Knowledge (XXG)

Generalized flag variety

Source 📝

2592: 2269: 2061: 363: 1847:). The kernel of the map is the ideal generated by the images of primitive elements under the edge homomorphisms, which is also the ideal generated by positive-degree elements in the image of the canonical map 474: 1244: 1157: 864: 2382: 1728: 547:
A partial flag can be obtained from a complete flag by deleting some of the subspaces. Conversely, any partial flag can be completed (in many different ways) by inserting suitable subspaces.
111:. For partial flags, one needs to specify the sequence of dimensions of the flags under consideration. For subgroups of the linear group, additional conditions must be imposed on the flags. 709:. Any complete flag then splits into a direct sum of one-dimensional subspaces by taking orthogonal complements. It follows that the complete flag manifold over the complex numbers is the 2100: 1075:
is the real or complex numbers, then an inner product can be used to split any flag into a direct sum, and so the partial flag variety is also isomorphic to the homogeneous space
2363: 2341: 2120: 757: 1912: 1265:), and hence the stabilizers of partial flags are parabolic subgroups. Furthermore, a partial flag is determined by the parabolic subgroup which stabilizes it. 275: 2766:, this observation yields all symmetric spaces admitting such a larger symmetry group, and these spaces have been classified by Kobayashi and Nagano. 2962: 686:) of matrices with determinant one, which is a semisimple algebraic group; the set of lower triangular matrices of determinant one is a 392: 2102:
denotes positive-degree elements and the parentheses the generation of an ideal. For example, for the complete complex flag manifold
2796:
Over the real numbers, a real flag manifold is also called an R-space, and the R-spaces which are Riemannian symmetric spaces under
1303:. The correspondence between parabolic subgroups and generalized flag varieties allows each to be understood in terms of the other. 107:. Other flag varieties arise by considering partial flags, or by restriction from the special linear group to subgroups such as the 2293: 1168: 1081: 91:
Flag varieties can be defined in various degrees of generality. A prototype is the variety of complete flags in a vector space
796: 2957: 1644: 1380:
come in two flavours ("self-dual" and "anti-self-dual") and one needs to distinguish these to obtain a homogeneous space.
266: 2587:{\displaystyle H^{*}{\big (}U(2)/T^{2}{\big )}\cong \mathbb {Q} /(t_{1}+t_{2},t_{1}t_{2})\cong \mathbb {Q} /(t_{1}^{2}),} 2630: 1432: 1653: 575: 484: 2845: 2800:
are known as symmetric R-spaces. The symmetric R-spaces which are not Hermitian symmetric are obtained by taking
2778: 618: 228: 1368:
is not algebraically closed, then isotropic subspaces may not exist: for a general theory, one needs to use the
2857: 205: 146: 674:
Note that the multiples of the identity act trivially on all flags, and so one can restrict attention to the
1538: 1339: 626: 1431:
is another compact real manifold. (Both are actually complex homogeneous spaces in a canonical way through
2069: 1526: 1498: 1369: 1276: 582: 235:-space is a synonym for a real flag manifold and the corresponding symmetric spaces are called symmetric 2869: 2685:
acts transitively on any conjugacy class of parabolic subgroups, and hence the generalized flag variety
248: 44: 2633:. This variety is a (generalized) flag variety, and furthermore, every (generalized) flag variety for 2874: 1601: 675: 572: 185: 100: 2264:{\displaystyle H^{*}{\big (}U(n)/T^{n}{\big )}\cong \mathbb {Q} /(\sigma _{1},\ldots ,\sigma _{n}),} 1356:
