Knowledge (XXG)

Group of Lie type

Source 📝

56: 1305:. He found that if a finite field of characteristic 2 also has an automorphism whose square was the Frobenius map, then an analogue of Steinberg's construction gave the Suzuki groups. The fields with such an automorphism are those of order 2, and the corresponding groups are the Suzuki groups 2128:), but there are so many conventions that it is not possible to say exactly what groups these correspond to without it being specified explicitly. The source of the problem is that the simple group is not the orthogonal group O, nor the 1945:
There is a bewildering number of "accidental" isomorphisms between various small groups of Lie type (and alternating groups). For example, the groups SL(2, 4), PSL(2, 5), and the alternating group on 5 points are all isomorphic.
2026:) does not necessarily induce a surjective map of the corresponding groups with values in some (non algebraically closed) field. There are similar problems with the points of other algebraic groups with values in finite fields. 1174:, and field automorphisms induced by automorphisms of a finite field. Analogously to the unitary case, Steinberg constructed families of groups by taking fixed points of a product of a diagram and a field automorphism. 1535:), gradually a belief formed that nearly all finite simple groups can be accounted for by appropriate extensions of Chevalley's construction, together with cyclic and alternating groups. Moreover, the exceptions, the 1411:
are the ones whose structure is hardest to pin down explicitly. These groups also played a role in the discovery of the first modern sporadic group. They have involution centralizers of the form
1028:), which can be used to define the corresponding algebraic groups over the integers. In particular, he could take their points with values in any finite field. For the Lie algebras A 1965: 501: 476: 439: 2407: 956:. They can be constructed over finite fields (or any other field) in much the same way that they are constructed over the real numbers. They correspond to the series A 2791:, SĂ©minaire Bourbaki; 10e annĂ©e: 1957/1958. Textes des confĂ©rences; ExposĂ©s 152 Ă  168; 2e Ăšd. corrigĂ©e, ExposĂ© 162, vol. 15, Paris: SecrĂ©tariat math'ematique, 2710: 1572:
In general the finite group associated to an endomorphism of a simply connected simple algebraic group is the universal central extension of a simple group, so is
803: 2600: 2556: 1980:
There is no standard notation for the finite groups of Lie type, and the literature contains dozens of incompatible and confusing systems of notation for them.
2132:
PSO, but rather a subgroup of PSO, which accordingly does not have a classical notation. A particularly nasty trap is that some authors, such as the
2315: 2272: 1549: 1396: 858: 361: 2519: 2347: 311: 2129: 1580:. However some of the smallest groups in the families above are either not perfect or have a Schur multiplier larger than "expected". 796: 306: 1612:(2) Not perfect, but is isomorphic to the symmetric group on 6 points so its derived subgroup has index 2 and is simple of order 360. 1527:. Moreover, as in the case of compact simple Lie groups, the corresponding groups turned out to be almost simple as abstract groups ( 1539:, share many properties with the finite groups of Lie type, and in particular, can be constructed and characterized based on their 1447:
The Suzuki groups are the only finite non-abelian simple groups with order not divisible by 3. They have order 2(2 + 1)(2 − 1).
1484: 1468: 2644: 722: 2705: 2416: 1278: 789: 1052:
this gave well known classical groups, but his construction also gave groups associated to the exceptional Lie algebras E
2331: 1950: 1025: 1495:≠ 2, 3. This theorem generalizes to projective groups of higher dimensions and gives an important infinite family PSL( 406: 220: 2268: 1252:
have no analogue over the reals, as the complex numbers have no automorphism of order 3. The symmetries of the D
1116:
Chevalley's construction did not give all of the known classical groups: it omitted the unitary groups and the non-
2822: 1960:. Some of the small alternating groups also have exceptional properties. The alternating groups usually have an 1961: 1000:
Chevalley groups can be thought of as Lie groups over finite fields. The theory was clarified by the theory of
604: 338: 215: 103: 2455:"A class of groups in an arbitrary realm connected with the configuration of the 27 lines on a cubic surface" 2683: 2228:) are the groups of points with values in the simple or the simply connected algebraic group. For example, A 1285:) found a new infinite series of groups that at first sight seemed unrelated to the known algebraic groups. 953: 1167:, which commute. The unitary group is the group of fixed points of the product of these two automorphisms. 1136:. This construction generalizes the usual construction of the unitary group from the general linear group. 2450: 2402: 2311: 2133: 1957: 1540: 1302: 1117: 842: 754: 544: 2817: 2812: 1561: 628: 1648:
Some cases where the group is perfect but has a Schur multiplier that is larger than expected include:
1968:. Alternating groups usually have a Schur multiplier of order 2, but the ones on 6 or 7 points have a 2719: 2339: 1516: 1504: 1317:(Strictly speaking, the group Suz(2) is not counted as a Suzuki group as it is not simple: it is the 926: 568: 556: 174: 108: 2278: 1370: 1164: 903: 143: 38: 484: 459: 422: 2745: 2491: 2438: 1159: 1021: 128: 100: 2594:
Ree, Rimhak (1961), "A family of simple groups associated with the simple Lie algebra of type (F
2550:
Ree, Rimhak (1960), "A family of simple groups associated with the simple Lie algebra of type (G
1531:). Although it was known since 19th century that other finite simple groups exist (for example, 1476: 2148:
the orthogonal group, but the corresponding simple group. The notation Ω, PΩ was introduced by
1556:
include all the finite simple groups other than the cyclic groups, the alternating groups, the
2771: 2737: 2663: 2619: 2575: 2515: 2454: 2430: 2383: 2343: 2149: 1969: 1464: 1353:
have extra automorphisms in characteristic 2 and 3. (Roughly speaking, in characteristic
1220: 1132:, the second of which was discovered at about the same time from a different point of view by 1124:
found a modification of Chevalley's construction that gave these groups and two new families D
1108: 946: 915: 869: 857:
groups of Lie type does have a precise definition, and they make up most of the groups in the
699: 533: 270: 1455:
Finite groups of Lie type were among the first groups to be considered in mathematics, after
872:
may be viewed as the rational points of a reductive linear algebraic group over the field of
2761: 2727: 2653: 2609: 2565: 2483: 2420: 2373: 2156:≀ 4 and thus the same notation may be used for a slightly different group, which agrees in 1577: 1512: 1005: 942: 934: 930: 898:
An initial approach to this question was the definition and detailed study of the so-called
684: 676: 668: 660: 652: 640: 580: 520: 510: 352: 294: 169: 138: 2796: 2757: 2693: 2675: 2631: 2587: 2529: 2395: 2357: 853:
does not have a widely accepted precise definition, but the important collection of finite
2792: 2753: 2689: 2671: 2627: 2583: 2525: 2511: 2391: 2353: 2212: 1536: 1508: 1460: 1318: 1017: 1001: 893: 839: 768: 761: 747: 704: 592: 515: 345: 259: 199: 79: 922:
investigated the orders of such groups, with a view to classifying cases of coincidence.
17: 2723: 1644:(3) Not perfect, but the derived group has index 3 and is the simple group of order 504. 2783: 2536: 1532: 1480: 1171: 1148: 1140: 949: 835: 775: 711: 401: 381: 318: 283: 204: 194: 179: 164: 118: 95: 2766: 2425: 1552:. Inspection of the list of finite simple groups shows that groups of Lie type over a 2806: 2495: 2191:, and people have different ideas on which should be included in the notation. The "A 1573: 1269: 938: 911: 831: 694: 616: 450: 323: 189: 2614: 2570: 2540: 1427:= 3, and by investigating groups with an involution centralizer of the similar form 1553: 1479:
in the 1830s. The systematic exploration of finite groups of Lie type started with
1456: 1380: 873: 864:
The name "groups of Lie type" is due to the close relationship with the (infinite)
854: 846: 821: 549: 248: 237: 184: 159: 154: 113: 84: 47: 1953:. Many of these special properties are related to certain sporadic simple groups. 2639: 1956:
Alternating groups sometimes behave as if they were groups of Lie type over the
1436: 817: 2711:
Proceedings of the National Academy of Sciences of the United States of America
1637:(2) Not perfect, but the derived group has index 2 and is simple of order 6048. 1627: 1557: 1391:
is not simple, but it has a simple normal subgroup of index 3, isomorphic to A
1375: 1361:
in the Dynkin diagram when taking diagram automorphisms.) The smallest group F
1286: 919: 865: 716: 444: 2741: 2667: 2623: 2579: 2434: 2387: 2378: 1170:
In the same way, many Chevalley groups have diagram automorphisms induced by
1273: 537: 28: 2775: 2658: 2732: 55: 2090:("orthogonal" groups) is particularly confusing. Some symbols used are O( 1257: 74: 1918:, so the Schur multiplier of the simple group has order 12 instead of 3. 1895:, so the Schur multiplier of the simple group has order 12 instead of 3. 1872:, so the Schur multiplier of the simple group has order 36 instead of 4. 1717:, so the Schur multiplier of the simple group has order 48 instead of 3. 1598:(3) = PSL(2, 3) Solvable of order 12 (the alternating group on 4 points) 2487: 2442: 2018:). The problem is that a surjective map of algebraic groups such as SL( 1941:, so the Schur multiplier of the simple group has order 4 instead of 1. 1849:, so the Schur multiplier of the simple group has order 2 instead of 1. 1834:, so the Schur multiplier of the simple group has order 2 instead of 1. 1819:, so the Schur multiplier of the simple group has order 3 instead of 1. 1804:, so the Schur multiplier of the simple group has order 2 instead of 1. 1789:, so the Schur multiplier of the simple group has order 4 instead of 1. 1766:, so the Schur multiplier of the simple group has order 6 instead of 2. 1751:, so the Schur multiplier of the simple group has order 2 instead of 1. 1732:, so the Schur multiplier of the simple group has order 2 instead of 1. 1694:, so the Schur multiplier of the simple group has order 2 instead of 1. 1679:, so the Schur multiplier of the simple group has order 6 instead of 2. 1664:, so the Schur multiplier of the simple group has order 2 instead of 1. 1139:
The unitary group arises as follows: the general linear group over the
416: 330: 1515:
realized that after an appropriate reformulation, many theorems about
2749: 2211:)" convention is far more common and is closer to the convention for 1626:(2) Not perfect, but the derived group has index 2 and is the simple 1301:
had an "extra" automorphism in characteristic 2 whose square was the
1020:(a sort of integral form but over finite fields) for all the complex 2471: 2297: 1591:(2) = SL(2, 2) Solvable of order 6 (the symmetric group on 3 points) 2183:). The problem is that there are two fields involved, one of order 2697: 2258:(4) may be any one of 4 different groups, depending on the author. 941:. There are several minor variations of these, given by taking 1234: 1101: 1519:
admit analogues for algebraic groups over an arbitrary field
1357:
one is allowed to ignore the arrow on bonds of multiplicity
1321:
of order 20.) Ree was able to find two new similar families
1157:(which corresponds to taking the transpose inverse), and a 2405:(1901b), "Theory of Linear Groups in An Arbitrary Field", 2364:
Chevalley, Claude (1955), "Sur certains groupes simples",
2173:) (and so on) for the group that other authors denote by A 1964:
of order 2, but the alternating group on 6 points has an
2298:
mathoverflow – Definition of “finite group of Lie type”?
