Knowledge (XXG)

Fiber diffraction

Source 📝

1196: 1589: 1601: 345: 28:, an area in which molecular structure is determined from scattering data (usually of X-rays, electrons or neutrons). In fiber diffraction, the scattering pattern does not change, as the sample is rotated about a unique axis (the fiber axis). Such uniaxial symmetry is frequent with filaments or fibers consisting of biological or man-made 353: 475:
The three-dimensional sketch demonstrates that in the example experiment the collected information on the molecular structure of the polypropylene fiber is almost complete. By rotation of the plane pattern about the meridian the scattering data collected in 4 s fill an almost spherical volume of
435:
the distance between sample and detector is computed using known crystallographic data of the reference reflection, a uniformly gridded map for the representative fiber plane in reciprocal space is constructed and the diffraction data are fed into this map. The figure on the right shows the result.
652:
Saad Mohamed (1994) "Low resolution structure and packing investigations of collagen crystalline domains in tendon using Synchrotron Radiation X-rays, Structure factors determination, evaluation of Isomorphous Replacement methods and other modeling." PhD Thesis, Université Joseph Fourier Grenoble
98:
Non-ideal fiber patterns are obtained in experiments. They only show mirror symmetry about the meridian. The reason is that the fiber axis and the incident beam (X-rays, electrons, neutrons) cannot be perfectly oriented perpendicular to each other. The corresponding geometric distortion has been
463:
there is structure information on the meridian. Of course, there is now 4-quadrant symmetry. This means that in the example pattern part of the missing information may be copied "from the lower half to the upper half" into the white areas. Thus, it frequently makes sense to tilt the fiber
119:
have carried out their own geometrical reasoning and presented an approximative equation for the fiber tilt angle ÎČ. Analysis starts by mapping the distorted 2D pattern on the representative plane of the fiber. This is the plane that contains the cylinder axis in
170: 391:
with respect to the vertical direction. This shortcoming is compensated by simple rotation of the picture. 4 straight arrows point at 4 reflection images of a chosen reference reflection. Their positions are used to determine the fiber tilt angle
136:
starts from the Franklin approximation for the tilt angle ÎČ. It eliminates fiber tilt, unwarps the detector image, and corrects the scattering intensity. The correct equation for the determination of ÎČ has been presented by Norbert Stribeck.
185:. Reference direction is the primary beam (label: X-ray). If the fiber is tilted away from the perpendicular direction by an angle ÎČ, as well the information about its molecular structure in reciprocal space (trihedron labelled 200:
In s-space each reflection is found on its Polanyi-sphere. Intrinsically the ideal reflection is a point in s-space, but fiber symmetry turns it into a ring smeared out by rotation about the fiber direction.
1466: 476:
s-space. In the example the 4-quadrant symmetry has not yet been considered to fill part of the white spots. For clarity a quarter of the sphere has been cut out, but keeping the equatorial plane itself.
1461: 221:, blue ring). There up to 4 images (red spots) of the monitored reflection can show up. The position of the reflection images is a function of the orientation of the fiber in the primary beam ( 1517: 67:. In case of fiber symmetry, many more reflections than in single-crystal diffraction show up in the 2D pattern. In fiber patterns these reflections clearly appear arranged along lines ( 51:
Ideal fiber diffraction pattern of a semi-crystalline material with amorphous halo and reflections on layer lines. High intensity is represented by dark color. The fiber axis is vertical
1639: 177:). Structure information is in reciprocal space (black axes), expanded on surfaces of Polanyi spheres. In the animation 1 Polanyi sphere with 1 reflection on it is monitored 304: 440:
there remain white spots at the meridian, in which structure information is missing. Only in the center of the image and at an s-value related to the scattering angle
36:, fiber symmetry is an aggravation regarding the determination of crystal structure, because reflections are smeared and may overlap in the fiber diffraction pattern. 461: 330: 433: 410: 389: 1811: 1780: 1724: 1672: 412:. The image has been recorded on a CCD detector. It shows the logarithmic intensitity in pseudo-color representation. Here bright colors represent high intensity. 252: 145:
Fibrous materials such as wool or cotton easily form aligned bundles, and were among the first biological macromolecules studied by X-ray diffraction, notably by
485:
Arnott S & Wonacott A J, The Refinement of the Molecular & Crystal Structures of Polymers Using X-Ray Data and Stereochemical Constraints, Polymer 1966
1335: 1522: 1247: 197:
all the points of reciprocal space are found that are seen by the detector. These points are mapped on the pixels of the detector by central projection.
