069: 2066: 2063: 2061: 2059: 2056: 2053: 2049: 2048: 2045: 2042: 2039: 2034: 2031: 2028: 2025: 2022: 2019: 2015: 2014: 2011: 2008: 2005: 2002: 1999: 1997: 1995: 1992: 1987: 1983: 1982: 1979: 1976: 1973: 1970: 1965: 1963: 1961: 1958: 1949: 1945: 1944: 1943:205.6 km 1941: 1938: 1935: 1932: 1929: 1927: 1925: 1924:1 Pbit/s 1922: 1917: 1913: 1912: 1909: 1906: 1903: 1900: 1898: 1896: 1894: 1891: 1878: 1874: 1873: 1870: 1867: 1864: 1861: 1859: 1857: 1855: 1852: 1842: 1838: 1837: 1834: 1832: 1830: 1827: 1825: 1823: 1821: 1818: 1813: 1809: 1808: 1805: 1802: 1799: 1796: 1794: 1792: 1790: 1787: 1782: 1778: 1777: 1774: 1772: 1770: 1767: 1765: 1763: 1761: 1758: 1749: 1745: 1744: 1742: 1740: 1738: 1735: 1733: 1731: 1729: 1726: 1721: 1717: 1716: 1713: 1710: 1707: 1704: 1701: 1698: 1695: 1692: 1689: 1679: 1676: 1673: 1672: 1669: 1666: 1663: 1660: 1657: 1654: 1651: 1646: 1642: 1641: 1638: 1635: 1632: 1629: 1623: 1620: 1617: 1614: 1603: 1602: 1589: 1576: 1575: 1572: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1546: 1545: 1542: 1539: 1536: 1533: 1530: 1527: 1524: 1520: 1519: 1516: 1513: 1510: 1507: 1504: 1503:178.08 Tbit/s 1501: 1498: 1494: 1493: 1490: 1487: 1484: 1481: 1478: 1475: 1472: 1468: 1467: 1464: 1461: 1458: 1455: 1453: 1450: 1441: 1437: 1436: 1433: 1431: 1429: 1427: 1425: 1422: 1417: 1413: 1412: 1410: 1407: 1404: 1402: 1400: 1397: 1384: 1380: 1379: 1376: 1373: 1370: 1368: 1366: 1363: 1354: 1350: 1349: 1346: 1343: 1340: 1338: 1336: 1333: 1328: 1324: 1323: 1320: 1317: 1314: 1312: 1310: 1307: 1302: 1298: 1297: 1294: 1291: 1288: 1286: 1284: 1281: 1276: 1272: 1271: 1268: 1265: 1262: 1260: 1258: 1255: 1253:Alcatel-Lucent 1250: 1246: 1245: 1242: 1239: 1236: 1230: 1227: 1224: 1221: 1211: 1208: 1191: 1188: 1175: 1172: 1170: 1167: 1142:Main article: 1139: 1136: 1096:optoelectronic 1088:Main article: 1085: 1082: 1041: 1040: 1037: 1034: 1027: 1026: 1023: 1020: 1013: 1012: 1009: 1006: 999: 998: 995: 992: 985: 984: 981: 978: 971: 970: 964: 961: 954: 953: 947: 944: 937: 936: 930: 927: 920: 919: 916: 913: 824: 821: 725:consists of a 718: 715: 703:clock recovery 659: 656: 519: 516: 499: 496: 476:dot-com bubble 285:George Hockham 281:Charles K. Kao 254:Harold Hopkins 217: 214: 174: 171: 170: 169: 166: 163: 160: 126: 123: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6449: 6438: 6435: 6433: 6430: 6429: 6427: 6412: 6404: 6402: 6394: 6392: 6384: 6382: 6372: 6371: 6368: 6361: 6357: 6355: 6352: 6350: 6347: 6345: 6342: 6340: 6337: 6333: 6330: 6328: 6325: 6324: 6322: 6320: 6317: 6316: 6314: 6310: 6304: 6301: 6299: 6296: 6294: 6291: 6289: 6286: 6284: 6281: 6279: 6276: 6274: 6271: 6269: 6266: 6264: 6261: 6259: 6256: 6255: 6253: 6251: 6247: 6241: 6238: 6236: 6233: 6231: 6228: 6226: 6223: 6221: 6218: 6216: 6213: 6211: 6208: 6206: 6203: 6201: 6198: 6196: 6193: 6191: 6188: 6186: 6183: 6181: 6178: 6177: 6175: 6173: 6169: 6163: 6160: 6158: 6155: 6153: 6150: 6148: 6145: 6143: 6140: 6139: 6137: 6133: 6127: 6126:Code-division 6124: 6122: 6119: 6117: 6114: 6112: 6111:Time-division 6109: 6107: 6104: 6102: 6099: 6098: 6096: 6094: 6090: 6084: 6081: 6077: 6074: 6072: 6069: 6068: 6067: 6064: 6060: 6057: 6056: 6055: 6052: 6050: 6047: 6045: 6042: 6041: 6039: 6037:and switching 6035: 6031: 6023: 6020: 6019: 6018: 6015: 6011: 6008: 6007: 6006: 6003: 6001: 5998: 5996: 5993: 5989: 5988:optical