2201:)" convention is more logical and consistent, but the "A 2708:(1960), "A new type of simple groups of finite order", 2465:: 145–173, Reprinted in volume 5 of his collected works 2542:
Traité des substitutions et des équations algébriques
2459:
The Quarterly Journal of Pure and Applied Mathematics
1619:(2) = Suz(2) Solvable of order 20 (a Frobenius group) 487: 462: 425: 495: 470: 433: 2408:Transactions of the American Mathematical Society 1523:, leading to construction of what are now called 2445:, Reprinted in volume II of his collected papers 2073:) (the symplectic group) or (confusingly) by Sp( 1949:For a complete list of these exceptions see the 1435:× PSL(2, 5) Janko found the sporadic group  884:are standard references for groups of Lie type. 1511:in the beginning of 20th century. In the 1950s 1369:is not simple, but it has a simple subgroup of 2238:) may mean either the special linear group SL( 2163:For the Steinberg groups, some authors write A 2044:) (the projective special linear group) or by 1016:concept was isolated. Chevalley constructed a 2601:Bulletin of the American Mathematical Society 2557:Bulletin of the American Mathematical Society 2246:) or the projective special linear group PSL( 1583:Cases where the group is not perfect include 797: 8: 2499:Leonard E. Dickson reported groups of type G 1992:) is not usually the same as the group PSL( 2785:Les "formes rĂ©elles" des groupes de type E 2218:Authors differ on whether groups such as A 2152:, though his definition is not simple for 2014:-valued points of the algebraic group PSL( 1548:The belief has now become a theorem – the 925:A classical group is, roughly speaking, a 804: 790: 242: 68: 33: 2765: 2731: 2657: 2613: 2569: 2424: 2377: 2307: 2305: 1507:. Other classical groups were studied by 1345:of simple groups by using the fact that F 1121: 1012:) on Lie algebras, by means of which the 1009: 877: 834:that are closely related to the group of 489: 488: 486: 464: 463: 461: 427: 426: 424: 2290: 1089: 1081: 360: 126: 36: 1925:(8) The Schur multiplier has an extra 1902:(4) The Schur multiplier has an extra 1879:(4) The Schur multiplier has an extra 1856:(9) The Schur multiplier has an extra 1841:(4) The Schur multiplier has an extra 1826:(4) The Schur multiplier has an extra 1811:(3) The Schur multiplier has an extra 1796:(2) The Schur multiplier has an extra 1773:(2) The Schur multiplier has an extra 1758:(3) The Schur multiplier has an extra 1743:(2) The Schur multiplier has an extra 1724:(2) The Schur multiplier has an extra 1701:(4) The Schur multiplier has an extra 1686:(2) The Schur multiplier has an extra 1671:(9) The Schur multiplier has an extra 1656:(4) The Schur multiplier has an extra 1550:classification of finite simple groups 1397:classification of finite simple groups 1282: 1172:automorphisms of their Dynkin diagrams 907: 881: 859:classification of finite simple groups 362:Classification of finite simple groups 2688:, Yale University, New Haven, Conn., 7: 2640:"Variations on a theme of Chevalley" 2338:, Wiley Classics Library, New York: 1240:, from the order 3 automorphism of D 1226:, from the order 2 automorphism of E 1210:, from the order 2 automorphism of D 1191:, from the order 2 automorphism of A 1133: 2508:La gĂ©omĂ©trie des groupes classiques 2130:projective special orthogonal group 1966:outer automorphism group of order 4 1451:Relations with finite simple groups 1294: 1290: 992:of Chevalley and Steinberg groups. 2510:(3rd ed.), Berlin, New York: 1080:) had already been constructed by 25: 2426:10.1090/S0002-9947-1901-1500573-3 2084:The notation for groups of type D 1471:over prime finite fields, PSL(2, 1297:) knew that the algebraic group B 1469:projective special linear groups 54: 2615:10.1090/S0002-9904-1961-10527-2 2571:10.1090/S0002-9904-1960-10523-X 2472:"A new system of simple groups" 2366:The Tohoku Mathematical Journal 2187:, and its fixed field of order 2160:≄ 5 but not in lower dimension. 