217:(blue ring). It does not change as the fiber is tilted. As with a slide projector the reflection circle is projected (red moving rays) on the detector ( 1632: 1413: 705: 44:
diffraction pattern exposed on photographic film or on a 2D detector. 2 instead of 3 co-ordinate directions suffice to describe fiber diffraction.
1708: 1512: 1504: 1565: 1543: 1625: 1558: 1408: 1074: 939: 788: 677: 1548: 1446: 1142: 209:
with respect to the origin of s-space. Mapped onto the detector are only those points of the reflection in s-space that are both on the
795: 468: 48: 531:
Franklin RE, Gosling RG (1953) "The Structure of Sodium Thymonucleate Fibres. II. The Cylindrically Symmetrical Patterson Function".
1570: 1428: 1398: 1327: 1734: 1280: 1827: 645:
Klug HP, Alexander LE (1974) "X-Ray Diffraction Procedures For Polycrystalline and Amorphous Materials", 2nd ed, Wiley, New York
1682: 1553: 1476: 1350: 949: 492:
Bian W, Wang H, McCullogh I, Stubbs G (2006). "WCEN: a computer program for initial processing of fiber diffraction patterns".
1310: 613:
Rajkumar G, AL-Khayat H, Eakins F, He A, Knupp C, Squire J (2005) "FibreFix — A New Integrated CCP13 Software Package",
332:
is valid. From the Polanyi representation of fiber diffraction geometry the relations of the fiber mapping are established by
1388: 173:
Fiber diffraction geometry changes as the fiber is tilted (tilt-angle ÎČ is between the blue rigid axis and the axis labelled
436:
Change of scattering intensity has been considered in the unwarping process. Because of the curvature of the surface of the
667: 1770: 1403: 1393: 698: 513:
Cochran W, Crick FHC, and Vand V (1952). "The Structure of Synthetic Polypeptides. I. The Transform of Atoms on a Helix".
1175: 1891: 1869: 1527: 800: 778: 553:
Hamilton W C, R-Factors, Statistics and Truth, Paper H5, Amer Cryst Ass Program & Abstracts, Boulder, Colorado, 1961
193:
has its center in the sample. Its radius is 1/λ, with λ the wavelength of the incident radiation. On the surface of the
1205: 1079: 40:
considers fiber symmetry a simplification, because almost the complete obtainable structure information is in a single
833: 728: 1195: 225:). Inverted, from the positions of the reflection images the orientation of the fiber can be determined, if for the 1911: 1886: 1605: 1436: 733: 75:
becomes palpable. Bent layer lines indicate that the pattern must be straightened. Reflections are labelled by the
1832: 1451: 1380: 838: 828: 964: 1775: 1677: 1662: 1593: 1317: 1213: 1086: 1049: 843: 823: 691: 651: 1001: 680:— an introduction provided by Prof. K.C. Holmes, Max Planck Institute for Medical Research, Heidelberg. 1796: 1749: 1441: 1285: 1230: 979: 944: 1137: 954: 1059: 542:
Fraser RDB, Macrae TP, Miller A, Rowlands RJ (1976). "Digital Processing of Fibre Diffraction Patterns".
1853: 1837: 1806: 1667: 1494: 1290: 1252: 1011: 745: 524:
Donohue J, and Trueblood, K N, On the unreliability of the reliability index, Acta Crystallogr, 1956,
1218: 1091: 927: 818: 580:
Millane RP, Arnott S (1985) "Digital Processing of X-Ray Diffraction Patterns from Oriented Fibers".