in the flag. The stabilizer of an isotropic flag is a parabolic subgroup of the symplectic group Sp(
2694: 1319: 622: 201: 55: 2346: 2324: 2920: 2372:. Then we expect the cohomology ring to be an exterior algebra on a generator of degree two (the 2056:{\displaystyle H^{*}(G/H)\cong H^{*}(BT)^{W(H)}/{\big (}{\widetilde {H}}^{*}(BT)^{W(G)}{\big )},} 1733:
of the spectral sequence must eventually take the space of primitive elements in the left column
774:-torus of diagonal unitary matrices. There is a similar description over the real numbers with U( 85: 2725: 718: 1364:). For orthogonal groups there is a similar picture, with a couple of complications. First, if 2373: 1797: 1483: 1439: 1408: 710: 639: 217: 197: 131: 40: 2837: 2648: 2618: 1640: 1463: 1327: 1323: 1273: 108: 70: 1454:
is concentrated in even degrees, but in fact, something much stronger can be said. Because
2763: 2668: 2643:
showed that this characterizes the flag varieties of a general semisimple algebraic group
1765: 1443: 262: 224: 213: 135: 66: 2913: 687: 609:
invertible matrices. The standard flag associated with this basis is the one where the
556: 181: 170: 158: 2951: 1393: 767: 698: 571:
are no different from each other from a geometric point of view. That is to say, the
193: 119: 358:{\displaystyle \{0\}=V_{0}\subset V_{1}\subset V_{2}\subset \cdots \subset V_{k}=V.} 2640: 2318: 1628: 1542: 1003: 935: 48: 2925: 2904: 1306:
The extension of the terminology "flag variety" is reasonable, because points of
782:), and T by the diagonal orthogonal matrices (which have diagonal entries ±1). 706: 28: 1056:), and thus the partial flag variety is isomorphic to the homogeneous space SL( 2895: 1903: 1801: 1827:) is trivial in this case, and the characteristic map is surjective, so that 2805: 1348: 1280: 1257:
The upper triangular matrices of determinant one are a Borel subgroup of SL(
17: 114:
In the most general sense, a generalized flag variety is defined to mean a
180:. A projective homogeneous variety may also be realised as the orbit of a 1044:
Restricting to matrices of determinant one, this is a parabolic subgroup
1772:
full rank on the primitive subspace, then the image of the bottom row
265:, where "increasing" means each is a proper subspace of the next (see 2849: 227:. Over the complex numbers, the corresponding flag manifolds are the 1006:
lower triangular matrices, where the dimensions of the blocks are
2888:
The Penrose Transform: its Interaction with Representation Theory
2655:, or equivalently (in this context), the projective homogeneous 469:{\displaystyle 0=d_{0}<d_{1}<d_{2}<\cdots <d_{k}=n,} 65:
is the real or complex numbers, a generalized flag variety is a
2754:
admit a strictly larger Lie group of transformations, namely
141:(and smooth stabilizer subgroup; that is no restriction for 2929:, Graduate Texts in Mathematics, 21, Springer-Verlag, 1972. 2613:
is a (finite dimensional) highest weight representation of
1800:
again, because a compact homogeneous space admits a finite
2601:
Highest weight orbits and projective homogeneous varieties
1239:{\displaystyle O(n)/O(n_{1})\times \cdots \times O(n_{k})} 1152:{\displaystyle U(n)/U(n_{1})\times \cdots \times U(n_{k})} 638:. The complete flag variety can therefore be written as a 952:
This is a homogeneous space for the general linear group
2677:
be a semisimple Lie group with maximal compact subgroup
859:{\displaystyle F(d_{1},d_{2},\ldots d_{k},\mathbb {F} )} 2731:
Turning this around, the Riemannian homogeneous spaces
1623:
Let us now restrict our coefficient ring to be a field
1352:
if the symplectic form vanishes on proper subspaces of
192:. The complex projective homogeneous varieties are the 2385: 2349: 2327: 2123: 2072: 1915: 1792:) of the sequence would be infinite-dimensional as a 1656: 1171: 1084: 913:. The complete flag variety is the special case that 799: 721: 395: 278: 1796:-vector space, which is impossible, for instance by 2609:is a semisimple algebraic group (or Lie group) and 1541:of this bundle to understand the fiber-restriction 697:is the real or complex numbers we can introduce an 2617:, then the highest weight space is a point in the 2586: 2357: 2335: 2263: 2094: 2055: 1768:, so if the collection of edge homomorphisms were 1722: 1238: 1151: 858: 751: 659:, which shows in particular that it has dimension 617:vectors of the basis. Relative to this basis, the 468: 357: 2934:On filtered Lie algebras and geometric structures 1906:, so one finally obtains the concise description 1392:is a compact, connected Lie group, it contains a 2902:Jürgen Berndt, Sergio Console and Carlos Olmos, 1902:) of elements invariant under the action of the 1723:{\displaystyle E_{r+1}^{0,r}\to E_{r+1}^{r+1,0}} 984:). The stabilizer of a flag of nested subspaces 1372:. Second, for vector spaces of even dimension 2 578:transitively on the set of all complete flags. 2773:is a complex Lie group, the symmetric spaces 2432: 2398: 2170: 2136: 2045: 1991: 1643:on generators of odd degree (the subspace of 593:, whose general linear group is the group GL( 8: 1002:can be taken to be the group of nonsingular 285: 279: 253:A flag in a finite dimensional vector space 1647:). It follows that the edge homomorphisms 1415:is any other closed, connected subgroup of 2914:Lectures on the geometry of flag varieties 2886:Robert J. Baston and Michael G. Eastwood, 1283:, then the (generalized) flag variety for 2572: 2567: 2555: 2546: 2535: 2534: 2522: 2512: 2499: 2486: 2474: 2465: 2452: 2441: 2440: 2431: 2430: 2424: 2415: 2397: 2396: 2390: 2384: 2351: 2350: 2348: 2329: 2328: 2326: 2249: 2230: 2218: 2209: 2190: 2179: 2178: 2169: 2168: 2162: 2153: 2135: 2134: 2128: 2122: 2086: 2075: 2074: 2071: 2044: 2043: 2028: 2009: 1998: 1997: 1990: 1989: 1984: 1969: 1950: 1932: 1920: 1914: 1702: 1691: 1672: 1661: 1655: 1314:can still be described using flags. When 1227: 1199: 1184: 1170: 1140: 1112: 1097: 1083: 849: 848: 839: 823: 810: 798: 743: 734: 720: 451: 432: 419: 406: 394: 340: 321: 308: 295: 277: 1438:The presence of a complex structure and 1330:, this is particularly transparent. If ( 869:is the space of all flags of signature ( 200:of parabolic type. They are homogeneous 1529:of the right multiplication action of 2908:, Chapman & Hall/CRC Press, 2003. 778:) replaced by the orthogonal group O( 7: 2777:arising in this way are the compact 2625:) and its orbit under the action of 2305:. For a more concrete example, take 2095:{\displaystyle {\widetilde {H}}^{*}} 1627:of characteristic zero, so that, by 1584:), so called because its image, the 613:th subspace is spanned by the first 551:Prototype: the complete flag variety 1537:, and we can use the cohomological 1376:, isotropic subspaces of dimension 1253:Generalization to semisimple groups 99:, which is a flag variety for the 25: 1890:) is injective, and likewise for 1470:, there exists a classifying map 2917:, Lecture notes, Varsovie, 2003. 2890:, Oxford University Press, 1989. 