Knowledge

Finite group

Source 📝

957: 52: 832:. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include 1298:), gradually a belief formed that nearly all finite simple groups can be accounted for by appropriate extensions of Chevalley's construction, together with cyclic and alternating groups. Moreover, the exceptions, the 1848:. To see this for any particular order is usually not difficult (for example, there is, up to isomorphism, one non-solvable group and 12 solvable groups of order 60) but the proof of this for all orders uses the 1143:
An arbitrary finite abelian group is isomorphic to a direct sum of finite cyclic groups of prime power order, and these orders are uniquely determined, forming a complete system of invariants. The
497: 472: 435: 1646:
The proof of the theorem consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.
799: 2482: 2452: 2385: 2355: 1849: 1572: 1310: 876: 848: 357: 2593: 1635:
is that such "building blocks" do not necessarily determine uniquely a group, since there might be many non-isomorphic groups with the same
1155:
and later was both simplified and generalized to finitely generated modules over a principal ideal domain, forming an important chapter of
1147:
of a finite abelian group can be described directly in terms of these invariants. The theory had been first developed in the 1879 paper of
1690: 1339: 913:
of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. The theory of
307: 2370: 792: 302: 1385:
This provides a partial converse to Lagrange's theorem giving information about how many subgroups of a given order are contained in
1290:. Moreover, as in the case of compact simple Lie groups, the corresponding groups turned out to be almost simple as abstract groups ( 863:
During the twentieth century, mathematicians investigated some aspects of the theory of finite groups in great depth, especially the
1302:, share many properties with the finite groups of Lie type, and in particular, can be constructed and characterized based on their 1247: 1231: 1631:
is a more precise way of stating this fact about finite groups. However, a significant difference with respect to the case of
2552: 718: 1619:
The finite simple groups can be seen as the basic building blocks of all finite groups, in a way reminiscent of the way the
2666: 2390: 1651: 1501: 785: 1628: 2365: 1758: 1710: 1576: 1258:≠ 2, 3. This theorem generalizes to projective groups of higher dimensions and gives an important infinite family PSL( 402: 216: 1434: 1822: 600: 334: 211: 99: 1129: 1097: 2661: 1190: 750: 540: 2410: 1632: 1368: 1322: 956: 624: 1777: 1454: 1693:
implies that the cyclic subgroup generated by any of its non-identity elements is the whole group. If
2415: 2380: 1552: 1540: 1471: 1349: 1279: 1267: 1204: 1152: 1109: 1032: 1009: 899: 564: 552: 170: 104: 2395: 1769: 1536: 1516: 1411: 1398: 1197: 1178: 1125: 993: 930: 918: 821: 139: 34: 1697:
is the square of a prime, then there are exactly two possible isomorphism types of group of order
480: 455: 418: 2585: 2440: 2360: 1636: 1144: 124: 96: 1294:). Although it was known since 19th century that other finite simple groups exist (for example, 1239: 1317:
include all the finite simple groups other than the cyclic groups, the alternating groups, the
2589: 2548: 2466: 1647: 1598: 1591: 1418: 1227: 1168: 1137: 965: 951: 837: 695: 529: 372: 266: 1713:
give asymptotically correct estimates for the number of isomorphism types of groups of order
1218:
Finite groups of Lie type were among the first groups to be considered in mathematics, after
2558: 1781: 1275: 1212: 1208: 895: 891: 887: 813: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 134: 2562: 2400: 1640: 1426: 1299: 1271: 1223: 1148: 1005: 926: 872: 852: 847:
since it arose in the 19th century. One major area of study has been classification: the
764: 757: 743: 700: 588: 511: 341: 255: 195: 75: 2444: 2420: 1845: 1729: 1655: 1624: 1605: 1544: 1512: 1380: 1295: 1243: 1156: 868: 864: 825: 771: 707: 397: 377: 314: 279: 200: 190: 175: 160: 114: 91: 2645: 1313:. Inspection of the list of finite simple groups shows that groups of Lie type over a 2655: 1706: 1407: 1133: 1116: 1100:
gives an isomorphism between the two. This can be done with any finite cyclic group.
