Knowledge

Plasma-facing material

Source 📝

767:
However, tritium retention in silicon carbide plasma-facing components is about 1.5-2 times higher than in graphite, leading to reduced fuel efficiency and increased safety risks in fusion reactors. SiC traps more tritium, limiting its availability for fusion and increasing the potential for hazardous buildup, which complicates tritium management. Additionally, the chemical and physical sputtering of SiC is still significant and contributes to the key issue of increasing tritium inventory through co-deposition over time and with particle fluency. For those reasons, carbon-based materials have been ruled out in
688:
first wall, both neutral particles and charged particles that escaped the plasma become cold neutral particles in gaseous form. An outer edge of cold neutral gas is then “recycled”, or mixed, with the hotter plasma. A temperature gradient between the cold neutral gas and the hot plasma is believed to be the principal cause of anomalous electron and ion transport from the magnetically confined plasma. As recycling decreases, the temperature gradient decreases and plasma confinement stability increases. With better conditions for fusion in the plasma, the reactor performance increases.
2088:
is paid to the Combined Magnetron Sputtering and Ion Implantation (CMSII) technique, which was developed during the last 4 years from laboratory to industrial scale and it is successfully applied for W coating (10–15 μm and 20–25 μm) of more than 2500 tiles for the ITER-like Wall project at JET and ASDEX Upgrade.... Experimentally, W/Mo coatings with a thickness up to 50 μm were produced and successfully tested in the GLADIS ion beam facility up to 23 MW/m2. Keywords: Tungsten coating; Carbon fibre composite (CFC); ITER-like wall; Magnetron sputtering; Ion implantation
64: 33: 359: 562:. Graphite tiles plasma sprayed with tungsten were used for the ASDEX Upgrade divertor. Studies of tungsten in the divertor have been conducted at the DIII-D facility. These experiments utilized two rings of tungsten isotopes embedded in the lower divertor to characterize erosion tungsten during operation. Molybdenum is used for the first wall material in 759:(SiC), a low-Z refractory ceramic material, has emerged as a promising candidate for structural materials in magnetic fusion energy devices. While the remarkable properties of SiC once attracted attention for fusion experiments, past technological limitations hindered its wider use. However, the evolving capabilities of SiC fiber composites (SiCf/SiC) in 80: 658:
Despite these benefits, tungsten is not without its drawbacks. One notable issue is its tendency to contribute to high core radiation, a significant challenge in maintaining the plasma performance in fusion reactors. Nevertheless, tungsten has been selected as the plasma-facing material for the ITER
2087:
Abstract: The paper gives a short overview on tungsten (W) coatings deposited by various methods on carbon materials (carbon fibre composite – CFC and fine grain graphite – FGG). Vacuum Plasma Spray (VPS), Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD)... A particular attention
674:
Particularly notable are the tungsten laminates and fiber-reinforced composites, which leverage tungsten's exceptional mechanical properties. When combined with copper's high thermal conductivity, these composites offer improved thermomechanical properties, extending beyond the operational range of
662:
Understanding the behavior of tungsten in fusion environments, including its sourcing, migration, and transport in the scrape-off-layer (SOL), as well as its potential for core contamination, is a complex task. Significant research is ongoing to develop a mature and validated understanding of these
637:
Solid plasma-facing materials are known to be susceptible to damage under large heat loads and high neutron flux. If damaged, these solids can contaminate the plasma and decrease plasma confinement stability. In addition, radiation can leak through defects in the solids and contaminate outer vessel
691:
Initial use of lithium in 1990s was motivated by a need for a low-recycling PFC. In 1996, ~ 0.02 grams of lithium coating was added to the PFC of TFTR, resulting in the fusion power output and the fusion plasma confinement to improve by a factor of two. On the first wall, lithium reacted with
675:
traditional materials like CuCrZr. For applications requiring even higher temperature resilience, tungsten-fibre reinforced tungsten-composites (Wf/W) have been developed, incorporating mechanisms to enhance toughness, thereby broadening the potential applications of tungsten in fusion technology.
778:
Siliconization, as a wall conditioning method, has been demonstrated to reduce oxygen impurities and enhance plasma performance. Current research efforts focus on understanding SiC behavior under conditions relevant to reactors, providing valuable insights into its potential role in future fusion
223:
Currently, fusion reactor research focuses on improving efficiency and reliability in heat generation and capture and on raising the rate of transfer. Generating electricity from heat is beyond the scope of current research, due to existing efficient heat-transfer cycles, such as heating water to
687:
The fusion reaction of D-T produces charged and neutral particles in the plasma. The charged particles remain magnetically confined to the plasma. The neutral particles are not magnetically confined and will move toward the boundary between the hotter plasma and the colder PFC. Upon reaching the
654:
Another key advantage of tungsten is its high thermal conductivity, essential for managing the extreme heat generated in fusion processes. This property ensures efficient heat dissipation, reducing the risk of damage to the reactor's internal components. Furthermore, the potential for developing
650:
Tungsten is widely recognized as the preferred material for plasma-facing components in next-generation fusion devices, largely due to its unique combination of properties and potential for enhancement. Its low erosion rates make it particularly suitable for the high-stress environment of fusion
683:
Lithium (Li) is an alkali metal with a low Z (atomic number). Li has a low first ionization energy of ~5.4 eV and is highly chemically reactive with ion species found in the plasma of fusion reactor cores. In particular, Li readily forms stable lithium compounds with hydrogen isotopes, oxygen,
766:
Modern versions of SiCf/SiC combine many desirable attributes found in carbon fiber composites, such as thermo-mechanical strength and high melting point. These versions also present unique benefits: they exhibit minimal degradation of properties when exposed to high levels of neutron damage.