2758:. Specializing to the case that 2294:elementary symmetric polynomials 1748:bijectively into the bottom row 2812:of a Hermitian symmetric space 2789:is the biholomorphism group of 1411:is a compact real manifold. If 559:, any two complete flags in an 84:. Flag varieties are naturally 2896:Lie group actions on manifolds 2578: 2560: 2552: 2539: 2528: 2479: 2471: 2445: 2412: 2406: 2255: 2223: 2215: 2183: 2150: 2144: 2038: 2032: 2025: 2015: 1979: 1973: 1966: 1956: 1940: 1926: 1863:) induced by the inclusion of 1684: 1233: 1220: 1205: 1192: 1181: 1175: 1146: 1133: 1118: 1105: 1094: 1088: 853: 803: 731: 725: 705:such that the chosen basis is 555:According to basic results of 116:projective homogeneous variety 1: 2899:, Lecture notes, Tokyo, 2002. 1564:) and the characteristic map 1442:make it easy to see that the 528:of the flag is the sequence ( 261:is an increasing sequence of 212:, and they are precisely the 2963:Algebraic homogeneous spaces 2932:S. Kobayashi and T. Nagano, 2808:of the biholomorphism group 2631:projective algebraic variety 2358:{\displaystyle \mathbb {C} } 2336:{\displaystyle \mathbb {C} } 621:of the standard flag is the 231:. Over the real numbers, an 2832:is a parabolic subgroup of 2785:is the isometry group, and 1299:is a parabolic subgroup of 520:, otherwise it is called a 161:, then it is isomorphic to 2979: 2846:projective transformations 2779:Hermitian symmetric spaces 2666: 1268:Hence, more generally, if 945:-dimensional subspaces of 752:{\displaystyle U(n)/T^{n}} 563:-dimensional vector space 246: 229:Hermitian symmetric spaces 184:vector in a projectivized 2905:Submanifolds and Holonomy 2858:conformal transformations 2693:is a compact homogeneous 2647:: they are precisely the 2283:are of degree 2 and the σ 1894:, with image the subring 790:The partial flag variety 627:lower triangular matrices 2716:is a complex Lie group, 1521:, we obtain a principal 1407:of left cosets with the 1162:in the complex case, or 206:maximal compact subgroup 47:in a finite-dimensional 33:generalized flag variety 2926:Linear Algebraic Groups 1604:of the original bundle 1539:Serre spectral sequence 1370:split orthogonal groups 1342:then a partial flag in 1340:symplectic vector space 964:. To be explicit, take 243:Flags in a vector space 2936:I, II, J. Math. Mech. 2708:) with isometry group 2651:homogeneous spaces of 2588: 2359: 2337: 2265: 2096: 2057: 1724: 1602:characteristic classes 1586:characteristic subring 1240: 1153: 860: 786:Partial flag varieties 753: 589:, identifying it with 491:. Hence, we must have 470: 359: 223:Flag manifolds can be 196:flat model spaces for 2958:Differential geometry 2870:Parabolic Lie algebra 2589: 2360: 2338: 2266: 2097: 2058: 1725: 1440:cellular (co)homology 1241: 1154: 861: 754: 629:, which we denote by 499:. A flag is called a 471: 360: 249:flag (linear algebra) 2875:Bruhat decomposition 2836:. Examples include 2637:arises in this way. 2383: 2347: 2325: 2121: 2070: 1913: 1780:) in the final page 1654: 1169: 1082: 892:) in a vector space 797: 719: 676:special linear group 573:general linear group 393: 368:If we write the dim 276: 202:Riemannian manifolds 101:special linear group 86:projective varieties 2695:Riemannian manifold 2577: 1839:) is a quotient of 1798:cellular cohomology 1719: 1683: 1525:-bundle called the 122:projective variety 2921:James E. Humphreys 2712:. Furthermore, if 2584: 2563: 2355: 2333: 2317:)/ is the complex 2261: 2092: 2053: 1807:Thus the ring map 1720: 1687: 1657: 1645:primitive elements 1249:in the real case. 1236: 1149: 856: 749: 466: 355: 218:compact Lie groups 171:parabolic subgroup 2940:(1964), 