1081: 925:. These are finite groups generated by reflections which act on a finite-dimensional 690: 612: 446: 319: 185: 1686: 1682: 1620: 1584: 1489: 1463: 1314: 1242:
in the 1830s. The systematic exploration of finite groups of Lie type started with
1219: 1054: 997: 961: 903: 880: 844: 833: 545: 244: 180: 150: 109: 80: 43: 2405: 1675: 1671: 1548: 1612: 1318: 985: 922: 829: 712: 440: 17: 1024: 1013: 934: 914: 533: 929:. The properties of finite groups can thus play a role in subjects such as 51: 1422: 1353: 910: 70: 1658:
are gradually publishing a simplified and revised version of the proof.
886:
During the second half of the twentieth century, mathematicians such as
2375: 1504: 898:, and other related groups. One such family of groups is the family of 412: 326: 1724:, some restrictions may be placed on the structure of groups of order 1278:
realized that after an appropriate reformulation, many theorems about
1080:, the identity. A typical realization of this group is as the complex 2634:
sequence A060689 (Number of non-Abelian groups of order n)
1065:
is a group all of whose elements are powers of a particular element
1132:
to two group elements does not depend on their order (the axiom of
2630: 2618: 2610: 1825:, which has a long and complicated proof, every group of order 2622:
sequence A000688 (Number of Abelian groups of order
2445:"The Status of the Classification of the Finite Simple Groups" 1864:
for which there are two non-isomorphic simple groups of order
1282:
admit analogues for algebraic groups over an arbitrary field
1717:, and the number grows very rapidly as the power increases. 2633: 2621: 2613: 1888: 1884: 1880: 1792:
is divisible by fewer than three distinct primes, i.e. if
1670:, it is not at all a routine matter to determine how many 883:
from which all finite groups can be built are now known.
27:
Mathematical group based upon a finite number of elements
2639: 2614:
sequence A000001 (Number of groups of order n)
1728:, as a consequence, for example, of results such as the 1203:. Finite groups of Lie type give the bulk of nonabelian 843:
The study of finite groups has been an integral part of
1519:
has order divisible by at least three distinct primes.
2473:, December 1, 1985, vol. 253, no. 6, pp. 104–115. 894:
also increased our understanding of finite analogs of
483: 458: 421: 1215:, the Steinberg groups, and the Suzuki–Ree groups. 1016:from the set of symbols to itself. Since there are 1860:, and there are infinitely many positive integers 491: 466: 429: 1286:, leading to construction of what are now called 1035:(the number of elements) of the symmetric group S 1757:. For a necessary and sufficient condition, see 1615:(sometimes considered as a 27th sporadic group). 1274:in the beginning of 20th century. In the 1950s 1705:is a higher power of a prime, then results of 1433:. This can be understood as an example of the 2547:. Oxford University Press. pp. 238–242. 2483:Group Theory and its Application to Chemistry 2456:. Vol. 51, no. 7. pp. 736–740. 