1874: 1235: 1223: 1098: 1064: 1044: 257: 149:
in the early 1930s. Fiber diffraction data led to several important advances in the development of
471:
3D representation of the reciprocal space filled with scattering data from the polypropylene fiber
1801: 1729: 1484: 1295: 1240: 783: 150: 368:
before mapping it into reciprocal space. The mirror axis in the pattern is rotated by the angle
91:
artificial fiber diffraction patterns are generated by rotating a single crystal about an axis (
71:) running almost parallel to the equator. Thus, in fiber diffraction the layer line concept of 1703: 1648: 1418: 1257: 1185: 1165: 885: 755: 181:
The animation shows the geometry of fiber diffraction. It is based on the notions proposed by
112: 108: 37: 16:
Subarea of scattering, an area in which molecular structure is determined from scattering data
443: 309: 1456: 1262: 1180: 1170: 969: 902: 873: 866: 563:
James T W & Mazia D, Surface Films of Desoxyribonucleic Acid, Biochim Biophys Acta 1953
418: 395: 371: 129: 121: 1765: 1345: 1340: 1305: 1125: 1024: 959: 922: 917: 768: 714: 671: 182: 146: 125: 116: 100: 88: 72: 33: 556:
Hamilton W C, Significance Tests on the Crystallographic R Factor, Acta Crystallogr 1965
231: 1155: 1120: 1108: 1103: 1069: 1039: 1029: 988: 932: 856: 810: 206: 1905: 1300: 1113: 912: 365: 357: 29: 624:
Stribeck N (2009). "On the determination of fiber tilt angles in fiber diffraction"
1744: 1006: 996: 890: 773: 642:
Alexander LE (1979) "X-Ray Diffraction Methods in Polymer Science", Wiley, New York
437: 226: 210: 194: 190: 76: 602:
Polanyi M, Weissenberg K (1923) "Das Röntgen-Faserdiagramm (Zweite Mitteilung)".
1489: 1160: 1034: 861: 664: 154: 1739: 1617: 1054: 740: 169: 132:
is computed that is refined iteratively. The digital method frequently called
25: 205:
rings represent each reflection on the Polanyi sphere, because scattering is
763: 570:
Marvin DA (2017) "Fibre diffraction studies of biological macromolecules".
467: 344: 47: 1360: 1130: 878: 674:— Software (Linux, Mac, Windows) for the analysis of fiber patterns 333: 1370: 352: 503:
Bunn C W, Chemical Crystallography, University of Oxford, 2nd Ed, 1967
506:
Campbell Smith P J & Arnott S, LALS (etc.) Acta Crystallogr 1978
1365: 683: 466: 351: 343: 168: 46: 591:
Polanyi M (1921) "Das Röntgen-Faserdiagramm (Erste Mitteilung)".
1621: 687: 158: 360:
mapped into (the representative plane of) reciprocal space
1467:
Zeitschrift fĂŒr Kristallographie – New Crystal Structures
1462:
Zeitschrift fĂŒr Kristallographie – Crystalline Materials
364:
The figure on the left shows a typical fiber pattern of
1355: 87:. Reflections on the meridian are 00l-reflections. In 648:
Warren BE (1990) "X-Ray Diffraction". Dover, New York
446: 421: 398: 374: 312: 260: 234: 59:. In the ideal pattern, the fiber axis is called the 1862: 1846: 1820: 1789: 1758: 1717: 1691: 1655: 1536: 1503: 1475: 1427: 1379: 1326: 1273: 1204: 987: 978: 901: 809: 754: 721: 455: 427: 404: 383: 324: 298: 246: 213:and on the Polanyi sphere. These points form the 157:and the Watson-Crick model of double-stranded 1633: 699: 8: 128:first an approximation of the mapping into 1640: 1626: 1618: 1533: 984: 806: 751: 706: 692: 684: 445: 420: 397: 373: 