875–907, 2838:projective spaces 2724:is a homogeneous 2374:fundamental class 2296:in the variables 2083: 2006: 1499:homotopy quotient 1484:classifying space 1409:quotient topology 711:homogeneous space 667:−1)/2 over 640:homogeneous space 198:Cartan geometries 132:transitive action 43:whose points are 41:homogeneous space 16:(Redirected from 2970: 2663:Symmetric spaces 2619:projective space 2593: 2591: 2590: 2585: 2576: 2571: 2559: 2551: 2550: 2538: 2527: 2526: 2517: 2516: 2504: 2503: 2491: 2490: 2478: 2470: 2469: 2457: 2456: 2444: 2436: 2435: 2429: 2428: 2419: 2402: 2401: 2395: 2394: 2364: 2362: 2361: 2356: 2354: 2342: 2340: 2339: 2334: 2332: 2270: 2268: 2267: 2262: 2254: 2253: 2235: 2234: 2222: 2214: 2213: 2195: 2194: 2182: 2174: 2173: 2167: 2166: 2157: 2140: 2139: 2133: 2132: 2101: 2099: 2098: 2093: 2091: 2090: 2085: 2084: 2076: 2062: 2060: 2059: 2054: 2049: 2048: 2042: 2041: 2014: 2013: 2008: 2007: 1999: 1995: 1994: 1988: 1983: 1982: 1955: 1954: 1936: 1925: 1924: 1729: 1727: 1726: 1721: 1718: 1701: 1682: 1671: 1641:exterior algebra 1509:in the sequence 1489:. If we replace 1482:with target the 1433:complexification 1328:orthogonal group 1324:symplectic group 1245: 1243: 1242: 1237: 1232: 1231: 1204: 1203: 1188: 1158: 1156: 1155: 1150: 1145: 1144: 1117: 1116: 1101: 865: 863: 862: 857: 852: 844: 843: 828: 827: 815: 814: 758: 756: 755: 750: 748: 747: 738: 475: 473: 472: 467: 456: 455: 437: 436: 424: 423: 411: 410: 364: 362: 361: 356: 345: 344: 326: 325: 313: 312: 300: 299: 225:symmetric spaces 214:coadjoint orbits 109:symplectic group 71:complex manifold 21: 2978: 2977: 2973: 2972: 2971: 2969: 2968: 2967: 2948: 2947: 2944:(1965) 513–521. 2893:Jürgen Berndt, 2883: 2866: 2764:symmetric space 2726:Kähler manifold 2671: 2669:Symmetric space 2665: 2603: 2542: 2518: 2508: 2495: 2482: 2461: 2448: 2420: 2386: 2381: 2380: 2376:), and indeed, 2345: 2344: 2323: 2322: 2304: 2288: 2282: 2245: 2226: 2205: 2186: 2158: 2124: 2119: 2118: 2073: 2068: 2067: 2024: 1996: 1965: 1946: 1916: 1911: 1910: 1747: 1652: 1651: 1600:), carries the 1527:Borel fibration 1508: 1444:cohomology ring 1386: 1320:classical group 1255: 1223: 1195: 1167: 1166: 1136: 1108: 1080: 1079: 1040: 1033: 1023: 1014: 1001: 992: 944: 921: 908: 891: 882: 875: 835: 819: 806: 795: 794: 788: 739: 717: 716: 658: 637: 625:of nonsingular 581:Fix an ordered 553: 543: 534: 511: 447: 428: 415: 402: 391: 390: 385: 376: 336: 317: 304: 291: 274: 273: 251: 245: 136:reductive group 23: 22: 15: 12: 11: 5: 2976: 2974: 2966: 2965: 2960: 2950: 2949: 2946: 2945: 2930: 2918: 2911:Michel Brion, 2909: 2900: 2891: 2882: 2879: 2878: 2877: 2872: 2865: 2862: 2752: 2751: 2667:Main article: 2664: 2661: 2602: 2599: 2595: 2594: 2583: 2580: 2575: 2570: 2566: 2562: 2558: 2554: 2549: 2545: 2541: 2537: 2533: 2530: 2525: 2521: 2515: 2511: 2507: 2502: 2498: 2494: 2489: 2485: 2481: 2477: 2473: 2468: 2464: 2460: 2455: 2451: 2447: 2443: 2439: 2434: 2427: 2423: 2418: 2414: 2411: 2408: 2405: 2400: 2393: 2389: 2353: 2331: 2300: 2289:are the first 2284: 2278: 2272: 2271: 2260: 2257: 2252: 2248: 2244: 2241: 2238: 2233: 2229: 2225: 2221: 2217: 2212: 2208: 2204: 2201: 2198: 2193: 2189: 2185: 2181: 2177: 2172: 2165: 2161: 2156: 2152: 2149: 2146: 2143: 2138: 2131: 2127: 2089: 2082: 2079: 2064: 2063: 2052: 2047: 2040: 2037: 2034: 2031: 2027: 2023: 2020: 2017: 2012: 2005: 2002: 1993: 1987: 1981: 1978: 1975: 1972: 1968: 1964: 1961: 1958: 1953: 1949: 1945: 1942: 1939: 1935: 1931: 1928: 1923: 1919: 1764:have the same 1745: 1741:) of the page 1731: 1730: 1717: 1714: 1711: 1708: 1705: 1700: 