1856:there are at most two simple groups of order 793: 8: 2453:Notices of the American Mathematical Society 1560: 1556: 921:", is strongly influenced by the associated 1012:of such permutations, which are treated as 909:Finite groups often occur when considering 1579:belongs to one of the following families: 1309:The belief has now become a theorem – the 1128:in which the result of applying the group 800: 786: 238: 64: 29: 1270:. Other classical groups were studied by 485: 484: 482: 460: 459: 457: 423: 422: 420: 2530: 2518: 2506: 2494: 1892: 1720:Depending on the prime factorization of 955: 2432: 917:, which may be viewed as dealing with " 356: 122: 32: 2386:Representation theory of finite groups 2356:Classification of finite simple groups 1850:classification of finite simple groups 1573:classification of finite simple groups 1567:Classification of finite simple groups 1311:classification of finite simple groups 877:classification of finite simple groups 849:classification of finite simple groups 358:Classification of finite simple groups 1623:are the basic building blocks of the 879:was achieved, meaning that all those 7: 1732:. For example, every group of order 1189:) of rational points of a reductive 1027:) possible permutations of a set of 1784:, states that every group of order 867:of finite groups and the theory of 1872:Table of distinct groups of order 1821:are non-negative integers. By the 875:. As a consequence, the complete 25: 1662:Number of groups of a given order 1643:does not have a unique solution. 1340:Lagrange's theorem (group theory) 1234:over prime finite fields, PSL(2, 2485:The Chemistry LibreTexts library 2469:(1985), "The Enormous Theorem", 1701:, both of which are abelian. If 1575:is a theorem stating that every 1232:projective special linear groups 50: 2371:Cauchy's theorem (group theory) 1248:projective special linear group 1367:. The theorem is named after 1352:(number of elements) of every 1181:closely related to the group 719:Infinite dimensional Lie group 1: 2391:Modular representation theory 1207:. Special cases include the 1031:symbols, it follows that the 2366:List of finite simple groups 1639:or, put in another way, the 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 2543:Humphreys, John F. (1996). 1852:. For any positive integer 1836:For every positive integer 1535:, states that every finite 996:whose elements are all the 217:List of group theory topics 2683: 1878: 1772:, then any group of order 1681:there are. Every group of 1452: 1396: 1378: 1337: 1166: 1107: 1052: 949: 851:(those with no nontrivial 2648:for groups of small order 2580:Jacobson, Nathan (2009). 1666:Given a positive integer 1515:. Hence each non-Abelian 855:) was completed in 2004. 2545:A Course in Group Theory 1599:simple group of Lie type 1136:). They are named after 335:Elementary abelian group 212:Glossary of group theory 1840:, most groups of order 1813:are prime numbers, and 1448: 1392: 1333: 1292:Tits simplicity theorem 1238:) being constructed by 1098:primitive root of unity 964:of the symmetric group 1606:sporadic simple groups 1323:sporadic simple groups 1306:in the sense of Tits. 1191:linear algebraic group 971: 751:Linear algebraic group 493: 468: 431: 2411:Commuting probability 1823:Feit–Thompson theorem 1633:integer factorization 1629:Jordan–Hölder theorem 1594:of degree at least 5; 1529:Feit–Thompson theorem 1523:Feit–Thompson theorem 1470:is a finite group of 1406:, named in honour of 1369:Joseph-Louis Lagrange 1363:divides the order of 1344:For any finite group 1280:semisimple Lie groups 1104:Finite abelian groups 959: 900:general linear groups 