fiber 5986: 5985: 5984: 5981: 5979: 5978:Coaxial cable 5976: 5975: 5973: 5971: 5965: 5959: 5956: 5954: 5951: 5949: 5946: 5944: 5941: 5939: 5936: 5934: 5931: 5929: 5926: 5924: 5921: 5919: 5916: 5914: 5911: 5909: 5906: 5904: 5901: 5899: 5896: 5894: 5893:Radia Perlman 5891: 5889: 5886: 5884: 5881: 5879: 5876: 5874: 5871: 5869: 5866: 5864: 5861: 5859: 5856: 5854: 5851: 5849: 5846: 5844: 5841: 5839: 5836: 5834: 5831: 5829: 5826: 5824: 5821: 5819: 5816: 5814: 5811: 5809: 5806: 5804: 5801: 5799: 5796: 5794: 5791: 5789: 5786: 5784: 5783:Lee de Forest 5781: 5779: 5778:Thomas Edison 5776: 5774: 5771: 5769: 5768:Donald Davies 5766: 5764: 5761: 5759: 5756: 5754: 5753:Claude Chappe 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5721: 5719: 5716: 5714: 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5691: 5689: 5686: 5684: 5681: 5680: 5678: 5674: 5668: 5665: 5663: 5660: 5658: 5655: 5653: 5650: 5646: 5643: 5641: 5638: 5637: 5636: 5633: 5631: 5630: 5626: 5624: 5621: 5618: 5615: 5613: 5610: 5608: 5605: 5603: 5600: 5598: 5597:Smoke signals 5595: 5591: 5588: 5586: 5583: 5581: 5578: 5577: 5576: 5575:Semiconductor 5573: 5569: 5566: 5565: 5564: 5561: 5559: 5556: 5554: 5551: 5549: 5546: 5544: 5541: 5539: 5536: 5534: 5531: 5529: 5526: 5524: 5521: 5517: 5514: 5513: 5512: 5509: 5507: 5504: 5502: 5499: 5497: 5494: 5492: 5489: 5487: 5484: 5482: 5479: 5477: 5474: 5472: 5469: 5467: 5464: 5462: 5459: 5455: 5452: 5450: 5447: 5445: 5442: 5440: 5437: 5436: 5435: 5434:Digital media 5432: 5428: 5425: 5423: 5420: 5418: 5415: 5413: 5410: 5409: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5388: 5385: 5383: 5380: 5378: 5375: 5374: 5372: 5370: 5366: 5362: 5355: 5350: 5348: 5343: 5341: 5336: 5335: 5332: 5320: 5316: 5312: 5310: 5302: 5301: 5298: 5292: 5289: 5287: 5284: 5282: 5279: 5278: 5276: 5272: 5266: 5263: 5259: 5256: 5254: 5251: 5249: 5246: 5244: 5243:Visible light 5241: 5239: 5236: 5235: 5234: 5231: 5225: 5222: 5220: 5217: 5216: 5215: 5214:Optical fiber 5212: 5211: 5210: 5207: 5206: 5204: 5200: 5194: 5191: 5189: 5186: 5184: 5181: 5179: 5176: 5174: 5171: 5169: 5166: 5164: 5161: 5159: 5156: 5155: 5153: 5149: 5145: 5138: 5133: 5131: 5126: 5124: 5119: 5118: 5115: 5107: 5103: 5098: 5095: 5092: 5091: 5087: 5083: 5079: 5075: 5071: 5069: 5068:9780073380711 5065: 5061: 5057: 5056: 5052: 5045: 5039: 5035: 5031: 5026: 5023: 5020: 5018: 5015: 5014: 5006: 5002: 5000:9781118019542 4996: 4992: 4985: 4982: 4966: 4962: 4958: 4951: 4944: 4941: 4936: 4932: 4925: 4922: 4917: 4910: 4907: 4902: 4898: 4893: 4888: 4884: 4880: 4876: 4872: 4868: 4864: 4860: 4853: 4850: 4838: 4832: 4829: 4824: 4820: 4816: 4812: 4808: 4804: 4800: 4796: 4789: 4781: 4778: 4773: 4767: 4764: 4752: 4746: 4743: 4732: 4728: 4724: 4720: 4716: 4712: 4708: 4704: 4700: 4692: 4689: 4677: 4671: 4668: 4657:on 2022-11-11 4656: 4652: 4646: 4643: 4631: 4625: 4622: 4611:on 2023-04-04 4610: 4606: 4600: 4597: 4592: 4586: 4583: 4571: 4565: 4562: 4547: 4541: 4538: 4527:on 2018-06-30 4523: 4516: 4510: 4507: 4495: 4489: 4486: 4474: 4470: 4464: 4461: 4450:on 2023-04-04 4449: 4445: 4439: 4436: 4431: 4427: 4420: 4417: 4405: 4399: 4396: 4384: 4378: 4375: 4364:on 2022-11-11 4363: 4359: 4353: 4350: 4338: 4332: 4329: 4317: 4311: 4308: 4303: 4297: 4294: 4289: 4283: 4280: 4269:on 2022-09-28 4268: 4264: 4258: 4255: 4250: 4246: 4242: 4238: 