1697: 1694: 1690: 1686: 1681: 1678: 1675: 1670: 1667: 1664: 1660: 1629:Hopf's theorem 1504: 1399:and the space 1385: 1382: 1254: 1251: 1247: 1246: 1235: 1230: 1226: 1222: 1219: 1216: 1213: 1210: 1207: 1202: 1198: 1194: 1191: 1187: 1183: 1180: 1177: 1174: 1160: 1159: 1148: 1143: 1139: 1135: 1132: 1129: 1126: 1123: 1120: 1115: 1111: 1107: 1104: 1100: 1096: 1093: 1090: 1087: 1038: 1028: 1019: 1010: 997: 988: 942: 934:=2, this is a 917: 904: 887: 880: 873: 867: 866: 855: 851: 847: 842: 838: 834: 831: 826: 822: 818: 813: 809: 805: 802: 787: 784: 760: 759: 746: 742: 737: 733: 730: 727: 724: 688:Borel subgroup 654: 633: 557:linear algebra 552: 549: 539: 532: 507: 477: 476: 465: 462: 459: 454: 450: 446: 443: 440: 435: 431: 427: 422: 418: 414: 409: 405: 401: 398: 381: 372: 366: 365: 354: 351: 348: 343: 339: 335: 332: 329: 324: 320: 316: 311: 307: 303: 298: 294: 290: 287: 284: 281: 247:Main article: 244: 241: 186:representation 182:highest weight 159:rational point 147:characteristic 24: 14: 13: 10: 9: 6: 4: 3: 2: 2975: 2964: 2961: 2959: 2956: 2955: 2953: 2943: 2939: 2935: 2931: 2928: 2927: 2922: 2919: 2916: 2915: 2910: 2907: 2906: 2901: 2898: 2897: 2892: 2889: 2885: 2884: 2880: 2876: 2873: 2871: 2868: 2867: 2863: 2861: 2859: 2856:the group of 2855: 2851: 2847: 2844:the group of 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2799: 2794: 2792: 2788: 2784: 2780: 2776: 2772: 2767: 2765: 2761: 2757: 2749: 2745: 2741: 2737: 2734: 2733: 2732: 2729: 2727: 2723: 2719: 2715: 2711: 2707: 2703: 2699: 2696: 2692: 2688: 2684: 2680: 2676: 2670: 2662: 2660: 2658: 2654: 2650: 2646: 2642: 2638: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2600: 2598: 2581: 2573: 2568: 2564: 2556: 2547: 2543: 2531: 2523: 2519: 2513: 2509: 2505: 2500: 2496: 2492: 2487: 2483: 2475: 2466: 2462: 2458: 2453: 2449: 2437: 2425: 2421: 2416: 2409: 2403: 2391: 2387: 2379: 2378: 2377: 2375: 2371: 2367: 2320: 2316: 2312: 2309:= 2, so that 2308: 2303: 2299: 2295: 2292: 2287: 2281: 2277: 2258: 2250: 2246: 2242: 2239: 2236: 2231: 2227: 2219: 2210: 2206: 2202: 2199: 2196: 2191: 2187: 2175: 2163: 2159: 2154: 2147: 2141: 2129: 2125: 2117: 2116: 2115: 2113: 2109: 2105: 2087: 2080: 2077: 2050: 2035: 2029: 2021: 2018: 2010: 2003: 2000: 1985: 1976: 1970: 1962: 1959: 1951: 1947: 1943: 1937: 1933: 1929: 1921: 1917: 1909: 1908: 1907: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1872: 1870: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1805: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1744: 1740: 1736: 1715: 1712: 1709: 1706: 1703: 1698: 1695: 1692: 1688: 1679: 1676: 1673: 1668: 1665: 1662: 1658: 1650: 1649: 1648: 1646: 1642: 1638: 1634: 1630: 1626: 1621: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1507: 1503: 1500: 1496: 1492: 1488: 1485: 1481: 1477: 1473: 1469: 1467: 1461: 1457: 1453: 1449: 1445: 1441: 1436: 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1395: 1394:maximal torus 1391: 1383: 1381: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1350: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1304: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1275: 1271: 1266: 1264: 1260: 1252: 1250: 1228: 1224: 1217: 1214: 1211: 1208: 1200: 1196: 1189: 1185: 1178: 1172: 1165: 1164: 1163: 1141: 1137: 1130: 1127: 1124: 1121: 1113: 1109: 1102: 1098: 1091: 1085: 1078: 1077: 1076: 1074: 1069: 1067: 1063: 1059: 1055: 1051: 1047: 1042: 1037: 1031: 1027: 1022: 1018: 1013: 1009: 1005: 1000: 996: 993:of dimension 991: 987: 983: 979: 975: 971: 967: 963: 959: 955: 950: 948: 941: 937: 933: 929: 925: 920: 916: 912: 907: 