666:
To address tungsten's intrinsic brittleness, which limits its operational window, a composite material known as W-fibre enhanced W-composite (Wf/W) has been developed. This material incorporates extrinsic toughening mechanisms to significantly increase toughness, as demonstrated in small Wf/W
1777:
Roth, Joachim; Tsitrone, E.; Loarte, A.; Loarer, Th.; Counsell, G.; Neu, R.; Philipps, V.; Brezinsek, S.; Lehnen, M.; Coad, P.; Grisolia, Ch.; Schmid, K.; Krieger, K.; Kallenbach, A.; Lipschultz, B.; Doerner, R.; Causey, R.; Alimov, V.; Shu, W.; Ogorodnikova, O.; Kirschner, A.; Federici, G.;
670:
In the context of future fusion power plants, tungsten stands out for its resilience against erosion, the highest melting point among metals, and relatively benign behavior under neutron irradiation. However, its ductile to brittle transition temperature (DBTT) is a concern, especially as it
236:. Tritium is not a naturally abundant isotope due to its short half-life, therefore for a fusion D-T reactor it will need to be bred by the nuclear reaction of lithium (Li), boron (B), or beryllium (Be) isotopes with high-energy neutrons that collide within the first wall. 651:
reactors, where it can withstand the intense conditions without degrading rapidly. Additionally, tungsten's low tritium retention through co-deposition and implantation is crucial in fusion contexts, helping to minimize the accumulation of this radioactive isotope.
641:
Liquid metal plasma-facing components that enclose the plasma have been proposed to address challenges in the PFC. In particular, liquid lithium (LL) has been confirmed to have various properties that are attractive for fusion reactor performance.
987:
Ando, T.; Kodama, K.; Matsukawa, M.; Ouchi, Y.; Arai, T.; Yagyu, J.; Kaminaga, A.; Sasajima, T.; Koike, T.; Shimizu, M. (1994). "Material behavior of JT-60U plasma facing components and installation of B/Sub 4/C-converted CFC/Graphite tiles".
775:, and other devices. SiC has demonstrated a tritium diffusivity lower than that observed in other structural materials, a property that can be further optimized by applying a thin layer of monolithic SiC on a SiC/SiCf substrate. 717:
The primary energy generation in fusion reactor designs is from the absorption of high-energy neutrons. Results from these MCFD highlight additional benefits of liquid lithium coatings for reliable energy generation, including:
861:
Ihli, T; Basu, T.K; Giancarli, L.M; Konishi, S; Malang, S; Najmabadi, F; Nishio, S; Raffray, A.R.; Rao, C.V.S; Sagara, A; Wu, Y (December 2008). "Review of blanket designs for advanced fusion reactors".
227:
Current reactor designs are fueled by deuterium-tritium (D-T) fusion reactions, which produce high-energy neutrons that can damage the first wall, however, high-energy neutrons (14.1 MeV) are needed for
1243:
Diez, M.; Balden, M.; Brezinsek, S.; Corre, Y.; Fedorczak, N.; Firdaouss, M.; Fortuna, E.; Gaspar, J.; Gunn, J. P.; Hakola, A.; Loarer, T.; Martin, C.; Mayer, M.; Reilhac, P.; Richou, M. (2023-03-01).
725:
Convert kinetic energies of absorbed neutrons into heat on the first wall. The heat that is produced on the first wall can then be removed by coolants in ancillary systems that generate electricity.
671:
increases under neutron exposure. To overcome this brittleness, several strategies are being explored, including the use of nanocrystalline materials, tungsten alloying, and W-composite materials.
692:
neutral particles to produce stable lithium compounds, resulting in low-recycling of cold neutral gas. In addition, lithium contamination in the plasma tended to be well below 1%.
796: 612: 898: 1987:
Effenberg, F.; Abe, S.; Sinclair, G.; et al. (2023). "In-situ coating of silicon-rich films on tokamak plasma-facing components with real-time Si material injection".
655:
radiation-hardened alloys of tungsten presents an opportunity to enhance its durability and performance under the intense radiation conditions typical in fusion reactors.
695:
Since 1996, these results have been confirmed by a large number of magnetic confinement fusion devices (MCFD) that have also used lithium in their PFC, for example:
200: 1154:
Ono, M.; et al. (2013). "Recent progress in the NSTX/NSTX-U lithium programme and prospects for reactor-relevant liquid-lithium based divertor development".
722:
Absorb high-energy, or fast-moving, neutrons. About 80% of the energy produced in a fusion reaction of D-T is in the kinetic energy of the newly produced neutron.
2056:
13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications / 1st International Conference on Fusion Energy Materials Science
960: 728:
Self-sufficient breeding of tritium by nuclear reaction with absorbed neutrons. Neutrons of varying kinetic energies will drive tritium-breeding reactions.
934: 1292: 1021:
Hino, T; Jinushi, T; Yamauchi, Y; Hashiba, M.; Hirohata, Y.; Katoh, Y.; Kohyama, A. (2012). "Silicon Carbide as Plasma Facing or Blanket Material".