311: 285: 277: 269: 261: 259: 233: 63:, the perpendicular direction is called 79:hkl, i.e. 3 digits. Reflections on the 189:) is tilted. In reciprocal space the 7: 1600: 940:Phase transformation crystallography 107:(German: "Lagenkugel") intersecting 1447:Journal of Chemical Crystallography 153:, e.g., the original models of the 14: 55:The ideal fiber pattern exhibits 1735:Dual-polarization interferometry 1599: 1588: 1587: 1194: 1766:Analytical ultracentrifugation 1389:Bilbao Crystallographic Server 286: 278: 270: 262: 1: 1771:Size exclusion chromatography 299:{\displaystyle |h|+|k|\neq 0} 1870:Protein structure prediction 1828:Hydrogen–deuterium exchange 1649:Protein structural analysis 1437:Crystal Growth & Design 729:Timeline of crystallography 103:introducing the concept of 1928: 1248:Nuclear magnetic resonance 165:Fiber diffraction geometry 1883: 1833:Site-directed mutagenesis 1583: 1452:Journal of Crystal Growth 1192: 572:Prog. Biophys. Mol. Biol. 1678:Electron crystallography 1663:Cryo-electron microscopy 1318:Single particle analysis 1176:Hermann–Mauguin notation 348:A measured fiber pattern 336:and spherical geometry. 1797:Fluorescence anisotropy 1759:Translational Diffusion 1750:Fluorescence anisotropy 1442:Crystallography Reviews 1286:Isomorphous replacement 1080:Lomer–Cottrell junction 582:J. Macromol. Sci. Phys. 456:{\displaystyle 2\beta } 415:After determination of 325:{\displaystyle l\neq 0} 99:extensively studied by 93:rotating crystal method 83:-th layer line share l= 955:Spinodal decomposition 670:July 23, 2012, at the 615:Fibre Diffraction Rev. 472: 457: 429: 428:{\displaystyle \beta } 406: 405:{\displaystyle \beta } 385: 384:{\displaystyle ~\phi } 361: 349: 326: 300: 248: 178: 52: 1892:Quaternary structure→ 1854:Equilibrium unfolding 1838:Chemical modification 1807:Dielectric relaxation 1668:X-ray crystallography 1495:Gregori Aminoff Prize 1291:Molecular replacement 544:J. Appl. Crystallogr. 494:J. Appl. Crystallogr. 470: 458: 430: 407: 386: 355: 347: 327: 301: 249: 172: 50: 1790:Rotational Diffusion 801:Structure prediction 444: 419: 396: 372: 310: 258: 232: 42:two-dimensional (2D) 1887:←Tertiary structure 1065:Cottrell atmosphere 1045:Partial dislocation 789:Restriction theorem 247:{\displaystyle hkl} 57:4-quadrant symmetry 1802:Flow birefringence 1730:Circular dichroism 1485:Carl Hermann Medal 1296:Molecular dynamics 1143:Defects in diamond 1138:Stone–Wales defect 784:Reciprocal lattice 746:Biocrystallography 473: 453: 425: 402: 381: 362: 350: 340:Pattern correction 322: 296: 244: 179: 151:structural biology 53: 1912:Protein structure 1899: 1898: 1875:Molecular docking 1704:Mass spectrometry 1699:Fiber diffraction 1692:Medium resolution 1615: 1614: 1579: 1578: 1186:Thermal ellipsoid 1151: 1150: 1060:Frank–Read source 1020: 1019: 886:Aperiodic crystal 852: 851: 734:Crystallographers 678:Fiber Diffraction 626:Acta Crystallogr. 533:Acta Crystallogr. 515:Acta Crystallogr. 