903: 899: 896:of dimension 895: 890: 886: 879: 872: 845: 840: 836: 832: 829: 824: 820: 816: 811: 807: 800: 793: 792: 791: 785: 783: 781: 777: 773: 770:and T is the 769: 768:unitary group 765: 744: 740: 735: 728: 722: 715: 714: 713: 712: 708: 704: 700: 699:inner product 696: 693:If the field 691: 689: 685: 681: 677: 672: 670: 666: 662: 657: 653: 649: 645: 641: 636: 632: 628: 624: 620: 616: 612: 608: 604: 600: 596: 592: 588: 584: 579: 577: 574: 570: 567:over a field 566: 562: 558: 550: 548: 545: 542: 538: 531: 527: 523: 519: 515: 510: 506: 502: 501:complete flag 498: 494: 490: 486: 482: 463: 460: 457: 452: 448: 444: 441: 438: 433: 429: 425: 420: 416: 412: 407: 403: 399: 396: 389: 388: 387: 386:then we have 384: 380: 375: 371: 352: 349: 346: 341: 337: 333: 330: 327: 322: 318: 314: 309: 305: 301: 296: 292: 288: 282: 272: 271: 270: 268: 264: 260: 257:over a field 256: 250: 242: 240: 238: 234: 230: 226: 221: 219: 215: 211: 207: 203: 199: 195: 191: 187: 183: 179: 175: 172: 168: 164: 160: 156: 152: 148: 144: 140: 137: 133: 129: 126:over a field 125: 121: 118:, that is, a 117: 112: 110: 106: 102: 98: 95:over a field 94: 89: 87: 83: 82:flag manifold 80: 76: 72: 68: 64: 60: 57: 53: 50: 46: 42: 38: 34: 30: 19: 2941: 2937: 2933: 2924: 2912: 2903: 2894: 2887: 2853: 2841: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2801: 2797: 2795: 2790: 2786: 2782: 2774: 2770: 2768: 2759: 2755: 2753: 2747: 2743: 2739: 2735: 2730: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2690: 2686: 2682: 2678: 2674: 2672: 2659:-varieties. 2656: 2652: 2644: 2641:Armand Borel 2639: 2634: 2626: 2622: 2614: 2610: 2606: 2604: 2596: 2369: 2365: 2319:Grassmannian 2314: 2310: 2306: 2301: 2297: 2290: 2285: 2279: 2275: 2273: 2111: 2107: 2103: 2065: 1899: 1895: 1891: 1887: 1883: 1879: 1875: 1873: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1806: 1802:CW structure 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1761: 1757: 1753: 1749: 1742: 1738: 1734: 1732: 1636: 1632: 1624: 1622: 1617: 1613: 1609: 1605: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1543:homomorphism 1534: 1530: 1522: 1518: 1514: 1510: 1505: 1501: 1494: 1490: 1486: 1479: 1475: 1471: 1465: 1459: 1455: 1451: 1447: 1437: 1428: 1424: 1420: 1416: 1412: 1404: 1400: 1396: 1389: 1387: 1377: 1373: 1365: 1361: 1357: 1353: 1347: 1343: 1335: 1331: 1322:, such as a 1315: 1311: 1307: 1305: 1300: 1296: 1292: 1288: 1284: 1269: 1267: 1262: 1258: 1256: 1248: 1161: 1072: 1070: 1065: 1061: 1057: 1053: 1049: 1045: 1043: 1035: 1029: 1025: 1020: 1016: 1011: 1007: 998: 994: 989: 985: 981: 977: 973: 969: 965: 961: 957: 953: 951: 946: 939: 936:Grassmannian 931: 927: 923: 918: 914: 910: 905: 901: 897: 893: 888: 884: 877: 870: 868: 789: 779: 775: 771: 763: 761: 702: 694: 692: 683: 679: 673: 668: 664: 660: 655: 651: 647: 643: 634: 630: 614: 610: 606: 602: 598: 594: 590: 586: 580: 568: 564: 560: 554: 546: 540: 536: 529: 525: 522:partial flag 521: 517: 513: 508: 504: 500: 496: 492: 488: 480: 478: 382: 378: 373: 369: 367: 258: 254: 252: 236: 232: 222: 209: 189: 177: 173: 166: 162: 154: 150: 142: 138: 127: 123: 115: 113: 104: 96: 92: 90: 81: 78: 74: 62: 58: 51: 49:vector space 37:flag variety 36: 32: 26: 18:Flag variety 2114:, one has 1756:): we know 1419:containing 707:orthonormal 73:, called a 35:(or simply 29:mathematics 2952:Categories 2881:References 2820:such that 2597:as hoped. 