376: 1738:
Koller, Markus T.; Davis, James W.; Goodland, Megan E.; Abrams, Tyler; Gonderman, Sean; Herdrich, Georg; Frieß, Martin; Zuber, Christian (2019).
2061:
Ruset, C.; Grigore, E.; Maier, H.; Neu, R.; Greuner, H.; Mayer, M.; Matthews, G. (2011). "Development of W coatings for fusion applications".
629:
said of nuclear fusion, "We say that we will put the sun into a box. The idea is pretty. The problem is, we don't know how to make the box."
2046: 663:
dynamics, particularly for predicting the behavior of high-Z (high atomic number) materials like tungsten in next-step tokamak devices.
541: 537: 84: 158:
In addition PFMs have to operate over the lifetime of a fusion reactor vessel by handling the harsh environmental conditions, such as:
1401:
Evans, Ll. M.; Margetts, L.; Casalegno, V.; Lever, L. M.; Bushell, J.; Lowe, T.; Wallwork, A.; Young, P.; Lindemann, A. (2015-05-28).
423: 2055: 1511:
Neu, R.; et al. (2005). "Tungsten: an option for divertor and main chamber plasma facing components in future fusion devices".
1038: 1005: 442: 395: 909: 834:
Ono, Masayuki (2012). Lithium as Plasma Facing Component for Magnetic Fusion Research (Report). Princeton Plasma Physics Lab.
402: 380: 1646:
Abrams, T.; et al. (2021). "Evaluation of silicon carbide as a divertor armor material in DIII-D H-mode discharges".
1059: 1589:
Neu, R.; et al. (2016). "Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants".
1452:
Evans, Ll. M.; Margetts, L.; Casalegno, V.; Leonard, F.; Lowe, T.; Lee, P. D.; Schmidt, M.; Mummery, P. M. (2014-06-01).
1350: 244:
Most magnetic confinement fusion devices (MCFD) consist of several key components in their technical designs, including:
409: 254:
First wall: positioned between the plasma and magnets in order to protect outer vessel components from radiation damage.
141:
Plasma-facing materials for fusion reactor designs must support the overall steps for energy generation, these include:
585:
Development of satisfactory plasma-facing materials is one of the key problems still to be solved by current programs.
1245:"Overview of plasma-tungsten surfaces interactions on the divertor test sector in WEST during the C3 and C4 campaigns" 616: 570: 2103: 968: 801: 700: 574: 391: 1497: 772: 1454:"Thermal characterisation of ceramic/metal joining techniques for fusion applications using X-ray tomography" 1293:"Examples of Test Coatings for the ASDEX Upgrade Tungsten First Wall: Comparison of Different Coating Method" 938: 626: 369: 309: 623: 494: 1554:
Philipps, V.; et al. (2011). "Tungsten as material for plasma-facing components in fusion devices".
1300: 1216: 1189:
Goranson, P.; Barnes, G.; Chrzanowski, J.; Heitzenroeder, P.; Nelson, B.; Neumeyer, C.; Ping, J. (1999).
2108: 780: 760: 301: 290: 216: 659:
project's first-generation divertor, and it is likely to be used for the reactor's first wall as well.
345:, are typically protected by a different material than that used for the major area of the first wall. 1913:
Winter, J.; et al. (1993). "Improved plasma performance in TEXTOR with silicon coated surfaces".
1779: 1739: 1700: 779:
technology. Silicon-rich films on divertor PFCs were recently developed using Si pellet injections in
2070: 2006: 1961: 1922: 1877: 1838: 1787: 1751: 1712: 1665: 1594: 1563: 1520: 1465: 1414: 1365: 1256: 1163: 1109: 871: 533: 278: 248:
Magnet system: confines the deuterium-tritium fuel in the form of plasma and in the shape of a torus.
416: 285:
remain. Even with stable plasma confinement, however, the first wall material would be exposed to a
282: 203: 63: 2022: 1996: 1895: 1681: 1655: 1536: 1383: 1331: 1133: 506:
Multi-layer tiles of several of these materials are also being considered and used, for example:
2043: 1740:"Deuterium retention in silicon carbide, SiC ceramic matrix composites, and SiC coated graphite" 1403:"Transient thermal finite element analysis of CFC–Cu ITER monoblock using X-ray tomography data" 1829:
Katoh, Y.; et al. (2012). "Radiation effects in SiC for nuclear structural applications".
1938: 1811: 1274: 1221: 1125: 1034: 1001: 843: 747:
Higher density coatings of LL for use on PFC designed for greater heat loads and neutron flux.
297:
It must withstand this neutron flux for a sufficient period of time to be economically viable.
2078: 2014: 1969: 1930: 1885: 1846: 1803: 1795: 1759: 1720: 1673: 1610: 1602: 1571: 1528: 1473: 1432: 1422: 1373: 1323: 1264: 1194: 1171: 1117: 1026: 993: 879: 835: 229: 119: 1314:
Neu, R.; et al. (December 1996). "The tungsten divertor experiment at ASDEX Upgrade".
1191:
Design of the plasma facing components for the National Spherical Tokamak Experiment (NSTX)
2050: 1807: 1615: 787:, prompting further research into refining the technique for broader fusion applications. 756: 489: 233: 179: 96: 1175: 558:
in JET, and will be used for the divertor in ITER. It is also used for the first wall in
257:
Cooling system: removes heat from the confinement and transfers heat from the first wall.