4233: 4228: 4224: 4220: 4216: 4212: 4207: 4202: 4198: 4194: 4190: 4183: 4180: 4169:on 2020-05-22 4168: 4164: 4158: 4155: 4144:on 2018-08-04 4143: 4139: 4133: 4130: 4118: 4112: 4109: 4098:on 2023-03-29 4097: 4093: 4087: 4084: 4073:on 2023-04-08 4072: 4068: 4062: 4059: 4054: 4050: 4046: 4042: 4038: 4034: 4027: 4024: 4019: 4013: 4010: 3999: 3995: 3991: 3987: 3983: 3979: 3978:New Scientist 3975: 3968: 3966: 3962: 3950: 3944: 3941: 3936: 3932: 3926: 3923: 3912:on 2010-01-15 3911: 3907: 3903: 3897: 3894: 3889: 3885: 3881: 3875: 3871: 3870: 3862: 3859: 3856: 3851: 3848: 3843: 3839: 3835: 3829: 3826: 3821: 3815: 3811: 3804: 3801: 3797: 3786: 3782: 3775: 3772: 3767: 3763: 3756: 3753: 3748: 3744: 3740: 3736: 3732: 3728: 3724: 3720: 3713: 3710: 3705: 3701: 3697: 3693: 3689: 3685: 3681: 3677: 3670: 3667: 3662: 3658: 3653: 3648: 3644: 3640: 3636: 3632: 3628: 3622: 3619: 3608: 3604: 3598: 3595: 3584: 3580: 3573: 3570: 3557: 3553: 3547: 3544: 3533: 3529: 3525: 3521: 3514: 3511: 3506: 3499: 3496: 3491: 3487: 3480: 3477: 3469: 3468: 3460: 3457: 3452: 3445: 3442: 3437: 3435:9780595465286 3431: 3427: 3420: 3417: 3412: 3408: 3404: 3398: 3395: 3382: 3378: 3374: 3368: 3365: 3360: 3354: 3350: 3346: 3339: 3336: 3331: 3327: 3323: 3319: 3314: 3309: 3305: 3301: 3297: 3290: 3287: 3276: 3272: 3265: 3262: 3258: 3257: 3250: 3246: 3242: 3238: 3234: 3230: 3226: 3222: 3218: 3214: 3208: 3205: 3200: 3194: 3190: 3185: 3184: 3175: 3172: 3160: 3154: 3151: 3140: 3136: 3129: 3126: 3114: 3110: 3104: 3101: 3088: 3082: 3079: 3067: 3063: 3056: 3053: 3042: 3036: 3032: 3028: 3027: 3019: 3016: 3011: 3007: 3001: 2998: 2985: 2981: 2977: 2971: 2968: 2955: 2951: 2945: 2942: 2937: 2931: 2924: 2923: 2916: 2913: 2908: 2902: 2898: 2894: 2890: 2886: 2885:Chrisp, Peter 2882: 2876: 2873: 2862: 2858: 2852: 2849: 2842: 2834: 2831:(InGaAsP) or 2830: 2824: 2821: 2814: 2810: 2807: 2806: 2802: 2800: 2798: 2794: 2790: 2789:digital audio 2786: 2779: 2776: 2774: 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2754: 2753:Fibre Channel 2751: 2749: 2746: 2744: 2741: 2740: 2739: 2733: 2729: 2726: 2725: 2724: 2722: 2714: 2712: 2705: 2702: 2699: 2696: 2692: 2689: 2686: 2682: 2678: 2675: 2671: 2670: 2669: 2666: 2664: 2659: 2657: 2652: 2648: 2646: 2642: 2638: 2634: 2629: 2624: 2622: 2618: 2609: 2602: 2597: 2590: 2588: 2586: 2582: 2578: 2577:Broadband PON 2574: 2569: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2538: 2535: 2531: 2527: 2523: 2515: 2513: 2511: 2506: 2501: 2499: 2495: 2487: 2485: 2481: 2473: 2470: 2467: 2466: 2462: 2459: 2456: 2455: 2451: 2448: 2447:erbium window 2444: 2441: 2440: 2436: 2433: 2430: 2429: 2425: 2422: 2419: 2418: 2414: 2411: 2408: 2407: 2403: 2400: 2397: 2396: 2390: 2384: 2376: 2374: 2372: 2368: 2364: 2360: 2356: 2352: 2345: 2343: 2341: 2336: 2334: 2330: 2329:birefringence 2326: 2322: 2317: 2315: 2311: 2307: 2303: 2301: 2293: 2291: 2283: 2280: 2277: 2274: 2271: 2268: 2265: 2262: 2261: 2257: 2254: 2251: 2249:No. of cores 2248: 2245: 2242: 2240:Organization 2239: 2236: 2235: 2232: 2229: 2225: 2221: 2213: 2203: 2200: 2196: 2190: 2187: 2178: 2176: 2173: 2170: 2168: 2165: 2162: 2159: 2156: 2154: 2151: 2148: 2145: 2144: 2140: 2137: 2134: 2131: 2129: 2127: 2125: 2122: 2120: 2117: 2114: 2113: 2110:51.7 km 2109: 2107: 2104: 2101: 2098: 2096: 2094: 2092: 2089: 2086: 2083: 2082: 2079: 2076: 