Knowledge (XXG)

Fibre-optic gyroscope

Source đź“ť

89: 36: 162:
of the closed optical path: this is not simply the geometric area of the loop but is also increased by the number of turns in the coil. The FOG was first proposed by Vali and Shorthill in 1976. Development of both the passive interferometer type of FOG, or IFOG, and a newer concept, the passive ring
175:
or resonant/mechanical gyroscopes, the FOG has no moving parts and doesn't rely on inertial resistance to movement. Hence, the FOG is an excellent alternative to a mechanical gyroscope. Because of their intrinsic reliability and long lifetime, FOGs are used for high performance space applications
153:
optics split light from a laser diode (or other laser light source) into two waves propagating in both clockwise and anticlockwise directions through a coil consisting of many turns of optical fibre. The strength of the
171:
A FOG provides extremely precise rotational rate information, in part because of its lack of cross-axis sensitivity to vibration, acceleration, and shock. Unlike the classic spinning-mass
202:
Like all other gyroscope technologies and depending on detailed FOG design, FOGs may require initial calibration (determining which indication corresponds to zero angular velocity).
205:
Some FOG designs are somewhat sensitive to vibrations. However, when coupled with multiple-axis FOG and accelerometers and hybridized with Global Navigational Satellite System (
340: 365:
Chen, Xiyuan; Wang, Wei (2017). "Extracting and compensating for FOG vibration error based on improved empirical mode decomposition with masking signal".
209:) data, the impact is mitigated, making FOG systems suitable for high shock environments, including gun pointing systems for 105mm and 155mm howitzers. 218: 136:, the beam travelling against the rotation experiences a slightly shorter path delay than the other beam. The resulting differential 491: 469: 443: 419: 324: 223: 75: 344: 117: 238: 243: 96:
is proportional to the enclosed area. A looped fibre-optic coil multiplies the effective area by the number of loops.
53: 46: 228: 512: 93: 374: 281: 248: 187: 180: 507: 233: 449: 132:
Two beams from a laser are injected into the same fibre but in opposite directions. Due to the
487: 465: 439: 415: 390: 320: 297: 253: 206: 431: 382: 289: 141: 88: 378: 285: 191: 150: 57: 163:
resonator FOG, or RFOG, is proceeding in many companies and establishments worldwide.
501: 453: 155: 137: 133: 121: 109: 17: 52:
The references used may be made clearer with a different or consistent style of
145: 435: 172: 113: 394: 301: 140:
is measured through interferometry, thus translating one component of the
386: 293: 87: 272:
Vali, V.; Shorthill, R. W. (1976). "Fiber ring interferometer".
29: 412:
Modern Inertial Technology: Navigation, Guidance, and Control
116:. However its principle of operation is instead based on the 144:
into a shift of the interference pattern which is measured
414:, Springer, Chapters 11 and 12 (pages 169–207), 1998. 124:, which can be as long as 5 kilometres (3 mi). 179:The FOG typically shows a higher resolution than a 426:Pavlath, G.A. (1994). "Fiber-optic gyroscopes". 112:, thus performing the function of a mechanical 8: 120:of light which has passed through a coil of 464:, 2003 Kluwer Academic Publishers, Boston. 477:Handbook of Fibre Optic Sensing Technology 176:and military inertial navigation systems. 108:) senses changes in orientation using the 76:Learn how and when to remove this message 264: 219:Attitude and Heading Reference System 7: 479:, 2000, John Wiley & Sons Ltd. 25: 430:. Vol. 2. pp. 237–238. 