2074: 2010: 1965: 1926: 1881: 1842: 1791: 1755: 1716: 1669: 1598: 1567: 1524: 1469: 1418: 1369: 1260: 1167: 1113: 875: 615:(IFMIF) will particularly address this. Materials developed using IFMIF will be used in 46:
Please help update this article to reflect recent events or newly available information.
1327: 328: 274: 135: 123: 1866:"Recent progress in the development of SiC composites for nuclear fusion applications" 1724: 1351:"DIII-D research twoards establishing the scientific basis for future fusion reactors" 2097: 2026: 1973: 1899: 1685: 1532: 1453: 1402: 1387: 1335: 1137: 563: 559: 484: 305: 68: 2082: 1606: 1540: 1478: 1427: 1121: 1023:
Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems
935:"Mitigating corrosion by liquid tin could lead to better cooling in fusion reactors" 883: 1956:
Samm, U.; et al. (1995). "Plasma edge physics with siliconization in TEXTOR".
286: 265:
and many other current and projected fusion experiments, particularly those of the
99: 1890: 1865: 1799: 1575: 1850: 1934: 1492: 1244: 547:
Beryllium was used to reline JET in 2009 in anticipation of its proposed use in
358: 270: 2018: 1677: 1378: 1198: 1098:"Experiments with liquid metal walls: Status of the lithium tokamak experiment" 1066: 1030: 997: 961:"Development of Boron Carbide Coated First Wall Components for Wendelstein 7-X" 251:
Vacuum vessel: contains the core fusion plasma and maintains fusion conditions.
1763: 1269: 737:
Newer developments in liquid lithium are currently being tested, for example:
464: 163: 72: 1815: 1278: 1065:. Fact Sheet. Princeton Plasma Physics Laboratory. March 2011. Archived from 173:
Ion implantation causing displacement damage and chemical composition changes
469: 321: 1942: 17: 555: 528:
A liquid lithium layer on tungsten-based solid PFC surfaces or divertors.
500: 459: 342: 88: 1437: 474: 383: in this section. Unsourced material may be challenged and removed. 266: 167: 847: 341:
Some critical plasma-facing components, such as and in particular the
1129: 784: 588:
Plasma-facing materials can be measured for performance in terms of:
1097: 839: 2001: 1660: 79: 710: 703:(2010) (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy). 78: 62: 1780:"Recent analysis of key plasma wall interactions issues for ITER" 525:
A liquid lithium layer on top of a boron layer on graphite tiles.
1025:. Ceramic Transactions Series. Vol. 144. pp. 353–361. 768: 706: 548: 516:
A tungsten layer on top of a molybdenum layer on graphite tiles.
262: 741:
Coatings made of increasingly complex liquid lithium compounds.
261:
The core fusion plasma must not actually touch the first wall.
797:
International Fusion Materials Irradiation Facility#Background
479: 352: 126:
occurs, and particularly the material used for the lining the
26: 293:, which leads to two key problems in selecting the material: 744:
Multi-layered coatings of LL, B, F, and other low-Z metals.
455:
Materials currently in use or under consideration include:
899:"Tokamak Divertor System Concept and the Design for ITER" 224:
operate steam turbines that drive electrical generators.
906:
Applied Physics and Applied Math at Columbia University
151:
Transferring heat at a faster rate than capturing heat.
1634:
Magnetohydrodynamics: Historical Evolution and Trends,
1701:"Deuterium retention in carbides and doped graphites" 532:
Graphite was used for the first wall material of the
182: 1831:
Current Opinion in Solid State and Materials Science
569:
Liquid lithium (LL) was used to coat the PFC of the
763:have renewed interest in SiC as a fusion material. 613:
International Fusion Materials Irradiation Facility
212:
Stable thermomechanical properties under operation.