494: 469: 432: 2667:Properties of groups 2416:Finite State Machine 2381:List of small groups 1553:John Griggs Thompson 1410:, states that every 1268:finite simple groups 1246:'s theorem that the 1205:finite simple groups 1153:Ludwig Stickelberger 1110:Finite abelian group 481: 456: 419: 2533:, p. 72, ex. 1 2471:Scientific American 2441:Aschbacher, Michael 2396:Monstrous moonshine 1674:types of groups of 1577:finite simple group 1547:. It was proved by 1517:finite simple group 1441:on the elements of 1196:with values in the 1014:bijective functions 1004:symbols, and whose 931:theoretical physics 919:continuous symmetry 125:Group homomorphisms 35:Algebraic structure 2586:Dover Publications 2361:Association scheme 1778:Burnside's theorem 1691:Lagrange's theorem 1637:composition series 1460:Burnside's theorem 1455:Burnside's theorem 1449:Burnside's theorem 1334:Lagrange's theorem 1163:Groups of Lie type 1145:automorphism group 972: 946:Permutation groups 838:permutation groups 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 2595:978-0-486-47189-1 2467:Daniel Gorenstein 2346: 2345: 1829:is solvable when 1788:is solvable when 1753:not divisible by 1641:extension problem 1592:alternating group 1587:with prime order; 1533:odd order theorem 1230:groups, with the 1175:group of Lie type 1169:Group of Lie type 1138:Niels Henrik Abel 1122:commutative group 952:Permutation group 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 2674: 2638:Small groups on 2632: 2620: 2612: 2599: 2584:(2nd ed.). 2567: 2566: 2540: 2534: 2528: 2522: 2516: 2510: 2504: 2498: 2492: 2486: 2480: 2474: 2464: 2458: 2457: 2449: 2437: 1893: 1804: 1782:group characters 1752: 1746:are primes with 1745: 1404:Cayley's theorem 1399:Cayley's theorem 1393:Cayley's theorem 1288:Chevalley groups 1276:Claude Chevalley 1254:) is simple for 1213:Chevalley groups 1209:classical groups 1120:, also called a 1089: 1088: 1079: 1059:A cyclic group Z 896:classical groups 873:nilpotent groups 814:abstract algebra 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 65: 54: 41: 30: 21: 2682: 2681: 2677: 2676: 2675: 2673: 2672: 2671: 2652: 2651: 2607: 2602: 2596: 2582:Basic Algebra I 2579: 2575: 2573:Further reading 2570: 2555: 2542: 2541: 2537: 2529: 2525: 2517: 2513: 2505: 2501: 2493: 2489: 2481: 2477: 2465: 2461: 2447: 2439: 2438: 2434: 2430: 2425: 2401:Profinite group 2351: 1891: 1879:Main articles: 1877: 1793: 1780:, proved using 1747: 1737: 1736:is cyclic when 1664: 1625:natural numbers 1569: 1549:Walter Feit 1525: 1466:states that if 1457: 1451: 1427:symmetric group 1401: 1395: 1383: 1377: 1342: 1336: 1331: 1300:sporadic groups 1272:Leonard Dickson 1240:Évariste Galois 1171: 1165: 1149:Georg Frobenius 1112: 1106: 1086: 1082: 1070: 1064: 1057: 1051: 1040: 1006:group operation 992:symbols is the 983: 976:symmetric group 969: 954: 948: 943: 927:Euclidean space 861: 853:normal subgroup 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 479: 478: 454: 453: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 2680: 2678: 2670: 2669: 2664: 2654: 2653: 2650: 2649: 2642: 2636: 2628: 2616: 2606: 2605:External links 2603: 2601: 2600: 2594: 2576: 2574: 2571: 2569: 2568: 2553: 2535: 2523: 2511: 2499: 2487: 2475: 2459: 2431: 2429: 2426: 2424: 2423: 2421:Infinite group 2418: 2413: 2408: 2403: 2398: 2393: 2388: 2383: 2378: 2373: 