2074:144.5 Gbit/s 2073: 2070: 2067: 2064: 2062: 2060: 2057: 2054: 2051: 2050: 2046: 2043: 2040: 2038: 2035: 2032: 2029: 2026: 2024:10.66 Pbit/s 2023: 2020: 2017: 2016: 2013:1045 km 2012: 2009: 2006: 2003: 2000: 1998: 1996: 1993: 1991: 1988: 1985: 1984: 1981:11.3 km 1980: 1977: 1974: 1971: 1969: 1966: 1964: 1962: 1959: 1957: 1953: 1952:KDDI Research 1950: 1947: 1946: 1942: 1939: 1936: 1933: 1930: 1928: 1926: 1923: 1921: 1918: 1915: 1914: 1910: 1907: 1904: 1901: 1899: 1897: 1895: 1892: 1890: 1889:RAM Photonics 1886: 1882: 1879: 1876: 1875: 1871: 1868: 1865: 1862: 1860: 1858: 1856: 1853: 1850: 1846: 1843: 1840: 1839: 1836:1045 km 1835: 1833: 1831: 1828: 1826: 1824: 1822: 1819: 1817: 1814: 1811: 1810: 1806: 1803: 1800: 1797: 1795: 1793: 1791: 1788: 1786: 1783: 1780: 1779: 1776:52.4 km 1775: 1773: 1771: 1768: 1766: 1764: 1762: 1759: 1757: 1753: 1750: 1747: 1746: 1743: 1741: 1739: 1736: 1734: 1732: 1730: 1728:109.2 Tbit/s 1727: 1725: 1722: 1719: 1718: 1714: 1711: 1708: 1706:No. of cores 1705: 1702: 1699: 1696: 1693: 1691:Organization 1690: 1687: 1686: 1683: 1677: 1671:25.9 km 1670: 1667: 1665:184 (C-band) 1664: 1661: 1658: 1655: 1652: 1650: 1647: 1644: 1643: 1639: 1636: 1634:WDM channels 1633: 1630: 1628:, (bit/s)/Hz 1627: 1624: 1621: 1618: 1616:Organization 1615: 1612: 1611: 1608: 1599: 1593: 1590: 1584: 1582: 1578: 1569: 1566: 1563: 1560: 1557: 1554: 1551: 1548: 1547: 1543: 1540: 1537: 1534: 1531: 1528: 1525: 1522: 1521: 1517: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1495: 1492:76.6 km 1491: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1469: 1465: 1462: 1459: 1456: 1454: 1451: 1449: 1445: 1442: 1439: 1438: 1435:6600 km 1434: 1432: 1430: 1428: 1426: 1423: 1421: 1418: 1415: 1414: 1411: 1408: 1405: 1403: 1401: 1398: 1396: 1392: 1388: 1385: 1382: 1381: 1377: 1374: 1371: 1369: 1367: 1364: 1362: 1358: 1355: 1352: 1351: 1347: 1344: 1341: 1339: 1337: 1334: 1332: 1329: 1326: 1325: 1321: 1318: 1315: 1313: 1311: 1309:101.7 Tbit/s 1308: 1306: 1303: 1300: 1299: 1295: 1292: 1289: 1287: 1285: 1282: 1280: 1277: 1274: 1273: 1270:7000 km 1269: 1266: 1263: 1261: 1259: 1256: 1254: 1251: 1248: 1247: 1243: 1240: 1238:WDM channels 1237: 1235:, (bit/s)/Hz 1234: 1231: 1228: 1225: 1223:Organization 1222: 1219: 1218: 1215: 1209: 1207: 1205: 1201: 1197: 1190:Record speeds 1189: 1187: 1185: 1181: 1173: 1168: 1166: 1163: 1156: 1152: 1145: 1137: 1135: 1132: 1127: 1125: 1121: 1120:laser pumping 1117: 1113: 1109: 1105: 1100: 1097: 1091: 1084:Amplification 1083: 1081: 1079: 1075: 1071: 1066: 1064: 1060: 1056: 1051: 1048: 1038: 1035: 1032: 1029: 1028: 1024: 1021: 1018: 1015: 1014: 1010: 1007: 1004: 1001: 1000: 996: 993: 990: 987: 986: 982: 979: 976: 973: 972: 965: 962: 959: 956: 955: 948: 945: 942: 939: 938: 931: 928: 925: 922: 921: 917: 914: 911: 910: 904: 897: 893: 889: 881: 877: 872: 870: 866: 862: 858: 854: 850: 846: 837: 829: 822: 820: 818: 814: 810: 806: 802: 798: 794: 790: 789:Wiener system 786: 781: 779: 775: 771: 763: 762:predistortion 759: 754: 748: 744: 740: 736: 732: 728: 724: 716: 714: 710: 708: 704: 700: 696: 691: 689: 685: 681: 677: 673: 669: 665: 664:photodetector 657: 655: 653: 649: 645: 640: 636: 632: 628: 625:, such as an 624: 620: 616: 611: 609: 605: 600: 595: 593: 589: 585: 580: 578: 574: 573:quantum wells 569: 566: 564: 560: 556: 551: 549: 545: 