1193:. 18th IEEE/NPSS Symposium on Fusion Engineering. 684:carbon, and other impurities found in D-T plasma. 194: 209:Limited tritium codeposition and sequestration. 337:Be produced and replaced at a reasonable cost. 162:Ion bombardment causing physical and chemical 8: 1699:Mayer, M.; Balden, M.; Behrisch, R. (1998). 1096:Kaita R, Berzak L, Boyle D (29 April 2010). 990:15th IEEE/NPSS Symposium. Fusion Engineering 607:Safety in waste disposal and in maintenance. 327:Be compatible with intense and fluctuating 1632:Molokov, S. S.; Moreau, R.; Moffatt K. H. 592:Power production for a given reactor size. 519:A boron carbide layer on top of CFC tiles. 510:A thin molybdenum layer on graphite tiles. 2000: 1889: 1659: 1614: 1477: 1436: 1426: 1377: 1268: 522:A liquid lithium layer on graphite tiles. 443:Learn how and when to remove this message 304:so as to produce unacceptable amounts of 186: 181: 2044:Max Planck Institute project page on PFM 1349:Petty, C.C.; DIII-D Team (5 June 2019). 513:A thin tungsten layer on graphite tiles. 110:) is any material used to construct the 813: 598:Self-sufficiency of tritium production. 1210: 1208: 1060:"The Lithium Tokamak Experiment (LTX)" 982: 980: 978: 1628: 1626: 1217:"How to Line a Thermonuclear Reactor" 1149: 1147: 709:(US), T-10 (Russia), T-11M (Russia), 334:Minimize contamination of the plasma. 7: 1316:Plasma Physics and Controlled Fusion 1091: 1089: 1087: 1054: 1052: 1050: 937:. phys.org. Dec 2022. Archived from 829: 827: 825: 823: 821: 819: 817: 381:adding citations to reliable sources 542:National Spherical Torus Experiment 118:), those components exposed to the 1864:Koyanagi, T.; et al. (2018). 619:, the proposed successor to ITER. 604:Design and fabrication of the PFC. 25: 992:. Vol. 1. pp. 541–544. 308:when lining replacement or plant 148:Capturing heat in the first wall, 91:tiles used as first wall material 75:tiles used as first wall material 1215:Heirbaut, Jim (16 August 2012). 897:Stoafer, Chris (14 April 2011). 538:Tokamak à configuration variable 536:(JET) at its startup (1983), in 357: 300:It must not become sufficiently 85:Tokamak à configuration variable 31: 2083:10.1016/j.fusengdes.2011.04.031 1607:10.1016/j.fusengdes.2016.01.027 1479:10.1016/j.fusengdes.2014.05.002 1428:10.1016/j.fusengdes.2015.04.048 1122:10.1016/j.fusengdes.2010.04.005 884:10.1016/j.fusengdes.2008.07.039 368:needs additional citations for 316:The lining material must also: 145:Generating heat through fusion, 1808:11858/00-001M-0000-0026-F442-2 1616:11858/00-001M-0000-002B-3142-7 1176:10.1088/0029-5515/53/11/113030 176:High-heat fluxes (e.g. 10 MW/m 1: 2063:Fusion Engineering and Design 1891:10.1016/j.jnucmat.2018.06.017 1800:10.1016/j.jnucmat.2009.01.037 1725:10.1016/S0022-3115(97)00299-7 1591:Fusion Engineering and Design 1576:10.1016/j.jnucmat.2011.01.110 1458:Fusion Engineering and Design 1407:Fusion Engineering and Design 1102:Fusion Engineering and Design 864:Fusion Engineering and Design 595:Cost to generate electricity. 320:Allow the passage of a large 1974:10.1016/0022-3115(94)00444-7 1958:Journal of Nuclear Materials 1870:Journal of Nuclear Materials 1851:10.1016/j.cossms.2012.03.005 1784:Journal of Nuclear Materials 1744:Nuclear Materials and Energy 1705:Journal of Nuclear Materials 1556:Journal of Nuclear Materials 1328:10.1088/0741-3335/38/12A/013 1249:Nuclear Materials and Energy 1935:10.1103/PhysRevLett.71.1549 571:Tokamak Fusion Test Reactor 544:(NSTX, first plasma 1999). 289:higher than in any current 283:plasma instability problems 215:Limited number of negative 2125: 1533:10.1088/0029-5515/45/3/007 1199:10.1109/FUSION.1999.849793 1031:10.1002/9781118406014.ch32 998:10.1109/FUSION.1993.518390 802:Lithium Tokamak Experiment 601:Availability of materials. 575:Lithium Tokamak Experiment 1764:10.1016/j.nme.2019.100704 1498:Physics of the Impossible 1270:10.1016/j.nme.2023.101399 624:Nobel laureate in physics 554:Tungsten is used for the 40:This article needs to be 2019:10.1088/1741-4326/acee98 1678:10.1088/1741-4326/abecee 1379:10.1088/1741-4326/ab024a 699:TFTR (US), CDX-U (2005)/ 392:"Plasma-facing material" 112:plasma-facing components 1297:Max Planck Gesellschaft 965:Max Planck Gesellschaft 761:Gen-IV fission reactors 627:Pierre-Gilles de Gennes 154:Generating electricity. 1778:Kukushkin, A. (2009). 1593:. 109–111: 1046–1052. 495:Carbon fibre composite 196: 104:plasma-facing material 92: 76: 781:high confinement mode 713:(Spain), RFX (Italy). 