2368: 2363: 2358: 2352: 2350: 2347: 2344: 2343: 2340: 2337: 2334: 2330: 2329: 2326: 2323: 2320: 2316: 2315: 2312: 2309: 2306: 2302: 2301: 2298: 2295: 2292: 2288: 2287: 2284: 2281: 2278: 2274: 2273: 2270: 2267: 2264: 2260: 2259: 2256: 2253: 2250: 2246: 2245: 2242: 2239: 2236: 2232: 2231: 2228: 2225: 2222: 2218: 2217: 2214: 2211: 2208: 2204: 2203: 2200: 2197: 2194: 2190: 2189: 2186: 2183: 2180: 2176: 2175: 2172: 2169: 2166: 2162: 2161: 2158: 2155: 2152: 2148: 2147: 2144: 2141: 2138: 2134: 2133: 2130: 2127: 2124: 2120: 2119: 2116: 2113: 2110: 2106: 2105: 2102: 2099: 2096: 2092: 2091: 2088: 2085: 2082: 2078: 2077: 2074: 2071: 2068: 2064: 2063: 2060: 2057: 2054: 2050: 2049: 2046: 2043: 2040: 2036: 2035: 2032: 2029: 2026: 2022: 2021: 2018: 2015: 2012: 2008: 2007: 2004: 2001: 1998: 1994: 1993: 1990: 1987: 1984: 1980: 1979: 1976: 1973: 1970: 1966: 1965: 1962: 1959: 1956: 1952: 1951: 1948: 1945: 1942: 1938: 1937: 1934: 1931: 1928: 1924: 1923: 1920: 1917: 1914: 1910: 1909: 1906: 1903: 1900: 1876: 1870: 1730:Sylow theorems 1663: 1660: 1617: 1616: 1609: 1604:One of the 26 1602: 1595: 1588: 1568: 1565: 1524: 1521: 1453:Main article: 1450: 1447: 1397:Main article: 1394: 1391: 1381:Sylow theorems 1379:Main article: 1376: 1375:Sylow theorems 1373: 1338:Main article: 1335: 1332: 1330: 1327: 1296:Mathieu groups 1244:Camille Jordan 1167:Main article: 1164: 1161: 1157:linear algebra 1108:Main article: 1105: 1102: 1090:roots of unity 1060: 1053:Main article: 1050: 1047: 1036: 979: 967: 950:Main article: 947: 944: 942: 939: 860: 857: 826:underlying set 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2679: 2668: 2665: 2663: 2662:Finite groups 2660: 2659: 2657: 2647: 2643: 2641: 2637: 2635: 2629: 2627: 2625: 2617: 2615: 2609: 2608: 2604: 2597: 2591: 2587: 2583: 2578: 2577: 2572: 2564: 2560: 2556: 2550: 2546: 2539: 2536: 2532: 2531:Jacobson 2009 2527: 2524: 2520: 2519:Jacobson 2009 2515: 2512: 2508: 2507:Jacobson 2009 2503: 2500: 2496: 2495:Jacobson 2009 2491: 2488: 2484: 2479: 2476: 2472: 2468: 2463: 2460: 2455: 2454: 2446: 2442: 2436: 2433: 2427: 2422: 2419: 2417: 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2353: 2348: 2341: 2338: 2335: 2332: 2331: 2327: 2324: 2321: 2318: 2317: 2313: 2310: 2307: 2304: 2303: 2299: 2296: 2293: 2290: 2289: 2285: 2282: 2279: 2276: 2275: 2271: 2268: 2265: 2262: 2261: 2257: 2254: 2251: 2248: 2247: 2243: 2240: 2237: 2234: 2233: 2229: 2226: 2223: 2220: 2219: 2215: 2212: 2209: 2206: 2205: 2201: 2198: 2195: 2192: 2191: 2187: 2184: 2181: 2178: 2177: 2173: 2170: 2167: 2164: 2163: 2159: 2156: 2153: 2150: 2149: 2145: 2142: 2139: 2136: 2135: 2131: 2128: 2125: 2122: 2121: 2117: 2114: 2111: 2108: 2107: 2103: 2100: 2097: 2094: 2093: 2089: 2086: 2083: 2080: 2079: 2075: 2072: 2069: 2066: 2065: 2061: 2058: 2055: 2052: 2051: 2047: 2044: 2041: 2038: 2037: 2033: 2030: 2027: 2024: 2023: 2019: 2016: 2013: 2010: 2009: 2005: 2002: 1999: 1996: 1995: 1991: 1988: 1985: 1982: 1981: 1977: 1974: 1971: 1968: 1967: 1963: 1960: 1957: 1954: 1953: 1949: 1946: 1943: 1940: 1939: 1935: 1932: 1929: 1926: 1925: 1921: 1918: 1915: 1912: 1911: 1907: 1904: 1901: 1899: 1895: 1894: 1890: 1886: 1882: 1875: 1871: 1869: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1834: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1803: 1800: 1796: 1791: 1787: 1783: 1779: 1776:is solvable. 