377: 356:Fiber pattern of 215:reflection circle 134:Fraser correction 113:Rosalind Franklin 38:Materials science 22:Fiber diffraction 1919: 1776:Light scattering 1642: 1635: 1628: 1619: 1603: 1602: 1591: 1590: 1534: 1457:Kristallografija 1311:Gerchberg–Saxton 1206:Characterisation 1198: 1181:Structure factor 985: 970:Ostwald ripening 807: 752: 708: 701: 694: 685: 462: 460: 459: 454: 434: 432: 431: 426: 411: 409: 408: 403: 390: 388: 387: 382: 375: 331: 329: 328: 323: 305: 303: 302: 297: 289: 281: 273: 265: 253: 251: 250: 245: 223:Polanyi equation 130:reciprocal space 122:reciprocal space 105:Polanyi's sphere 24:is a subarea of 1927: 1926: 1922: 1921: 1920: 1918: 1917: 1916: 1902: 1901: 1900: 1895: 1894: 1889: 1879: 1858: 1842: 1816: 1785: 1754: 1713: 1687: 1656:High resolution 1651: 1646: 1616: 1611: 1575: 1532: 1499: 1471: 1423: 1375: 1346:CrystalExplorer 1322: 1306:Phase retrieval 1269: 1200: 1199: 1190: 1147: 1126:Schottky defect 1025:Perfect crystal 1016: 1012:Abnormal growth 974: 960:Supersaturation 923:Miscibility gap 904: 897: 848: 805: 769:Bravais lattice 750: 717: 715:Crystallography 712: 672:Wayback Machine 661: 639: 482: 464:intentionally. 442: 441: 417: 416: 394: 393: 370: 369: 342: 308: 307: 256: 255: 230: 229: 219:detector circle 207:point symmetric 183:Michael Polanyi 167: 147:William Astbury 143: 141:Historical role 126:crystallography 117:Raymond Gosling 101:Michael Polanyi 89:crystallography 73:crystallography 34:crystallography 17: 12: 11: 5: 1925: 1923: 1915: 1914: 1904: 1903: 1897: 1896: 1890: 1885: 1884: 1881: 1880: 1878: 1877: 1872: 1866: 1864: 1860: 1859: 1857: 1856: 1850: 1848: 1844: 1843: 1841: 1840: 1835: 1830: 1824: 1822: 1818: 1817: 1815: 1814: 1809: 1804: 1799: 1793: 1791: 1787: 1786: 1784: 1783: 1778: 1773: 1768: 1762: 1760: 1756: 1755: 1753: 1752: 1747: 1742: 1737: 1732: 1727: 1721: 1719: 1715: 1714: 1712: 1711: 1706: 1701: 1695: 1693: 1689: 1688: 1686: 1685: 1680: 1675: 1670: 1665: 1659: 1657: 1653: 1652: 1647: 1645: 1644: 1637: 1630: 1622: 1613: 1612: 1610: 1609: 1597: 1584: 1581: 1580: 1577: 1576: 1574: 1573: 1568: 1563: 1562: 1561: 1556: 1551: 1540: 1538: 1531: 1530: 1525: 1520: 1515: 1509: 1507: 1501: 1500: 1498: 1497: 1492: 1487: 1481: 1479: 1473: 1472: 1470: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1433: 1431: 1425: 1424: 1422: 1421: 1416: 1411: 1406: 1401: 1396: 1391: 1385: 1383: 1377: 1376: 1374: 1373: 1368: 1363: 1358: 1353: 1348: 1343: 1338: 1332: 1330: 1324: 1323: 1321: 1320: 1315: 1314: 1313: 1303: 1298: 1293: 1288: 1283: 1281:Direct methods 1277: 1275: 1271: 1270: 1268: 1267: 1266: 1265: 1260: 1250: 1245: 1244: 1243: 1238: 1228: 1227: 1226: 1221: 1210: 1208: 1202: 1201: 1193: 1191: 1189: 1188: 1183: 1178: 1173: 1168: 1166:Ewald's sphere 1163: 1158: 1152: 1149: 1148: 1146: 1145: 1140: 1135: 1134: 1133: 1128: 1118: 1117: 1116: 1111: 1109:Frenkel defect 1106: 1104:Bjerrum defect 1096: 1095: 1094: 1084: 1083: 1082: 1077: 1072: 1070:Peierls stress 1067: 1062: 1057: 1052: 1047: 1042: 1040:Burgers vector 1032: 1030:Stacking fault 1027: 1021: 1018: 1017: 1015: 1014: 1009: 1004: 999: 993: 991: 989:Grain boundary 982: 976: 975: 973: 972: 967: 962: 957: 952: 947: 942: 937: 936: 935: 933:Liquid crystal 930: 925: 920: 909: 907: 899: 898: 896: 895: 894: 893: 883: 882: 881: 871: 870: 869: 864: 853: 850: 849: 847: 846: 841: 836: 831: 826: 821: 815: 813: 804: 803: 798: 796:Periodic table 793: 792: 791: 786: 781: 776: 771: 760: 758: 749: 748: 743: 738: 737: 736: 725: 723: 719: 718: 