1485:projective special linear group 1379:(named after the mathematician 910:. These groups were studied by 2645:Pacific Journal of Mathematics 723:Infinite dimensional Lie group 1: 2417:American Mathematical Society 2275:of finite groups of Lie type) 2065:are sometimes denoted by Sp(2 2036:are sometimes denoted by PSL( 1026:universal enveloping algebras 2685:Lectures on Chevalley groups 2506:DieudonnĂ©, Jean A. (1971) , 1951:list of finite simple groups 496:{\displaystyle \mathbb {Z} } 471:{\displaystyle \mathbb {Z} } 434:{\displaystyle \mathbb {Z} } 1970:Schur multiplier of order 6 221:List of group theory topics 2839: 2682:Steinberg, Robert (1968), 2638:Steinberg, Robert (1959), 1267: 1256:diagram also give rise to 1099: 891: 26: 2545:, Paris: Gauthier-Villars 2336:Simple groups of Lie type 18:Finite groups of Lie type 1962:outer automorphism group 1568:Small groups of Lie type 1084:, and the ones of type E 954:projective linear groups 339:Elementary abelian group 216:Glossary of group theory 27:Not to be confused with 2470:Dickson, L. E. (1905), 2451:Dickson, Leonard Eugene 2415:(4), Providence, R.I.: 2403:Dickson, Leonard Eugene 1529:Tits simplicity theorem 1475:) being constructed by 1383:). The smallest group G 1147:given by reversing the 1118:split orthogonal groups 2782:Tits, Jacques (1958), 2659:10.2140/pjm.1959.9.875 2379:10.2748/tmj/1178245104 2269:Deligne–Lusztig theory 2144:) for a group that is 1958:field with one element 1562:sporadic simple groups 1545:in the sense of Tits. 1303:Frobenius automorphism 952:, the latter yielding 902:over finite and other 843:linear algebraic group 755:Linear algebraic group 497: 472: 435: 2733:10.1073/pnas.46.6.868 2340:John Wiley & Sons 2273:representation theory 1984:The simple group PSL( 1517:semisimple Lie groups 498: 473: 436: 2059:The groups of type C 2029:The groups of type A 1505:finite simple groups 1483:'s theorem that the 1248:The groups of type D 1145:diagram automorphism 1072:. The ones of type G 1024:(or rather of their 485: 460: 423: 2724:1960PNAS...46..868S 2279:Modular Lie algebra 1165:complex conjugation 1022:simple Lie algebras 129:Group homomorphisms 39:Algebraic structure 2488:10.1007/BF01447497 1160:field automorphism 1076:(sometimes called 1004:, and the work of 830:usually refers to 820:, specifically in 605:Special orthogonal 493: 468: 431: 312:Lagrange's theorem 2521:978-0-387-05391-2 2368:, Second Series, 2349:978-0-471-50683-6 1467:groups, with the 1399:, the Ree groups 1264:Suzuki–Ree groups 1202:orthogonal groups 943:derived subgroups 870:compact Lie group 851:group of Lie type 845:with values in a 827:group of Lie type 814: 813: 389: 388: 271:Alternating group 228: 227: 16:(Redirected from 2830: 2823:Algebraic groups 2799: 2778: 2769: 2735: 2701: 2696:, archived from 2678: 2661: 2634: 2617: 2590: 2573: 2546: 2532: 2498: 2466: 2446: 2428: 2398: 2381: 2360: 2332:Carter, Roger W. 2318: 2309: 2300: 2295: 2213:algebraic groups 1578:Schur multiplier 1576:and has trivial 1525:Chevalley groups 1513:Claude Chevalley 1491:) is simple for 1163:given by taking 1122:Steinberg (1959) 1096:Steinberg groups 1002:algebraic groups 996:Chevalley groups 900:classical groups 888:Classical groups 878:DieudonnĂ© (1971) 806: 799: 792: 748:Algebraic groups 521:Hyperbolic group 511:Arithmetic group 502: 500: 499: 494: 492: 477: 475: 474: 469: 467: 440: 438: 437: 432: 430: 353:Schur multiplier 307:Cauchy's theorem 295:Quaternion group 243: 69: 58: 45: 