1775: 1771: 1767: 1762: 1760: 1759:cyclic number 1756: 1750: 1744: 1740: 1735: 1731: 1727: 1723: 1718: 1716: 1712: 1708: 1707:Graham Higman 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1677: 1673: 1669: 1661: 1659: 1657: 1653: 1649: 1644: 1642: 1638: 1634: 1630: 1626: 1622: 1621:prime numbers 1614: 1610: 1607: 1603: 1600: 1596: 1593: 1589: 1586: 1582: 1581: 1580: 1578: 1574: 1566: 1564: 1562: 1558: 1554: 1551: and 1550: 1546: 1542: 1538: 1534: 1530: 1522: 1520: 1518: 1514: 1510: 1506: 1503: 1499: 1495: 1491: 1490:prime numbers 1487: 1483: 1479: 1476: 1473: 1469: 1465: 1461: 1456: 1446: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1413: 1409: 1408:Arthur Cayley 1405: 1400: 1390: 1388: 1382: 1374: 1372: 1370: 1366: 1362: 1358: 1355: 1351: 1347: 1341: 1329:Main theorems 1328: 1326: 1324: 1321:, and the 26 1320: 1316: 1312: 1307: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1216: 1214: 1210: 1206: 1202: 1199: 1195: 1192: 1188: 1184: 1180: 1176: 1170: 1162: 1160: 1158: 1154: 1150: 1146: 1141: 1139: 1135: 1134:commutativity 1131: 1127: 1123: 1119: 1118: 1117:abelian group 1111: 1103: 1101: 1099: 1095: 1091: 1085: 1077: 1073: 1068: 1063: 1056: 1049:Cyclic groups 1048: 1046: 1044: 1039: 1034: 1030: 1026: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 982: 977: 970: 963: 958: 953: 945: 940: 938: 936: 932: 928: 924: 920: 916: 912: 907: 905: 904:finite fields 901: 897: 893: 889: 884: 882: 881:simple groups 878: 874: 870: 866: 858: 856: 854: 850: 846: 841: 839: 835: 834:cyclic groups 831: 827: 823: 819: 815: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 31: 19: 18:Finite groups 2623: 2581: 2544: 2538: 2526: 2521:, p. 38 2514: 2509:, p. 41 2502: 2497:, p. 31 2490: 2478: 2470: 2462: 2451: 2435: 1908:Non-Abelian 1897: 1889:oeis:A060689 1885:oeis:A000688 1881:oeis:A000001 1873: 1865: 1861: 1857: 1853: 1841: 1837: 1835: 1830: 1826: 1818: 1814: 1810: 1806: 1801: 1798: 1794: 1789: 1785: 1773: 1765: 1763: 1754: 1748: 1742: 1738: 1733: 1725: 1721: 1719: 1714: 1711:Charles Sims 1702: 1698: 1694: 1678: 1667: 1665: 1645: 1618: 1585:cyclic group 1570: 1532: 1528: 1526: 1508: 1502:non-negative 1497: 1493: 1485: 1481: 1477: 1474: 1467: 1464:group theory 1459: 1458: 1442: 1438: 1435:group action 1430: 1414: 1403: 1402: 1386: 1384: 1364: 1360: 1356: 1345: 1343: 1315:finite field 1308: 1303: 1291: 1287: 1283: 1263: 1259: 1255: 1251: 1235: 1217: 1200: 1193: 1186: 1182: 1174: 1172: 1142: 1121: 1115: 1113: 1093: 1083: 1075: 1071: 1066: 1061: 1058: 1055:Cyclic group 1042: 1037: 1028: 1021: 1017: 1001: 998:permutations 989: 980: 975: 973: 962:Cayley graph 908: 885: 865:local theory 862: 845:group theory 842: 818:finite group 817: 811: 640: 628: 616: 604: 592: 580: 568: 556: 327: 284: 271: 260: 249: 245:Cyclic group 233: 155: 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 2406:Finite ring 1672:isomorphism 1228:alternating 1010:composition 923:Weyl groups 530:Topological 369:alternating 2656:Categories 2646:classifier 2640:GroupNames 2563:0843.20001 2554:0198534590 2428:References 1770:squarefree 1689:, because 1650:(d.1992), 1648:Gorenstein 1613:Tits group 1429:acting on 1419:isomorphic 1319:Tits group 1092:. Sending 986:finite set 915:Lie groups 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 1902:# Groups 1685:order is 1224:symmetric 1130:operation 1025:factorial 935:chemistry 892:Steinberg 888:Chevalley 701:Conformal 589:Euclidean 196:nilpotent 2443:(2004). 