224:Hemispherical resonator gyroscope 462:Introduction to Avionics Systems 34: 27:Gyroscope that uses fiber optics 1: 239:Vibrating structure gyroscope 186:FOGs are implemented in both 244:Optical heterodyne detection 529: 475:JosĂ© Miguel LĂłpez-Higuer, 484:The Fiber-Optic Gyroscope 317:The Fiber-Optic Gyroscope 229:Inertial measurement unit 436:10.1109/LEOS.1994.586467 315:Lefèvre, HervĂ© (1993). 486:, 1993, Artech House. 428:Proceedings of LEOS'94 97: 92:The interference on a 319:. ARTECH HOUSE, INC. 102:fibre-optic gyroscope 94:Sagnac interferometer 91: 18:Fibre optic gyroscope 387:10.1364/AO.56.003848 294:10.1364/AO.15.001099 249:Ring laser gyroscope 181:ring laser gyroscope 158:is dependent on the 379:2017ApOpt..56.3848C 286:1976ApOpt..15.1099V 234:Inertial navigation 460:R.P.G. Collinson, 410:Anthony Lawrence, 98: 373:(13): 3848–3856. 254:Quantum gyroscope 86: 85: 78: 16:(Redirected from 520: 457: 399: 398: 362: 356: 355: 353: 352: 343:. Archived from 337: 331: 330: 312: 306: 305: 269: 194:configurations. 146:photometrically. 142:angular velocity 81: 74: 70: 67: 61: 38: 37: 30: 21: 528: 527: 523: 522: 521: 519: 518: 517: 498: 497: 482:HervĂ© Lefèvre, 446: 425: 407: 402: 364: 363: 359: 350: 348: 339: 338: 334: 327: 314: 313: 309: 280:(5): 1099–100. 271: 270: 266: 262: 215: 200: 169: 130: 82: 71: 65: 62: 51: 45:has an unclear 39: 35: 28: 23: 22: 15: 12: 11: 5: 526: 524: 516: 515: 510: 500: 499: 496: 495: 480: 473: 458: 444: 423: 406: 403: 401: 400: 367:Applied Optics 357: 341:"Astrix® 1000" 332: 325: 307: 274:Applied Optics 263: 261: 258: 257: 256: 251: 246: 241: 236: 231: 226: 221: 214: 211: 199: 196: 168: 165: 160:effective area 151:Beam splitting 129: 126: 84: 83: 47:citation style 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 525: 514: 511: 509: 506: 505: 503: 493: 492:0-89006-537-3 489: 485: 481: 478: 474: 471: 470:1-4020-7278-3 467: 463: 459: 455: 451: 447: 445:0-7803-1470-0 441: 437: 433: 429: 424: 421: 420:0-387-98507-7 417: 413: 409: 408: 404: 396: 392: 388: 384: 380: 376: 372: 368: 361: 358: 347:on 2019-05-27 346: 342: 336: 333: 328: 326:0-89006-537-3 322: 318: 311: 308: 303: 299: 295: 291: 287: 283: 279: 275: 268: 265: 259: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 216: 212: 210: 208: 203: 198:Disadvantages 197: 195: 193: 189: 184: 182: 177: 174: 166: 164: 161: 157: 156:Sagnac effect 152: 148: 147: 143: 139: 135: 134:Sagnac effect 127: 125: 123: 122:optical fibre 119: 115: 111: 110:Sagnac effect 107: 103: 95: 90: 80: 77: 69: 59: 55: 49: 48: 43:This article 41: 32: 31: 19: 513:Fiber optics 483: 476: 461: 427: 411: 370: 366: 360: 349:. Retrieved 345:the original 335: 316: 310: 277: 273: 267: 204: 201: 185: 178: 170: 159: 149: 131: 118:interference 105: 101: 99: 72: 66:October 2020 63: 44: 192:closed-loop 138:phase shift 508:Gyroscopes 502:Categories 351:2019-05-27 260:References 167:Advantages 58:footnoting 454:117215647 188:open-loop 173:gyroscope 128:Operation 114:gyroscope 395:28463278 302:20165128 213:See also 54:citation 405:Sources 375:Bibcode 282:Bibcode 490:  468:  452:  442:  418:  393:  323:  300:  450:S2CID 488:ISBN 466:ISBN 440:ISBN 416:ISBN 391:PMID 321:ISBN 298:PMID 207:GNSS 190:and 56:and 432:doi 383:doi 290:doi 106:FOG 504:: 448:. 438:. 389:. 381:. 371:56 369:. 296:. 288:. 278:15 276:. 183:. 100:A 494:. 472:. 456:. 434:: 422:. 397:. 385:: 377:: 354:. 329:. 304:. 292:: 284:: 104:( 79:) 73:( 68:) 64:( 60:. 50:. 20:)

Index

Fibre optic gyroscope
citation style
citation
footnoting
Learn how and when to remove this message

Sagnac interferometer
Sagnac effect
gyroscope
interference
optical fibre
Sagnac effect
phase shift
angular velocity
photometrically.
Beam splitting
Sagnac effect
gyroscope
ring laser gyroscope
open-loop
closed-loop
GNSS
Attitude and Heading Reference System
Hemispherical resonator gyroscope
Inertial measurement unit
Inertial navigation
Vibrating structure gyroscope
Optical heterodyne detection
Ring laser gyroscope
Quantum gyroscope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