541: 533: 529: 524: 517: 515: 513: 509: 505: 497: 495: 493: 489: 485: 482:of firms and 481: 480:consolidation 477: 473: 469: 465: 461: 456: 454: 450: 449: 444: 440: 435: 427: 421: 417: 416:data capacity 413: 409: 404: 398: 394: 390: 386: 381: 379: 375: 371: 366: 359: 355: 349: 347: 343: 339: 334: 332: 326: 323: 319: 315: 310: 308: 305: 301: 297: 292: 290: 286: 282: 277: 275: 271: 267: 263: 259: 255: 250: 247: 243: 239: 235: 231: 227: 223: 215: 213: 211: 207: 202: 197: 193: 191: 187: 184:Due to lower 182: 179: 178:Optical fiber 172: 167: 164: 161: 159: 155: 154: 153: 150: 148: 144: 140: 136: 132: 124: 122: 118: 112: 108: 103: 101: 97: 93: 89: 85: 81: 80:optical fiber 77: 76:visible light 73: 69: 65: 58: 54: 50: 43: 39: 34: 30: 19: 6093:Multiplexing 5982: 5968:Transmission 5933:Nikola Tesla 5923:Henry Sutton 5878:Samuel Morse 5808:Robert Hooke 5773:Amos Dolbear 5708:John Bardeen 5627: 5607:Telautograph 5511:Mobile phone 5466:Edholm's law 5449:social media 5382:Broadcasting 5274:Technologies 5209:Fiber-optics 5208: 5173:Ships' flags 5158:Smoke signal 5106:the original 5100:Julia Hall. 5073: 5059: 5032:. New York: 5029: 5004: 4990: 4984: 4972:. Retrieved 4965:the original 4956: 4943: 4934: 4924: 4909: 4866: 4862: 4852: 4841:. Retrieved 4831: 4798: 4794: 4780: 4766: 4755:. Retrieved 4745: 4734:. Retrieved 4706: 4702: 4691: 4680:. Retrieved 4670: 4659:. Retrieved 4655:the original 4645: 4634:. Retrieved 4624: 4613:. Retrieved 4609:the original 4599: 4585: 4574:. Retrieved 4564: 4553:. Retrieved 4540: 4529:. Retrieved 4522:the original 4509: 4498:. Retrieved 4488: 4477:. Retrieved 4475:. 2014-10-27 4472: 4463: 4452:. Retrieved 4448:the original 4438: 4429: 4419: 4408:. Retrieved 4398: 4387:. Retrieved 4377: 4366:. Retrieved 4362:the original 4352: 4341:. Retrieved 4331: 4320:. Retrieved 4310: 4296: 4282: 4271:. Retrieved 4267:the original 4257: 4196: 4192: 4182: 4171:. Retrieved 4167:the original 4157: 4146:. Retrieved 4142:the original 4132: 4121:. Retrieved 4111: 4100:. Retrieved 4096:the original 4086: 4075:. Retrieved 4071:the original 4061: 4036: 4032: 4026: 4012: 4001:. Retrieved 3984:(2809): 24. 3981: 3977: 3953:. Retrieved 3943: 3935:the original 3925: 3914:. Retrieved 3910:the original 3905: 3896: 3868: 3861: 3850: 3842:the original 3837: 3828: 3809: 3803: 3795: 3789:. Retrieved 3784: 3774: 3765: 3755: 3722: 3718: 3712: 3679: 3675: 3669: 3634: 3630: 3621: 3610:. Retrieved 3606: 3597: 3586:. Retrieved 3583:ScienceAlert 3582: 3572: 3560:. Retrieved 3556:News release 3555: 3546: 3535:. Retrieved 3523: 3513: 3504: 3498: 3489: 3479: 3466: 3459: 3450: 3444: 3425: 3419: 3411:the original 3406: 3397: 3385:. Retrieved 3381:the original 3376: 3367: 3348: 3338: 3303: 3299: 3289: 3278:. Retrieved 3274: 3264: 3254: 3224: 3220: 3207: 3182: 3174: 3163:. Retrieved 3153: 3142:. Retrieved 3138: 3128: 3117:. Retrieved 3115:. 2020-11-10 3113:BusinessWire 3112: 3103: 3093:December 22, 3091:. Retrieved 3081: 3069:. Retrieved 3065: 3055: 3044:. Retrieved 3025: 3018: 3010:the original 3000: 2988:. Retrieved 2984:the original 2979: 2970: 2958:. Retrieved 2953: 2944: 2921: 2915: 2891:. New York: 2888: 2875: 2864:. Retrieved 2860: 2851: 2823: 2791:cable using 2783: 2737: 2718: 2709: 2667: 2660: 2653: 2649: 2625: 2614: 2601:optic splice 2570: 2539: 2519: 2505:regeneration 2504: 2502: 2493: 2491: 2488:Regeneration 2482: 2479: 2446: 2401:Description 2387: 2373:techniques. 