2349:See also 1905:Abelian 1846:solvable 1833:is odd. 1805:, where 1545:solvable 1513:solvable 1505:integers 1480:, where 1423:subgroup 1354:subgroup 1304:geometry 941:Examples 911:symmetry 869:solvable 696:PoincarĂ© 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 2376:P-group 1656:Solomon 1627:. The 1555: ( 1539:of odd 1507:, then 1425:of the 1250:PSL(2, 1124:, is a 1008:is the 1000:of the 859:History 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 2592:  2561:  2551:  1896:Order 1887:, and 1687:cyclic 1654:, and 1492:, and 1348:, the 1220:cyclic 1211:, the 1069:where 830:finite 824:whose 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 2448:(PDF) 1741:< 1683:prime 1676:order 1652:Lyons 1541:order 1537:group 1531:, or 1472:order 1421:to a 1412:group 1350:order 1266:) of 1198:field 1179:group 1177:is a 1126:group 1096:to a 1033:order 994:group 984:on a 902:over 822:group 820:is a 730:Sp(∞) 727:SU(∞) 140:image 2631:OEIS 2619:OEIS 2611:OEIS 2590:ISBN 2549:ISBN 1844:are 1817:and 1809:and 1709:and 1611:The 1571:The 1561:1963 1557:1962 1527:The 1500:are 1496:and 1488:are 1484:and 1226:and 1151:and 974:The 933:and 890:and 871:and 836:and 816:, a 724:O(∞) 713:Loop 532:and 2559:Zbl 2333:30 2319:29 2305:28 2291:27 2277:26 2263:25 2258:12 2252:15 2249:24 2235:23 2221:22 2207:21 2193:20 2179:19 2165:18 2151:17 2140:14 2137:16 2123:15 2109:14 2095:13 2081:12 2067:11 2053:10 1768:is 1764:If 1751:− 1 1590:An 1543:is 1511:is 1462:in 1437:of 1417:is 1359:of 1114:An 1078:= e 1045:!. 1041:is 1020:! ( 988:of 828:is 812:In 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 2658:: 2644:A 2588:. 2557:. 2450:. 2342:3 2339:1 2336:4 2328:0 2325:1 2322:1 2314:2 2311:2 2308:4 2300:2 2297:3 2294:5 2286:1 2283:1 2280:2 2272:0 2269:2 2266:2 2255:3 2244:0 2241:1 2238:1 2230:1 2227:1 2224:2 2216:1 2213:1 2210:2 2202:3 2199:2 2196:5 2188:0 2185:1 2182:1 2174:3 2171:2 2168:5 2160:0 2157:1 2154:1 2146:9 2143:5 2132:0 2129:1 2126:1 2118:1 2115:1 2112:2 2104:0 2101:1 2098:1 2090:3 2087:2 2084:5 2076:0 2073:1 2070:1 2062:1 2059:1 2056:2 2048:0 2045:2 2042:2 2039:9 2034:2 2031:3 2028:5 2025:8 2020:0 2017:1 2014:1 2011:7 2006:1 2003:1 2000:2 1997:6 1992:0 1989:1 1986:1 1983:5 1978:0 1975:2 1972:2 1969:4 1964:0 1961:1 1958:1 1955:3 1950:0 1947:1 1944:1 1941:2 1936:0 1933:1 1930:1 1927:1 1922:0 1919:0 1916:0 1913:0 1883:, 1868:. 1797:= 1761:. 1734:pq 1597:A 1583:A 1563:) 1559:, 1445:. 1389:. 1371:. 1325:. 1262:, 1222:, 1173:A 1159:. 1140:. 1087:th 1074:= 960:A 937:. 906:. 840:. 615:U( 591:E( 579:O( 37:→ 2626:) 2624:n 2598:. 2565:. 1898:n 1874:n 1866:n 1862:n 1858:n 1854:n 1842:n 1838:n 1831:n 1827:n 1819:b 1815:a 1811:q 1807:p 1802:q 1799:p 1795:n 1790:n 1786:n 1774:n 1766:n 1755:q 1749:p 1743:p 1739:q 1726:n 1722:n 1715:n 1703:n 1699:n 1695:n 1679:n 1668:n 1608:; 1601:; 1509:G 1498:b 1494:a 1486:q 1482:p 1478:q 1475:p 1468:G 1443:G 1439:G 1431:G 1415:G 1387:G 1365:G 1361:G 1357:H 1346:G 1284:k 1264:q 1260:n 1256:q 1252:q 1236:p 1201:k 1194:G 1187:k 1185:( 1183:G 1094:a 1084:n 1076:a 1072:a 1067:a 1062:n 1043:n 1038:n 1029:n 1022:n 1018:n 1002:n 990:n 981:n 978:S 968:4 966:S 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

Finite groups
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