34: 21: 2838: 2837: 2833: 2832: 2831: 2829: 2828: 2827: 2803: 2802: 2788: 2781: 2704: 2681: 2637: 2597: 2593: 2553: 2549: 2537:Jordan, Camille 2535: 2522: 2512:Springer-Verlag 2505: 2502: 2469: 2449: 2401: 2363: 2350: 2330: 2327: 2322: 2321: 2310: 2303: 2296: 2292: 2287: 2265: 2257: 2233: 2223: 2206: 2196: 2178: 2168: 2123: 2089: 2064: 2035: 2013: 2004: 1978: 1976:Notation issues 1924: 1901: 1878: 1855: 1840: 1825: 1810: 1795: 1772: 1757: 1742: 1738: 1723: 1700: 1685: 1670: 1655: 1643: 1636: 1625: 1618: 1611: 1604: 1597: 1590: 1570: 1537:sporadic groups 1509:Leonard Dickson 1477:Évariste Galois 1453: 1442: 1406: 1394: 1390: 1386: 1368: 1364: 1352: 1348: 1340: 1328: 1319:Frobenius group 1312: 1300: 1276: 1268:Main articles: 1266: 1255: 1251: 1243: 1238: 1233:the new series 1229: 1224: 1219:the new series 1215: 1209: 1196: 1190: 1156: 1141:complex numbers 1131: 1127: 1114: 1112: 1105: 1100:Main articles: 1098: 1087: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1045: 1039: 1033: 1018:Chevalley basis 1014:Chevalley group 998: 991: 985: 979: 973: 967: 961: 896: 894:Classical group 890: 836:rational points 810: 781: 780: 769:Abelian variety 762:Reductive group 750: 740: 739: 738: 737: 688: 680: 672: 664: 656: 629:Special unitary 540: 526: 525: 507: 506: 483: 482: 458: 457: 421: 420: 412: 411: 402:Discrete groups 391: 390: 346:Frobenius group 291: 278: 267: 260:Symmetric group 256: 240: 230: 229: 80:Normal subgroup 66: 46: 37: 32: 23: 22: 15: 12: 11: 5: 2836: 2834: 2826: 2825: 2820: 2815: 2805: 2804: 2801: 2800: 2786: 2779: 2718:(6): 868–870, 2706:Suzuki, Michio 2702: 2679: 2652:(3): 875–891, 2635: 2595: 2591: 2564:(6): 508–510, 2551: 2547: 2533: 2520: 2503: 2500: 2467: 2447: 2399: 2372:(1–2): 14–66, 2361: 2348: 2326: 2323: 2320: 2319: 2301: 2289: 2288: 2286: 2283: 2282: 2281: 2276: 2264: 2261: 2260: 2259: 2255: 2229: 2219: 2216: 2202: 2192: 2174: 2164: 2161: 2150:Jean DieudonnĂ© 2119: 2085: 2082: 2060: 2057: 2030: 2027: 2009: 2000: 1977: 1974: 1943: 1942: 1922: 1919: 1899: 1896: 1876: 1873: 1853: 1850: 1838: 1835: 1823: 1820: 1808: 1805: 1793: 1790: 1770: 1767: 1755: 1752: 1740: 1736: 1733: 1721: 1718: 1698: 1695: 1683: 1680: 1668: 1665: 1653: 1646: 1645: 1641: 1638: 1634: 1631: 1623: 1620: 1616: 1613: 1609: 1606: 1602: 1599: 1595: 1592: 1588: 1569: 1566: 1533:Mathieu groups 1481:Camille Jordan 1452: 1449: 1440: 1409: 1408: 1404: 1392: 1388: 1384: 1373:2, called the 1366: 1362: 1350: 1346: 1343: 1342: 1338: 1331: 1330: 1326: 1315: 1314: 1310: 1298: 1265: 1262: 1253: 1249: 1246: 1245: 1241: 1236: 1231: 1227: 1222: 1217: 1211: 1205: 1198: 1192: 1186: 1183:unitary groups 1152: 1149:Dynkin diagram 1129: 1125: 1110: 1103: 1097: 1094: 1090:Dickson (1901) 1085: 1082:Dickson (1905) 1078:Dickson groups 1073: 1069: 1065: 1061: 1057: 1053: 1047: 1041: 1035: 1029: 997: 994: 987: 981: 975: 969: 963: 957: 927:special linear 916:Jean DieudonnĂ© 892:Main article: 889: 886: 812: 811: 809: 808: 801: 794: 786: 783: 782: 779: 778: 776:Elliptic curve 772: 771: 765: 764: 758: 757: 751: 746: 745: 742: 741: 736: 735: 732: 729: 725: 721: 720: 719: 714: 712:Diffeomorphism 708: 707: 702: 697: 691: 690: 686: 682: 678: 674: 670: 666: 662: 658: 654: 649: 648: 637: 636: 625: 624: 613: 612: 601: 600: 589: 588: 577: 576: 569:Special linear 565: 564: 557:General linear 553: 552: 547: 541: 532: 531: 528: 527: 524: 523: 518: 513: 505: 504: 491: 479: 466: 453: 451:Modular groups 449: 448: 447: 442: 429: 413: 410: 409: 404: 398: 397: 396: 393: 392: 387: 386: 385: 384: 379: 374: 371: 365: 364: 358: 357: 356: 355: 349: 348: 342: 341: 336: 327: 326: 324:Hall's theorem 321: 319:Sylow theorems 315: 314: 309: 301: 300: 299: 298: 292: 287: 284:Dihedral group 280: 279: 274: 268: 263: 257: 