2349: 2337: 2318: 2304: 2297: 2288: 2272:Single-mode 2217: 2202: 2189: 2175:803.5 Gbit/s 2174: 2166: 2152: 2141:7.9 km 2123:1.84 Pbit/s 2102: 2090:1.02 Pbit/s 2077: 2065:single-mode 2036: 1967: 1931:single-mode 1789:73.7 Tbit/s 1760:1.05 Pbit/s 1681: 1668:1.03 Tbit/s 1653:1.53 Pbit/s 1606: 1592: 1466:250 km 1322:165 km 1296:240 km 1283:69.1 Tbit/s 1257:15.5 Tbit/s 1213: 1193: 1179: 1177: 1151:spectrometer 1147: 1128: 1101: 1093: 1080:technology. 1067: 1052: 1044: 918:Performance 873: 842: 805:Duthel et al 804: 797:Khanna et al 796: 784: 782: 745:) or higher 720: 711: 692: 688:regenerators 661: 612: 596: 581: 570: 567: 552: 544:laser diodes 537: 518:Transmitters 501: 457: 446: 442: 436: 431:14 Tb/s 405: 382: 367: 350: 335: 327: 318:Gordon Gould 311: 293: 278: 251: 242:transmission 219: 198: 194: 190:interference 183: 176: 173:Applications 151: 128: 104: 84:carrier wave 63: 62: 29: 6293:NPL network 6005:Radio waves 5943:Alfred Vail 5853:Hedy Lamarr 5838:Dawon Kahng 5798:Elisha Gray 5758:Yogen Dalal 5683:Nasir Ahmed 5617:Teleprinter 5481:Heliographs 5258:Consumer IR 5188:Signal lamp 4473:ExtremeTech 4430:Extremetech 3031:Cisco Press 2897:Smithsonian 2645:power lines 2581:Gigabit PON 2579:(BPON) and 2540:In the US, 2494:regenerated 2346:Attenuation 2179:13 km 2153:22.9 Pbit/s 2138:223 Gbit/s 2058:319 Tbit/s 2047:13 km 2044:762 Gbit/s 1994:159 Tbit/s 1911:31 km 1854:255 Tbit/s 1847:(TU/e) and 1807:310 m 1798:1 (hollow) 1570:50 km 1555:402 Tbit/s 1529:301 Tbit/s 1518:40 km 1515:270 Gbit/s 1489:244 Gbit/s 1375:200 Gbit/s 1365:5.6 Tbit/s 1348:50 km 1319:273 Gbit/s 1293:171 Gbit/s 1267:100 Gbit/s 1131:multiplexed 888:micrometers 813:timing skew 766:56 GBd 723:transmitter 588:Fabry–PĂ©rot 542:(LEDs) and 532:transceiver 472:Moore's Law 376:, based on 186:attenuation 78:through an 6426:Categories 6339:Antarctica 6298:Toasternet 6220:Television 5703:Paul Baran 5635:Television 5619:(teletype) 5612:Telegraphy 5590:transistor 5568:Phryctoria 5538:Photophone 5516:Smartphone 5506:Mass media 5238:Free-space 5224:Connectors 5193:Photophone 5183:Heliograph 4843:2018-10-25 4757:2022-10-23 4736:2022-10-23 4682:2022-11-11 4661:2022-11-11 4636:2022-11-11 4615:2021-07-18 4576:2018-06-30 4555:2018-08-25 4531:2018-06-30 4500:2018-08-25 4479:2018-06-30 4454:2018-06-30 4410:2018-08-03 4389:2013-01-23 4368:2022-11-11 4343:2022-11-11 4322:2022-11-11 4273:2021-07-18 4206:2003.11893 4173:2020-05-23 4148:2018-08-03 4123:2018-06-30 4102:2018-06-30 4077:2018-06-30 4039:(6): 364. 4003:2012-02-26 3955:2010-04-03 3916:2009-08-26 3791:2006-12-31 3781:"Splicing" 3612:2021-04-18 3607:thefoa.org 3588:2021-11-09 3537:2021-11-09 3377:Sendai New 3280:2021-04-18 3165:2021-11-23 3144:2021-04-18 3119:2021-04-18 3046:2020-08-08 2866:2019-12-16 2861:thefoa.org 2843:References 2656:fiber fuse 2367:connectors 2300:dispersion 2294:Dispersion 1872:1 km 1820:43 Tbit/s 1697:Bandwidth 1622:Bandwidth 1506:16.83 THz 1345:77 Gbit/s 1335:26 Tbit/s 1229:Bandwidth 1169:Parameters 1078:smart grid 915:Introduced 912:Fibre type 747:baud Rates 676:photodiode 498:Technology 484:offshoring 368:The first 230:Photophone 125:Background 94:when high 57:dark fiber 6437:Photonics 6323:Americas 6312:Locations 6283:Internet2 