291:nuclear power reactor 273:designs, use intense 217:nuclear transmutation 206:and other transients. 197: 82: 66: 534:Joint European Torus 377:improve this article 195:{\displaystyle ^{2}} 180: 2075:2011FusED..86.1677R 2069:(9–11): 1677–1680. 2011:2023NucFu..63j6004E 1966:1995JNuM..220...25S 1927:1993PhRvL..71.1549W 1882:2018JNuM..511..544K 1843:2012COSSM..16..143K 1792:2009JNuM..390....1R 1756:2019NMEne..2000704K 1717:1998JNuM..252...55M 1670:2021NucFu..61f6005A 1599:2016FusED.109.1046N 1568:2011JNuM..415S...2P 1525:2005NucFu..45..209N 1470:2014FusED..89..826E 1419:2015FusED.100..100E 1370:2019NucFu..59k2002P 1261:2023NMEne..3401399D 1168:2013NucFu..53k3030O 1114:2010FusED..85..874K 941:on 28 December 2022 915:on 11 December 2013 876:2008FusED..83..912I 633:Recent developments 2049:2012-12-02 at the 1960:. 220–222: 25–35. 1322:(12A): A165–A179. 349:Proposed materials 312:eventually occurs. 192: 93: 77: 2104:Materials science 1921:(10): 1549–1552. 453: 452: 445: 427: 277:in an attempt to 234:breeder operation 61: 60: 16:(Redirected from 2116: 2090: 2031: 2030: 2004: 1984: 1978: 1977: 1953: 1947: 1946: 1910: 1904: 1903: 1893: 1861: 1855: 1854: 1826: 1820: 1819: 1786:. 390–391: 1–9. 1774: 1768: 1767: 1735: 1729: 1728: 1696: 1690: 1689: 1663: 1643: 1637: 1630: 1621: 1620: 1618: 1586: 1580: 1579: 1551: 1545: 1544: 1508: 1502: 1490: 1484: 1483: 1481: 1449: 1443: 1442: 1440: 1430: 1398: 1392: 1391: 1381: 1355: 1346: 1340: 1339: 1311: 1305: 1304: 1299:. Archived from 1289: 1283: 1282: 1272: 1240: 1234: 1233: 1231: 1229: 1212: 1203: 1202: 1186: 1180: 1179: 1151: 1142: 1141: 1093: 1082: 1081: 1079: 1077: 1071: 1064: 1056: 1045: 1044: 1018: 1012: 1011: 984: 973: 972: 967:. Archived from 957: 951: 950: 948: 946: 931: 925: 924: 922: 920: 914: 908:. Archived from 903: 894: 888: 887: 870:(7–9): 912–919. 858: 852: 851: 831: 448: 441: 437: 434: 428: 426: 385: 361: 353: 201: 199: 198: 193: 191: 190: 106:(or materials) ( 56: 53: 47: 35: 34: 27: 21: 2124: 2123: 2119: 2118: 2117: 2115: 2114: 2113: 2094: 2093: 2060: 2051:Wayback Machine 2040: 2035: 2034: 1986: 1985: 1981: 1955: 1954: 1950: 1915:Phys. Rev. Lett 1912: 1911: 1907: 1863: 1862: 1858: 1828: 1827: 1823: 1776: 1775: 1771: 1737: 1736: 1732: 1698: 1697: 1693: 1645: 1644: 1640: 1631: 1624: 1588: 1587: 1583: 1553: 1552: 1548: 1510: 1509: 1505: 1491: 1487: 1451: 1450: 1446: 1400: 1399: 1395: 1353: 1348: 1347: 1343: 1313: 1312: 1308: 1303:on 13 May 2011. 1291: 1290: 1286: 1242: 1241: 1237: 1227: 1225: 1214: 1213: 1206: 1188: 1187: 1183: 1153: 1152: 1145: 1095: 1094: 1085: 1075: 1073: 1072:on 4 March 2016 1069: 1062: 1058: 1057: 1048: 1041: 1020: 1019: 1015: 1008: 986: 985: 976: 971:on 12 May 2011. 959: 958: 954: 944: 942: 933: 932: 928: 918: 916: 912: 901: 896: 895: 891: 860: 859: 855: 840:10.2172/1056493 833: 832: 815: 810: 793: 757:Silicon carbide 754: 752:Silicon carbide 735: 681: 648: 635: 583: 490:Silicon carbide 449: 438: 432: 429: 386: 384: 374: 362: 351: 329:magnetic fields 310:decommissioning 281:this, although 275:magnetic fields 242: 183: 178: 177: 57: 51: 48: 45: 36: 32: 23: 22: 15: 12: 11: 5: 2122: 2120: 2112: 2111: 2106: 2096: 2095: 2092: 2091: 2058: 2053: 2039: 2038:External links 2036: 2033: 2032: 1995:(10): 106004. 1989:Nuclear Fusion 1979: 1948: 1905: 1856: 1837:(3): 143–152. 1821: 1769: 1730: 1691: 1648:Nuclear Fusion 1638: 1622: 1581: 1546: 1519:(3): 209–218. 1513:Nuclear Fusion 1503: 1485: 1464:(6): 826–836. 1444: 1393: 1364:(11): 112002. 1358:Nuclear Fusion 1341: 1306: 1284: 1235: 1204: 1181: 1156:Nuclear Fusion 1143: 1108:(6): 874–881. 1083: 1046: 1039: 1013: 1006: 974: 952: 926: 889: 853: 812: 811: 809: 806: 805: 804: 799: 792: 789: 753: 750: 749: 748: 745: 742: 734: 733:Liquid lithium 731: 730: 729: 726: 723: 715: 714: 704: 680: 677: 647: 644: 634: 631: 609: 608: 605: 602: 599: 596: 593: 582: 581:Considerations 579: 577:(TFTR, 1996). 