252: 241: 236: 235: 232: 231: 226: 225: 224: 223: 218: 210: 209: 208: 207: 202: 197: 192: 187: 182: 177: 175:multiplicative 172: 167: 162: 157: 149: 148: 147: 146: 141: 133: 132: 124: 123: 122: 121: 119:Wreath product 116: 111: 106: 104:direct product 98: 96:Quotient group 90: 89: 88: 87: 82: 77: 67: 64: 63: 60: 59: 51: 50: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2835: 2824: 2821: 2819: 2816: 2814: 2811: 2810: 2808: 2798: 2794: 2790: 2789: 2780: 2777: 2773: 2768: 2763: 2759: 2755: 2751: 2747: 2743: 2739: 2734: 2729: 2725: 2721: 2717: 2713: 2712: 2707: 2703: 2700:on 2012-09-10 2699: 2695: 2691: 2687: 2686: 2680: 2677: 2673: 2669: 2665: 2660: 2655: 2651: 2647: 2646: 2641: 2636: 2633: 2629: 2625: 2621: 2616: 2611: 2607: 2603: 2602: 2592: 2589: 2585: 2581: 2577: 2572: 2567: 2563: 2559: 2558: 2548: 2544: 2543: 2538: 2534: 2531: 2527: 2523: 2517: 2513: 2509: 2504: 2497: 2493: 2489: 2485: 2481: 2477: 2473: 2468: 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2427: 2422: 2418: 2414: 2410: 2409: 2404: 2400: 2397: 2393: 2389: 2385: 2380: 2375: 2371: 2367: 2362: 2359: 2355: 2351: 2345: 2341: 2337: 2333: 2329: 2328: 2324: 2317: 2313: 2308: 2306: 2302: 2299: 2294: 2291: 2284: 2280: 2277: 2274: 2270: 2267: 2266: 2262: 2253: 2249: 2245: 2241: 2237: 2232: 2227: 2222: 2217: 2214: 2210: 2205: 2200: 2195: 2190: 2186: 2182: 2177: 2172: 2167: 2162: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2122: 2117: 2113: 2109: 2105: 2101: 2097: 2093: 2088: 2083: 2080: 2076: 2072: 2068: 2063: 2058: 2055: 2051: 2047: 2043: 2039: 2033: 2028: 2025: 2021: 2017: 2012: 2008: 2003: 1999: 1995: 1991: 1987: 1983: 1982: 1981: 1975: 1973: 1971: 1967: 1963: 1959: 1954: 1952: 1947: 1940: 1936: 1932: 1928: 1920: 1917: 1913: 1909: 1905: 1897: 1894: 1890: 1886: 1882: 1874: 1871: 1867: 1863: 1859: 1851: 1848: 1844: 1836: 1833: 1829: 1821: 1818: 1814: 1806: 1803: 1799: 1791: 1788: 1784: 1780: 1776: 1768: 1765: 1761: 1753: 1750: 1746: 1734: 1731: 1727: 1719: 1716: 1712: 1708: 1704: 1696: 1693: 1689: 1681: 1678: 1674: 1666: 1663: 1659: 1651: 1650: 1649: 1639: 1632: 1629: 1621: 1614: 1607: 1600: 1593: 1586: 1585: 1584: 1581: 1579: 1575: 1567: 1565: 1563: 1560:, and the 26 1559: 1555: 1551: 1546: 1544: 1543: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1458: 1450: 1448: 1445: 1443: 1439: 1434: 1430: 1426: 1422: 1418: 1414: 1402: 1401: 1400: 1398: 1387:(3) of type G 1382: 1378: 1377: 1372: 1365:(2) of type F 1360: 1356: 1336: 1335: 1334: 1324: 1323: 1322: 1320: 1313:(2) = Suz(2). 1308: 1307: 1306: 1304: 1296: 1292: 1288: 1284: 1280: 1275: 1271: 1270:Suzuki groups 1263: 1261: 1259: 1239: 1232: 1225: 1218: 1214: 1208: 1203: 1199: 1195: 1189: 1184: 1180: 1179: 1178: 1175: 1173: 1168: 1166: 1162: 1161: 1155: 1150: 1146: 1142: 1137: 1135: 1123: 1119: 1113: 1106: 1095: 1093: 1091: 1083: 1079: 1050: 1044: 1038: 1032: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 995: 993: 990: 984: 978: 972: 966: 960: 955: 951: 948: 944: 940: 939:unitary group 936: 932: 928: 923: 921: 917: 913: 912:L. E. Dickson 909: 908:Jordan (1870) 905: 901: 895: 887: 885: 883: 882:Carter (1989) 879: 875: 871: 867: 862: 860: 856: 852: 849:. The phrase 848: 844: 841: 837: 833: 832:finite groups 829: 828: 824:, the phrase 823: 819: 807: 802: 800: 795: 793: 788: 787: 785: 784: 777: 774: 773: 770: 767: 766: 763: 760: 759: 756: 753: 752: 749: 744: 743: 733: 730: 727: 726: 724: 718: 715: 713: 710: 709: 706: 703: 701: 698: 696: 693: 692: 689: 683: 681: 675: 673: 667: 665: 659: 657: 651: 650: 646: 642: 639: 638: 634: 630: 627: 626: 622: 618: 615: 614: 610: 606: 603: 602: 598: 594: 591: 590: 586: 582: 579: 578: 574: 570: 567: 566: 562: 558: 555: 554: 551: 548: 546: 543: 542: 539: 535: 530: 529: 522: 519: 517: 