713: 711: 710: 703: 696: 688: 682: 681: 675: 660: 659:External links 657: 656: 655: 649: 646: 643: 638: 635: 634: 633: 622: 611: 600: 589: 578: 568: 561: 554: 551: 540: 529: 522: 511: 504: 501: 490: 481: 478: 452: 449: 424: 401: 380: 341: 338: 321: 318: 315: 295: 292: 288: 284: 280: 276: 272: 268: 264: 243: 240: 237: 166: 163: 142: 139: 109:Ewald's sphere 30:macromolecules 15: 13: 10: 9: 6: 4: 3: 2: 1924: 1913: 1910: 1909: 1907: 1893: 1888: 1882: 1876: 1873: 1871: 1868: 1867: 1865: 1863:Computational 1861: 1855: 1852: 1851: 1849: 1847:Thermodynamic 1845: 1839: 1836: 1834: 1831: 1829: 1826: 1825: 1823: 1819: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1794: 1792: 1788: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1763: 1761: 1757: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1722: 1720: 1718:Spectroscopic 1716: 1710: 1707: 1705: 1702: 1700: 1697: 1696: 1694: 1690: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1660: 1658: 1654: 1650: 1643: 1638: 1636: 1631: 1629: 1624: 1623: 1620: 1608: 1607: 1598: 1596: 1595: 1586: 1585: 1582: 1572: 1569: 1567: 1564: 1560: 1557: 1555: 1552: 1550: 1547: 1546: 1545: 1542: 1541: 1539: 1535: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1510: 1508: 1506: 1502: 1496: 1493: 1491: 1488: 1486: 1483: 1482: 1480: 1478: 1474: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1434: 1432: 1430: 1426: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1386: 1384: 1382: 1378: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1333: 1331: 1329: 1325: 1319: 1316: 1312: 1309: 1308: 1307: 1304: 1302: 1301:Patterson map 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1278: 1276: 1272: 1264: 1261: 1259: 1256: 1255: 1254: 1251: 1249: 1246: 1242: 1239: 1237: 1234: 1233: 1232: 1229: 1225: 1222: 1220: 1217: 1216: 1215: 1212: 1211: 1209: 1207: 1203: 1197: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1171:Friedel's law 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1153: 1144: 1141: 1139: 1136: 1132: 1129: 1127: 1124: 1123: 1122: 1119: 1115: 1114:Wigner effect 1112: 1110: 1107: 1105: 1102: 1101: 1100: 1099:Interstitials 1097: 1093: 1090: 1089: 1088: 1085: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1037: 1036: 1033: 1031: 1028: 1026: 1023: 1022: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 994: 992: 990: 986: 983: 981: 977: 971: 968: 966: 963: 961: 958: 956: 953: 951: 948: 946: 945:Precipitation 943: 941: 938: 934: 931: 929: 926: 924: 921: 919: 916: 915: 914: 913:Phase diagram 911: 910: 908: 906: 900: 892: 889: 888: 887: 884: 880: 877: 876: 875: 872: 868: 865: 863: 860: 859: 858: 855: 854: 845: 842: 840: 837: 835: 832: 830: 827: 825: 822: 820: 817: 816: 814: 812: 808: 802: 799: 797: 794: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 766: 765: 762: 761: 759: 757: 753: 747: 744: 742: 739: 735: 732: 731: 730: 727: 726: 724: 720: 716: 709: 704: 702: 697: 695: 690: 689: 686: 679: 676: 673: 669: 666: 663: 662: 658: 654: 650: 647: 644: 641: 640: 636: 631: 627: 623: 620: 616: 612: 609: 605: 601: 598: 594: 590: 587: 583: 579: 576: 573: 569: 566: 562: 559: 555: 552: 549: 545: 541: 538: 534: 530: 527: 523: 520: 516: 512: 509: 505: 502: 499: 495: 491: 488: 484: 483: 479: 477: 469: 465: 