540:(1992) and in 530: 529: 526: 523: 520: 517: 514: 511: 504: 503: 498: 492: 487: 482: 477: 472: 467: 462: 451: 450: 365: 363: 356: 350: 347: 339: 338: 335: 332: 325: 314: 313: 298: 259: 258: 255: 252: 249: 241: 238: 221: 220: 213: 210: 207: 189: 185: 174: 171: 166:and therefore 156: 155: 152: 149: 146: 136:reactor vessel 134:region of the 124:nuclear fusion 102:research, the 59: 58: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2121: 2110: 2107: 2105: 2102: 2101: 2099: 2089: 2084: 2080: 2076: 2072: 2068: 2064: 2059: 2057: 2054: 2052: 2048: 2045: 2042: 2041: 2037: 2028: 2024: 2020: 2016: 2012: 2008: 2003: 1998: 1994: 1990: 1983: 1980: 1975: 1971: 1967: 1963: 1959: 1952: 1949: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1909: 1906: 1901: 1897: 1892: 1887: 1883: 1879: 1875: 1871: 1867: 1860: 1857: 1852: 1848: 1844: 1840: 1836: 1832: 1825: 1822: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1773: 1770: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1734: 1731: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1692: 1687: 1683: 1679: 1675: 1671: 1667: 1662: 1657: 1654:(6): 066005. 1653: 1649: 1642: 1639: 1635: 1629: 1627: 1623: 1617: 1612: 1608: 1604: 1600: 1596: 1592: 1585: 1582: 1577: 1573: 1569: 1565: 1561: 1557: 1550: 1547: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1507: 1504: 1500: 1499: 1494: 1489: 1486: 1480: 1475: 1471: 1467: 1463: 1459: 1455: 1448: 1445: 1439: 1434: 1429: 1424: 1420: 1416: 1412: 1408: 1404: 1397: 1394: 1389: 1385: 1380: 1375: 1371: 1367: 1363: 1359: 1352: 1345: 1342: 1337: 1333: 1329: 1325: 1321: 1317: 1310: 1307: 1302: 1298: 1294: 1288: 1285: 1280: 1276: 1271: 1266: 1262: 1258: 1254: 1250: 1246: 1239: 1236: 1224: 1223: 1218: 1211: 1209: 1205: 1200: 1196: 1192: 1185: 1182: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1148: 1144: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1092: 1090: 1088: 1084: 1068: 1061: 1055: 1053: 1051: 1047: 1042: 1040:9781118406014 1036: 1032: 1028: 1024: 1017: 1014: 1009: 1007:0-7803-1412-3 1003: 999: 995: 991: 983: 981: 979: 975: 970: 966: 962: 956: 953: 940: 936: 930: 927: 911: 907: 900: 893: 890: 885: 881: 877: 873: 869: 865: 857: 854: 849: 845: 841: 837: 830: 828: 826: 824: 822: 820: 818: 814: 807: 803: 800: 798: 795: 794: 790: 788: 786: 783:scenarios in 782: 776: 774: 770: 764: 762: 758: 751: 746: 743: 740: 739: 738: 732: 727: 724: 721: 720: 719: 712: 708: 705: 702: 698: 697: 696: 693: 689: 685: 678: 676: 672: 668: 664: 660: 656: 652: 645: 643: 639: 632: 630: 628: 625: 620: 618: 614: 606: 603: 600: 597: 594: 591: 590: 589: 586: 580: 578: 576: 572: 567: 565: 564:Alcator C-Mod 561: 560:ASDEX Upgrade 557: 552: 550: 545: 543: 539: 535: 527: 524: 521: 518: 515: 512: 509: 508: 507: 502: 499: 496: 493: 491: 488: 486: 485:Boron carbide 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 457: 456: 447: 444: 436: 425: 422: 418: 415: 411: 408: 404: 401: 397: 394: –  393: 389: 388:Find sources: 382: 378: 372: 371: 366:This section 364: 360: 355: 354: 348: 346: 344: 336: 333: 330: 326: 323: 319: 318: 317: 311: 307: 306:nuclear waste 303: 299: 296: 295: 294: 292: 288: 284: 280: 276: 272: 268: 264: 256: 253: 250: 247: 246: 245: 239: 237: 235: 231: 225: 218: 214: 211: 208: 205: 187: 184: 175: 172: 169: 165: 161: 160: 159: 153: 150: 147: 144: 143: 142: 139: 137: 133: 129: 125: 122:within which 121: 117: 113: 109: 105: 101: 98: 90: 86: 81: 74: 70: 69:Alcator C-Mod 65: 55: 43: 38: 29: 28: 19: 2109:Fusion power 2086: 2066: 2062: 1992: 1988: 1982: 1957: 1951: 1918: 1914: 1908: 1873: 1869: 1859: 1834: 1830: 1824: 1783: 1772: 1747: 1743: 1733: 1711:(1): 55–62. 1708: 1704: 1694: 1651: 1647: 1641: 1633: 1590: 1584: 1562:(1): S2–S9. 1559: 1555: 1549: 1516: 1512: 1506: 1496: 1488: 1461: 1457: 1447: 1410: 1406: 1396: 1361: 1357: 1344: 1319: 1315: 1309: 1301:the original 1296: 1287: 1252: 1248: 1238: 1226:. Retrieved 1220: 1190: 1184: 1159: 1155: 1105: 1101: 1074:. Retrieved 1067:the original 1022: 1016: 989: 969:the original 964: 955: 943:. Retrieved 939:the original 929: 917:. Retrieved 910:the original 905: 892: 867: 863: 856: 777: 765: 755: 736: 716: 694: 690: 686: 682: 673: 669: 665: 661: 657: 653: 649: 640: 638:components. 