514: 512: 509: 508: 480: 455: 454: 452: 446: 443: 418: 415: 414: 408: 405: 403: 400: 399: 395: 394: 383: 380: 378: 375: 372: 369: 368: 367: 366: 363: 359: 354: 351: 350: 347: 344: 343: 340: 337: 335: 333: 329: 328: 325: 322: 320: 317: 316: 313: 310: 308: 305: 304: 303: 302: 296: 293: 290: 285: 282: 281: 277: 272: 269: 266: 261: 258: 255: 250: 247: 246: 245: 244: 239: 238:Finite groups 234: 233: 222: 219: 217: 214: 213: 212: 211: 206: 203: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 152: 151: 150: 145: 142: 140: 137: 136: 135: 134: 131: 130: 125: 120: 117: 115: 112: 110: 107: 105: 102: 99: 97: 94: 93: 92: 91: 86: 83: 81: 78: 76: 73: 72: 71: 70: 65:Basic notions 62: 61: 57: 53: 52: 49: 44: 40: 35: 30: 19: 2818:Lie algebras 2813:Group theory 2784: 2715: 2709: 2698:the original 2684: 2649: 2643: 2605: 2599: 2561: 2555: 2541: 2507: 2479: 2475: 2462: 2458: 2412: 2406: 2369: 2365: 2335: 2293: 2251: 2247: 2243: 2239: 2235: 2230: 2225: 2220: 2208: 2203: 2198: 2193: 2188: 2184: 2180: 2175: 2170: 2165: 2157: 2153: 2145: 2141: 2137: 2125: 2120: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2086: 2078: 2074: 2070: 2066: 2061: 2053: 2049: 2045: 2041: 2037: 2031: 2023: 2019: 2015: 2010: 2006: 2001: 1997: 1993: 1989: 1985: 1979: 1955: 1948: 1944: 1938: 1934: 1930: 1926: 1915: 1911: 1907: 1903: 1892: 1888: 1884: 1880: 1869: 1865: 1861: 1857: 1846: 1842: 1831: 1827: 1816: 1812: 1801: 1797: 1786: 1782: 1778: 1774: 1763: 1759: 1748: 1744: 1729: 1725: 1714: 1710: 1706: 1702: 1691: 1687: 1676: 1672: 1661: 1657: 1647: 1605:(4) Solvable 1582: 1571: 1554:finite field 1547: 1541: 1528: 1524: 1520: 1500: 1496: 1492: 1488: 1472: 1454: 1446: 1437: 1432: 1428: 1424: 1420: 1416: 1412: 1410: 1395:(8). In the 1381:Jacques Tits 1374: 1358: 1354: 1344: 1332: 1316: 1277: 1247: 1212: 1206: 1201: 1193: 1187: 1182: 1177:These gave: 1176: 1169: 1158: 1153: 1144: 1138: 1115: 1077: 1048: 1042: 1036: 1030: 1013: 999: 988: 982: 976: 970: 964: 958: 924: 899: 897: 874:real numbers 863: 850: 847:finite field 826: 825: 822:group theory 815: 644: 632: 620: 608: 596: 584: 572: 560: 376: 331: 288: 275: 264: 253: 249:Cyclic group 127: 114:Free product 85:Group action 48:Group theory 43:Group theory 42: 2608:: 115–116, 2482:: 137–150, 2419:: 363–394, 1465:alternating 1134:Tits (1958) 818:mathematics 534:Topological 373:alternating 2807:Categories 2476:Math. Ann. 2325:References 1628:Tits group 1558:Tits group 1376:Tits group 935:symplectic 931:orthogonal 920:Emil Artin 868:, since a 866:Lie groups 641:Symplectic 581:Orthogonal 538:Lie groups 445:Free group 170:continuous 109:Direct sum 2742:0027-8424 2668:0030-8730 2624:0002-9904 2580:0002-9904 2496:179178145 2435:0002-9947 2388:0040-8735 2334:(1989) , 1461:symmetric 1419:× PSL(2, 1274:Ree group 1006:Chevalley 950:quotients 840:reductive 705:Conformal 593:Euclidean 200:nilpotent 29:Lie group 2776:16590684 2539:(1870), 2453:(1901), 2263:See also 2136:, use O( 2022:) → PSL( 1542:geometry 1258:triality 1200:further 700:PoincarĂ© 545:Solenoid 417:Integers 407:Lattices 382:sporadic 377:Lie type 205:solvable 195:dihedral 180:additive 165:infinite 75:Subgroup 2797:0106247 2758:0120283 2720:Bibcode 2694:0466335 2676:0109191 2632:0125155 2588:0125155 2530:0310083 2443:1986251 2396:0073602 2358:0407163 2254:). So A 2110:), PSO( 1739:(2) = C 1574:perfect 1487:PSL(2, 1289: ( 1281: ( 1068:, and G 1008: ( 947:central 695:Lorentz 617:Unitary 516:Lattice 456:PSL(2, 190:abelian 101:(Semi-) 2795:  2774:  2767:222949 2764:  2756:  2748:  2740:  2692:  2674:  2666:  2630:  2622:  2586:  2578:  2528:  2518:  2494:  2441:  2433:  2394:  2386:  2356:  2346:  1457:cyclic 1423:) for 1279:Suzuki 1143:has a 904:fields 855:simple 550:Circle 481:SL(2, 370:cyclic 