6044:Bandwidth 5748:Vint Cerf 5645:streaming 5623:Telephone 5563:Semaphore 5454:streaming 4974:March 14, 4823:116723996 4731:253055705 4249:214667352 3888:875895386 3661:1749-4885 3532:0362-4331 3490:Lightwave 3249:130048089 2797:receivers 2663:backplane 2633:crosstalk 2621:bandwidth 2556:, uses a 2522:last mile 2516:Last mile 2423:Extended 2412:Original 2258:Distance 2163:tri-mode 2157:18.8 THz 2033:tri-mode 2001:tri-mode 1715:Distance 1640:Distance 1558:37.6 THz 1532:27.8 THz 1409:1 Tbit/s 1399:1 Tbit/s 1244:Distance 1204:dense WDM 1160:1.6  729:(DAC), a 699:amplifier 658:Receivers 639:linewidth 615:modulated 443:dry fiber 378:Desurvire 314:Optelecom 312:In 1973, 270:PIN diode 246:telephone 107:Bell Labs 96:bandwidth 88:modulated 6391:Category 6278:Internet 6268:CYCLADES 6185:Ethernet 6135:Concepts 6059:terminal 6010:wireless 5833:Bob Kahn 5676:Pioneers 5501:Internet 5392:Cable TV 5309:Category 5281:OC Rates 5253:In space 5202:Advanced 4901:30356063 4241:32444605 3704:47550517 3562:June 17, 3387:April 5, 3330:36285370 3322:21049584 3275:Hackaday 2895:and the 2803:See also 2554:AT&T 2510:solitons 2371:splicing 2224:Fujikura 2027:9.2 THz 1851:(CREOL) 1656:4.6 THz 849:cladding 751:32  492:AT&T 460:Internet 424:10  279:In 1966 272:and the 252:In 1954 220:In 1880 113:of over 86:that is 72:infrared 6411:Commons 6401:Outline 6354:Oceania 6273:FidoNet 6258:ARPANET 6071:circuit 5640:digital 5369:History 4892:6200795 4871:Bibcode 4803:Bibcode 4711:Bibcode 4232:7244755 4211:Bibcode 4041:Bibcode 3986:Bibcode 3747:6740310 3727:Bibcode 3684:Bibcode 3639:Bibcode 3229:Bibcode 3071:May 27, 2785:TOSLINK 2562:U-verse 2468:U band 2457:L band 2442:C band 2431:S band 2420:E band 2409:O band 1756:Corning 1480:~4 THz 774:128-QAM 488:Verizon 342:Pirelli 216:History 145:in the 117:petabit 6349:Europe 6319:Africa 6303:Usenet 6263:BITNET 6200:Mobile 6076:packet 5585:MOSFET 5580:device 5377:Beacon 5319:Portal 5163:Beacon 5080:  5066:  5040:  4997:  4899:  4889:  4821:  4729:  4247:  4239:  4229:  3886:  3876:  3816:  3745:  3702:  3659:  3530:  3432:  3355:  3328:  3320:  3256:Nature 3247:  3195:  3037:  2990:27 May 2960:27 May 2932:  2903:  2730:ITU-T 2695:arcing 2617:copper 1968:6-mode 1448:Huawei 1446:& 1393:& 1361:Huawei 1359:& 1194:Using 1162:Tbit/s 1116:erbium 1112:doping 900:  896:dopant 884:  861:silica 815:. The 770:64-QAM 733:and a 650:, and 6332:South 6327:North 6288:JANET 6225:Telex 6215:Radio 6054:Nodes 6049:Links 5970:media 5548:Radio 5533:Pager 5461:Drums 5427:video 5422:image 5412:audio 5248:Li-Fi 5219:Cable 5151:Basic 4968:(PDF) 4953:(PDF) 4819:S2CID 4791:(PDF) 4727:S2CID 4549:(PDF) 4525:(PDF) 4518:(PDF) 4245:S2CID 4201:arXiv 3743:S2CID 3700:S2CID 3471:(PDF) 3326:S2CID 3245:S2CID 3191:–78. 2926:(PDF) 2815:Notes 2780:(OTN) 2763:HIPPI 2732:G.652 2679:High 2398:Band 2263:2018 2237:Year 2149:NICT 2146:2023 2115:2022 2087:NICT 2084:2022 2055:NICT 2052:2021 2030:30.5 2021:NICT 2018:2020 1986:2018 1948:2017 1916:2017 1877:2015 1841:2014 1812:2014 1781:2013 1748:2012 1720:2011 1688:Year 1645:2022 1613:Year 1561:10.7 1552:NICT 1549:2024 1535:10.8 1526:NICT 1523:2023 1509:10.8 1497:2020 1471:2020 1457:6.25 1440:2017 1416:2016 1383:2016 1353:2016 1327:2011 1301:2011 1275:2010 1249:2009 1220:Year 749:(> 743:4-QAM 741:(> 635:chirp 374:TAT-8 346:Turin 338:CSELT 6344:Asia 