636: 621: 610: 587: 584: 568: 553: 546: 531: 505: 454: 439: 430: 420: 413: 406: 399: 387: 375:Please help 370:verification 367: 340: 315: 287:neutron flux 260: 243: 240:Requirements 232:and Tritium 226: 222: 157: 140: 131: 127: 115: 111: 107: 103: 100:fusion power 94: 87:showing the 83:Interior of 71:showing the 67:Interior of 49: 41: 1876:: 544–555. 1636:p. 172-173. 1501:, pp.46-47. 1493:Michio Kaku 1438:10871/17772 1413:: 100–111. 302:radioactive 271:stellarator 2098:Categories 2002:2304.03923 1750:: 100704. 1661:2104.04083 1255:: 101399. 808:References 465:Molybdenum 403:newspapers 164:sputtering 128:first wall 73:molybdenum 52:April 2019 18:First wall 2027:258049235 1900:104235507 1816:0022-3115 1686:233204645 1388:127950712 1336:250893393 1279:2352-1791 1138:120010130 667:samples. 470:Beryllium 433:June 2018 322:heat flux 202:) due to 2047:Archived 1943:10054436 1541:56572005 1228:20 April 1076:20 April 919:20 April 791:See also 646:Tungsten 566:(1991). 556:divertor 501:Graphite 460:Tungsten 343:divertor 132:divertor 89:graphite 2071:Bibcode 2007:Bibcode 1962:Bibcode 1923:Bibcode 1878:Bibcode 1839:Bibcode 1788:Bibcode 1752:Bibcode 1713:Bibcode 1666:Bibcode 1595:Bibcode 1564:Bibcode 1521:Bibcode 1466:Bibcode 1415:Bibcode 1366:Bibcode 1257:Bibcode 1222:Science 1164:Bibcode 1110:Bibcode 945:22 July 872:Bibcode 848:1056493 679:Lithium 622:French 573:in the 475:Lithium 417:scholar 279:achieve 267:tokamak 230:blanket 219:effects 168:erosion 97:nuclear 42:updated 2025:  1941:  1898:  1814:  1684:  1539:  1386:  1334:  1277:  1162:(11). 1136:  1130:973198 1128:  1037:  1004:  846:  785:DIII-D 419:  412:  405:  398:  390:  120:plasma 2023:S2CID 1997:arXiv 1896:S2CID 1682:S2CID 1656:arXiv 1537:S2CID 1384:S2CID 1354:(PDF) 1332:S2CID 1134:S2CID 1070:(PDF) 1063:(PDF) 913:(PDF) 902:(PDF) 711:TJ-II 497:(CFC) 424:JSTOR 410:books 1939:PMID 1812:ISSN 1275:ISSN 1230:2019 1126:OSTI 1078:2019 1035:ISBN 1002:ISBN 947:2024 921:2019 844:OSTI 773:DEMO 769:ITER 707:NSTX 617:DEMO 611:The 549:ITER 396:news 269:and 263:ITER 204:ELMS 2079:doi 2015:doi 1970:doi 1931:doi 1886:doi 1874:511 1847:doi 1804:hdl 1796:doi 1760:doi 1721:doi 1709:252 1674:doi 1611:hdl 1603:doi 1572:doi 1560:415 1529:doi 1474:doi 1433:hdl 1423:doi 1411:100 1374:doi 1324:doi 1265:doi 1195:doi 1172:doi 1118:doi 1027:doi 994:doi 880:doi 836:doi 701:LTX 480:Tin 379:by 130:or 116:PFC 108:PFM 95:In 2100:: 2085:. 2077:. 2067:86 2065:. 2021:. 2013:. 2005:. 1993:63 1991:. 1968:. 1937:. 1929:. 1919:71 1917:. 1894:. 1884:. 1872:. 1868:. 1845:. 1835:16 1833:. 1810:. 1802:. 1794:. 1782:. 1758:. 1748:20 1746:. 1742:. 1719:. 1707:. 1703:. 1680:. 1672:. 1664:. 1652:61 1650:. 1625:^ 1609:. 1601:. 1570:. 1558:. 1535:. 1527:. 1517:45 1515:. 1495:, 1472:. 1462:89 1460:. 1456:. 1431:. 1421:. 1409:. 1405:. 1382:. 1372:. 1362:59 1360:. 1356:. 1330:. 1320:38 1318:. 1295:. 1273:. 1263:. 1253:34 1251:. 1247:. 1219:. 1207:^ 1170:. 1160:53 1158:. 1146:^ 1132:. 1124:. 1116:. 1106:85 1104:. 1100:. 1086:^ 1049:^ 1033:. 1000:. 977:^ 963:. 904:. 878:. 868:83 866:. 842:. 816:^ 771:, 551:. 138:. 2081:: 2073:: 2029:. 2017:: 2009:: 1999:: 1976:. 1972:: 1964:: 1945:. 1933:: 1925:: 1902:. 1888:: 1880:: 1853:. 1849:: 1841:: 1818:. 1806:: 1798:: 1790:: 1766:. 1762:: 1754:: 1727:. 1723:: 1715:: 1688:. 1676:: 1668:: 1658:: 1619:. 1613:: 1605:: 1597:: 1578:. 1574:: 1566:: 1543:. 1531:: 1523:: 1482:. 1476:: 1468:: 1441:. 1435:: 1425:: 1417:: 1390:. 1376:: 1368:: 1338:. 1326:: 1281:. 1267:: 1259:: 1232:. 1201:. 1197:: 1178:. 1174:: 1166:: 1140:. 1120:: 1112:: 1080:. 1043:. 1029:: 1010:. 996:: 949:. 923:. 886:. 882:: 874:: 850:. 838:: 446:) 440:( 435:) 431:( 421:· 414:· 407:· 400:· 373:. 331:. 324:. 188:2 170:. 114:( 54:) 50:( 44:. 20:)

Index

First wall

Alcator C-Mod
molybdenum

Tokamak à configuration variable
graphite
nuclear
fusion power
plasma
nuclear fusion
reactor vessel
sputtering
erosion
ELMS
nuclear transmutation
blanket
breeder operation
ITER
tokamak
stellarator
magnetic fields
achieve
plasma instability problems
neutron flux
nuclear power reactor
radioactive
nuclear waste
decommissioning
heat flux

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.