450: 447: 439: 422: 413: 399: 378: 367: 366:polypropylene 359: 358:polypropylene 354: 346: 339: 337: 335: 319: 316: 313: 293: 290: 282: 274: 266: 241: 238: 235: 228: 224: 220: 216: 212: 208: 204: 198: 196: 192: 188: 184: 176: 171: 164: 162: 160: 156: 152: 148: 140: 138: 135: 131: 127: 123: 118: 114: 110: 106: 102: 96: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 49: 45: 43: 39: 35: 31: 27: 23: 19: 1745:Fluorescence 1698: 1604: 1592: 1537:Associations 1505:Organisation 997:Disclination 928:Polymorphism 891:Quasicrystal 834:Orthorhombic 774:Miller index 722:Key concepts 629: 625: 618: 614: 607: 603: 596: 592: 585: 581: 574: 571: 564: 557: 547: 543: 536: 532: 525: 518: 514: 507: 497: 493: 486: 474: 438:Ewald sphere 414: 363: 227:Miller index 222: 218: 214: 211:Ewald sphere 202: 199: 195:Ewald sphere 191:Ewald sphere 186: 180: 174: 144: 133: 104: 97: 92: 84: 80: 77:Miller index 68: 64: 60: 56: 54: 41: 21: 20: 18: 1490:Ewald Prize 1258:Diffraction 1236:Diffraction 1219:Diffraction 1161:Bragg plane 1156:Bragg's law 1035:Dislocation 950:Segregation 862:Crystallite 779:Point group 69:layer lines 1740:Absorbance 1274:Algorithms 1263:Scattering 1241:Scattering 1224:Scattering 1092:Slip bands 1055:Cross slip 905:transition 839:Tetragonal 829:Monoclinic 741:Metallurgy 637:Text books 521:, 581–586. 500:, 752–756. 480:References 334:elementary 26:scattering 1381:Databases 844:Triclinic 824:Hexagonal 764:Unit cell 756:Structure 610:, 123-130 604:Z. Physik 599:, 149-180 593:Z. Physik 588:, 193-227 567:367 - 370 560:502 - 510 539:, 678-685 489:157 - 166 451:β 423:β 400:β 379:ϕ 317:≠ 291:≠ 1906:Category 1821:Chemical 1594:Category 1429:Journals 1361:OctaDist 1356:JANA2020 1328:Software 1214:Electron 1131:F-center 918:Eutectic 879:Fiveling 874:Twinning 867:Equiaxed 668:Archived 577:, 43–87. 550:, 81–94. 111:. Later 61:meridian 1606:Commons 1554:Germany 1231:Neutron 1121:Vacancy 980:Defects 965:GP-zone 811:Systems 632:, 46-47 621:, 11-18 187:s-space 175:s-space 155:α-helix 65:equator 1549:France 1544:Europe 1477:Awards 1007:Growth 857:Growth 510:3 - 11 376:  1571:Japan 1518:IOBCr 1371:SHELX 1366:Olex2 1253:X-ray 903:Phase 819:Cubic 528:, 615 254:both 124:. In 32:. In 1709:SAXS 1513:IUCr 1414:ICDD 1409:ICSD 1394:CCDC 1341:Coot 1336:CCP4 1087:Slip 1050:Kink 665:WCEN 306:and 115:and 1812:NMR 1781:NMR 1725:NMR 1683:EPR 1673:NMR 1528:DMG 1523:RAS 1419:PDB 1404:COD 1399:CIF 1351:DSR 1075:GND 1002:CSL 630:A65 586:B24 575:127 508:A34 203:Two 159:DNA 95:). 1908:: 1566:US 1559:UK 628:, 619:13 617:, 606:, 595:, 584:, 565:10 558:18 546:, 535:, 517:, 498:39 496:, 161:. 1641:e 1634:t 1627:v 707:e 700:t 693:v 653:1 608:9 597:7 548:9 537:6 526:9 519:5 487:7 448:2 320:0 314:l 294:0 287:| 283:k 279:| 275:+ 271:| 267:h 263:| 242:l 239:k 236:h 85:i 81:i

Index

scattering
macromolecules
crystallography
Materials science

crystallography
Miller index
crystallography
Michael Polanyi
Ewald's sphere
Rosalind Franklin
Raymond Gosling
reciprocal space
crystallography
reciprocal space
William Astbury
structural biology
α-helix
DNA

Michael Polanyi
Ewald sphere
Ewald sphere
point symmetric
Ewald sphere
Miller index
elementary


polypropylene

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