6230:UUCP 6190:ISDN 5078:ISBN 5064:ISBN 5038:ISBN 4995:ISBN 4976:2010 4897:PMID 4237:PMID 3884:OCLC 3874:ISBN 3814:ISBN 3657:ISSN 3564:2011 3528:ISSN 3430:ISBN 3389:2009 3353:ISBN 3318:PMID 3193:ISBN 3095:2015 3073:2020 3035:ISBN 2992:2020 2962:2020 2930:ISBN 2901:ISBN 2546:FiOS 2534:EPON 2226:and 2135:223 2007:348 1990:NICT 1954:and 1887:and 1881:NICT 1724:NICT 1659:332 1649:NICT 1500:UCL 1486:160 1342:336 1316:370 1290:432 1264:155 1118:and 1036:2000 1022:1998 1008:2016 994:2008 980:2003 963:1998 946:1989 929:1987 878:and 772:and 758:skew 652:OFDM 644:QPSK 590:and 528:GBIC 490:and 426:Tb/s 340:and 304:GaAs 283:and 256:and 188:and 115:100 6235:WAN 6205:NGN 6195:LAN 5476:Fax 5417:DCT 4887:PMC 4879:doi 4811:doi 4719:doi 4227:PMC 4219:doi 4049:doi 3994:doi 3982:210 3735:doi 3692:doi 3647:doi 3308:doi 3304:106 3237:doi 2980:FOS 2278:80 2275:30 2228:NTT 2220:DTU 2160:32 2132:37 2103:801 1972:19 1937:46 1934:32 1920:NTT 1902:22 1866:50 1769:12 1752:NEC 1460:28 1372:28 1331:KIT 1305:NEC 1279:NTT 1184:MHz 1031:SMF 1017:SMF 1003:MMF 989:MMF 975:MMF 958:MMF 941:MMF 924:MMF 886:50 867:or 843:An 753:GBd 686:in 648:QAM 629:or 439:WDM 287:at 236:in 74:or 6428:: 5036:. 5003:. 4955:. 4933:. 4895:. 4885:. 4877:. 4865:. 4861:. 4817:. 4809:. 4799:12 4797:. 4793:. 4725:. 4717:. 4707:16 4705:. 4701:. 4471:. 4428:. 4243:. 4235:. 4225:. 4217:. 4209:. 4197:11 4195:. 4191:. 4047:. 4035:. 3992:. 3980:. 3976:. 3964:^ 3904:. 3882:. 3836:. 3794:. 3783:. 3764:. 3741:. 3733:. 3723:28 3721:. 3698:. 3690:. 3680:34 3678:. 3655:. 3645:. 3633:. 3629:. 3605:. 3581:. 3554:. 3526:. 3522:. 3488:. 3405:. 3375:. 3324:. 3316:. 3302:. 3298:. 3273:. 3243:. 3235:. 3225:XX 3219:. 3189:76 3137:. 3111:. 3064:. 3033:. 3029:. 2978:. 2952:. 2893:DK 2883:; 2859:. 2799:. 2552:, 2449:) 2361:, 2357:, 2335:. 2222:, 2167:38 2099:4 2068:4 2037:38 2004:1 1883:, 1863:7 1829:7 1754:, 1737:7 1580:^ 1444:BT 1406:1 1389:, 1357:BT 1165:. 1124:nm 1061:, 803:. 795:. 646:, 610:. 594:. 526:A 514:. 466:. 296:dB 210:Tb 149:. 6362:) 6358:( 5353:e 5346:t 5339:v 5136:e 5129:t 5122:v 5046:. 4978:. 4937:. 4918:. 4903:. 4881:: 4873:: 4867:9 4846:. 4825:. 4813:: 4805:: 4760:. 4739:. 4721:: 4713:: 4685:. 4664:. 4639:. 4618:. 4579:. 4558:. 4534:. 4503:. 4482:. 4457:. 4432:. 4413:. 4392:. 4371:. 4346:. 4325:. 4276:. 4251:. 4221:: 4213:: 4203:: 4176:. 4151:. 4126:. 4105:. 4080:. 4055:. 4051:: 4043:: 4037:5 4006:. 3996:: 3988:: 3958:. 3919:. 3890:. 3822:. 3737:: 3729:: 3694:: 3686:: 3663:. 3649:: 3641:: 3635:4 3615:. 3591:. 3566:. 3540:. 3492:. 3438:. 3391:. 3361:. 3332:. 3310:: 3283:. 3251:. 3239:: 3231:: 3201:. 3168:. 3147:. 3122:. 3097:. 3075:. 3049:. 2994:. 2964:. 2938:. 2909:. 2869:. 2687:. 2676:. 2385:. 2197:. 1600:. 967:0 950:0 933:0 119:Ă— 20:)

Index

Fiber-optic network

single mode fibers
multi-mode fibers

Stealth Communications
dark fiber
transmitting information
infrared
visible light
optical fiber
carrier wave
modulated
preferred over electrical cabling
bandwidth
electromagnetic interference
Bell Labs
bandwidth–distance product
petabit
telecommunications
Information Age
advantages over electrical transmission
backbone networks
developed world
electrical signal
Optical fiber
attenuation
interference
optical-amplification systems
submarine communications cable

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