334:-group 185:cyclic 160:finite 155:simple 139:kernel 2750:70960 2746:JSTOR 2492:S2CID 2439:JSTOR 2316:p. xi 2312:ATLAS 2285:Notes 2134:ATLAS 2005:) of 1503:) of 1371:index 1349:and G 937:, or 838:of a 734:Sp(∞) 731:SU(∞) 144:image 2772:PMID 2738:ISSN 2664:ISSN 2620:ISSN 2598:)", 2576:ISSN 2554:)", 2516:ISBN 2431:ISSN 2384:ISSN 2344:ISBN 2250:+1, 2242:+1, 2118:), Ω 1463:and 1333:and 1295:1961 1291:1960 1283:1960 1272:and 1181:the 1107:and 1010:1955 914:and 880:and 728:O(∞) 717:Loop 536:and 2762:PMC 2728:doi 2654:doi 2610:doi 2566:doi 2484:doi 2421:doi 2374:doi 2146:not 2098:), 1407:(3) 1341:(3) 1329:(2) 1287:Ree 1128:, E 1088:by 1064:, F 1060:, E 1056:, E 1046:, D 1040:, C 1034:, B 986:, D 974:, D 968:, C 962:, B 945:or 906:by 816:In 643:Sp( 631:SU( 607:SO( 571:SL( 559:GL( 2809:: 2793:MR 2770:, 2760:, 2754:MR 2752:, 2744:, 2736:, 2726:, 2716:46 2714:, 2690:MR 2672:MR 2670:, 2662:, 2648:, 2642:, 2628:MR 2626:, 2618:, 2606:67 2604:, 2584:MR 2582:, 2574:, 2562:66 2560:, 2526:MR 2524:, 2514:, 2490:, 2480:60 2478:, 2474:, 2463:33 2461:, 2457:, 2437:, 2429:, 2411:, 2392:MR 2390:, 2382:, 2354:MR 2352:, 2342:, 2314:, 2304:^ 2140:, 2114:, 2106:, 2094:, 2081:). 2077:, 2069:, 2056:). 2052:, 2040:, 2034:−1 1996:, 1988:, 1972:. 1937:/2 1933:× 1929:/2 1914:/2 1910:× 1906:/2 1891:/2 1887:× 1883:/2 1868:/3 1864:× 1860:/3 1845:/2 1830:/2 1815:/3 1800:/2 1785:/2 1781:× 1777:/2 1762:/3 1747:/2 1728:/2 1713:/4 1709:× 1705:/4 1690:/2 1675:/3 1660:/2 1564:. 1499:, 1459:, 1444:. 1431:/2 1415:/2 1293:, 1260:. 1120:. 1092:. 980:,A 933:, 929:, 918:. 876:. 861:. 619:U( 595:E( 583:O( 41:→ 2787:6 2730:: 2722:: 2656:: 2650:9 2612:: 2596:4 2568:: 2552:2 2501:2 2486:: 2423:: 2413:2 2376:: 2370:7 2271:( 2256:2 2252:q 2248:n 2244:q 2240:n 2236:q 2234:( 2231:n 2226:q 2224:( 2221:n 2215:. 2209:q 2207:( 2204:n 2199:q 2197:( 2194:n 2189:q 2185:q 2181:q 2179:( 2176:n 2171:q 2169:( 2166:n 2158:n 2154:n 2142:q 2138:n 2126:q 2124:( 2121:n 2116:q 2112:n 2108:q 2104:n 2102:( 2100:O 2096:q 2092:n 2087:n 2079:q 2075:n 2071:q 2067:n 2062:n 2054:q 2050:n 2048:( 2046:L 2042:q 2038:n 2032:n 2024:n 2020:n 2016:n 2011:q 2007:F 2002:q 1998:F 1994:n 1990:q 1986:n 1939:Z 1935:Z 1931:Z 1927:Z 1923:2 1921:B 1916:Z 1912:Z 1908:Z 1904:Z 1900:6 1898:E 1893:Z 1889:Z 1885:Z 1881:Z 1877:5 1875:A 1870:Z 1866:Z 1862:Z 1858:Z 1854:3 1852:A 1847:Z 1843:Z 1839:3 1837:A 1832:Z 1828:Z 1824:2 1822:G 1817:Z 1813:Z 1809:2 1807:G 1802:Z 1798:Z 1794:4 1792:F 1787:Z 1783:Z 1779:Z 1775:Z 1771:4 1769:D 1764:Z 1760:Z 1756:3 1754:B 1749:Z 1745:Z 1741:3 1737:3 1735:B 1730:Z 1726:Z 1722:3 1720:A 1715:Z 1711:Z 1707:Z 1703:Z 1699:2 1697:A 1692:Z 1688:Z 1684:2 1682:A 1677:Z 1673:Z 1669:1 1667:A 1662:Z 1658:Z 1654:1 1652:A 1642:2 1640:G 1635:2 1633:G 1630:. 1624:4 1622:F 1617:2 1615:B 1610:2 1608:B 1603:2 1601:A 1596:1 1594:A 1589:1 1587:A 1521:k 1501:q 1497:n 1493:q 1489:q 1473:p 1441:1 1438:J 1433:Z 1429:Z 1425:q 1421:q 1417:Z 1413:Z 1405:2 1403:G 1393:1 1389:2 1385:2 1367:4 1363:4 1359:p 1355:p 1351:2 1347:4 1339:2 1337:G 1327:4 1325:F 1311:2 1309:B 1299:2 1254:4 1250:4 1244:. 1242:4 1237:4 1235:D 1230:; 1228:6 1223:6 1221:E 1216:; 1213:n 1207:n 1204:D 1197:; 1194:n 1188:n 1185:A 1154:n 1151:A 1130:6 1126:4 1111:6 1109:E 1104:4 1102:D 1086:6 1074:2 1070:2 1066:4 1062:8 1058:7 1054:6 1049:n 1043:n 1037:n 1031:n 989:n 983:n 977:n 971:n 965:n 959:n 805:e 798:t 791:v 687:8 685:E 679:7 677:E 671:6 669:E 663:4 661:F 655:2 653:G 647:) 645:n 635:) 633:n 623:) 621:n 611:) 609:n 599:) 597:n 587:) 585:n 575:) 573:n 563:) 561:n 503:) 490:Z 478:) 465:Z 441:) 428:Z 419:( 332:p 297:Q 289:n 286:D 276:n 273:A 265:n 262:S 254:n 251:Z 31:. 20:)

Index

Finite groups of Lie type
Lie group
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