2274:where the 1904:Weyl group 1464:principal 1384:Cohomology 1274:semisimple 619:stabilizer 267:filtration 204:under any 149:zero). If 2824: := 2806:real form 2532:≅ 2438:≅ 2392:∗ 2247:σ 2240:… 2228:σ 2200:… 2176:≅ 2130:∗ 2088:∗ 2081:~ 2011:∗ 2004:~ 1952:∗ 1944:≅ 1922:∗ 1685:→ 1497:with the 1349:isotropic 1281:Lie group 1277:algebraic 1215:× 1212:⋯ 1209:× 1128:× 1125:⋯ 1122:× 1015: := 833:… 766:) is the 526:signature 485:dimension 442:⋯ 334:⊂ 331:⋯ 328:⊂ 315:⊂ 302:⊂ 263:subspaces 239:-spaces. 169:for some 2864:See also 2804:to be a 2649:complete 1874:The map 1639:) is an 1032:−1 1024:− 972:so that 926:for all 762:where U( 516:for all 2850:spheres 2828:∩ 2746:∩ 2704:∩ 2681:. Then 1468:-bundle 1423:, then 1338:) is a 930:. When 535:, ..., 483:is the 194:compact 153:has an 130:with a 79:complex 61:. When 54:over a 39:) is a 2852:(with 2848:) and 2840:(with 2066:where 1362:ω 1336:ω 1295:where 1048:of SL( 1041:= 0). 1034:(with 883:, ... 524:. The 479:where 120:smooth 67:smooth 2762:is a 2629:is a 2321:Gr(1, 1462:is a 1318:is a 1272:is a 1004:block 976:= GL( 960:over 909:over 623:group 601:) of 583:basis 134:of a 103:over 56:field 45:flags 2673:Let 2343:) ≈ 1882:) → 1855:) → 1819:) → 1766:rank 1760:and 1572:) → 1556:) → 1435:.) 650:) / 585:for 576:acts 445:< 439:< 426:< 413:< 75:real 31:, a 2860:). 2769:If 2605:If 1871:. 1867:in 1770:not 1588:of 1533:on 1515:G/H 1460:G/H 1446:of 1388:If 1346:is 1326:or 1287:is 1279:or 1071:If 956:of 938:of 701:on 678:SL( 642:GL( 544:). 503:if 487:of 269:): 216:of 208:of 188:of 176:of 145:of 77:or 69:or 27:In 2954:: 2942:14 2938:13 2923:, 2793:. 2781:: 2742:/( 2738:= 2728:. 2700:/( 2621:P( 2368:≈ 2110:)/ 1900:BT 1898:*( 1888:BT 1886:*( 1880:BG 1878:*( 1861:BH 1859:*( 1853:BG 1851:*( 1845:BH 1843:*( 1831:*( 1823:*( 1811:*( 1804:. 1784:*( 1778:BH 1776:*( 1754:BH 1752:*( 1737:*( 1635:*( 1631:, 1620:. 1612:→ 1608:→ 1592:*( 1576:*( 1570:BH 1568:*( 1560:*( 1548:*( 1519:BH 1517:→ 1513:→ 1487:BH 1480:BH 1478:→ 1458:→ 1334:, 1068:. 1064:)/ 968:= 949:. 922:= 900:= 876:, 690:. 671:. 605:× 512:= 495:≤ 377:= 220:. 88:. 2854:G 2842:G 2834:G 2830:G 2826:P 2822:P 2818:P 2816:/ 2814:G 2810:G 2802:G 2798:K 2791:M 2787:G 2783:K 2775:M 2771:G 2760:M 2756:G 2750:) 2748:P 2744:K 2740:K 2736:M 2722:P 2720:/ 2718:G 2714:G 2710:K 2706:P 2702:K 2698:K 2691:P 2689:/ 2687:G 2683:K 2679:K 2675:G 2657:G 2653:G 2645:G 2635:G 2627:G 2623:V 2615:G 2611:V 2607:G 2582:, 2579:) 2574:2 2569:1 2565:t 2561:( 2557:/ 2553:] 2548:1 2544:t 2540:[ 2536:Q 2529:) 2524:2 2520:t 2514:1 2510:t 2506:, 2501:2 2497:t 2493:+ 2488:1 2484:t 2480:( 2476:/ 2472:] 2467:2 2463:t 2459:, 2454:1 2450:t 2446:[ 2442:Q 2433:) 2426:2 2422:T 2417:/ 2413:) 2410:2 2407:( 2404:U 2399:( 2388:H 2370:S 2366:P 2352:C 2330:C 2315:2 2313:( 2311:U 2307:n 2302:j 2298:t 2291:n 2286:j 2280:j 2276:t 2259:, 2256:) 2251:n 2243:, 2237:, 2232:1 2224:( 2220:/ 2216:] 2211:n 2207:t 2203:, 2197:, 2192:1 2188:t 2184:[ 2180:Q 2171:) 2164:n 2160:T 2155:/ 2151:) 2148:n 2145:( 2142:U 2137:( 2126:H 2112:T 2108:n 2106:( 2104:U 2078:H 2051:, 2046:) 2039:) 2036:G 2033:( 2030:W 2026:) 2022:T 2019:B 2016:( 2001:H 1992:( 1986:/ 1980:) 1977:H 1974:( 1971:W 1967:) 1963:T 1960:B 1957:( 1948:H 1941:) 1938:H 1934:/ 1930:G 1927:( 1918:H 1896:H 1892:H 1884:H 1876:H 1869:G 1865:H 1857:H 1849:H 1841:H 1837:H 1835:/ 1833:G 1829:H 1825:G 1821:H 1817:H 1815:/ 1813:G 1809:H 1794:k 1790:H 1788:/ 1786:G 1782:H 1774:H 1762:H 1758:G 1750:H 1746:2 1743:E 1739:G 1735:H 1716:0 1713:, 1710:1 1707:+ 1704:r 1699:1 1696:+ 1693:r 1689:E 1680:r 1677:, 1674:0 1669:1 1666:+ 1663:r 1659:E 1637:G 1633:H 1625:k 1618:H 1616:/ 1614:G 1610:G 1606:H 1598:H 1596:/ 1594:G 1590:H 1582:H 1580:/ 1578:G 1574:H 1566:H 1562:G 1558:H 1554:H 1552:/ 1550:G 1546:H 1535:G 1531:H 1523:G 1511:G 1506:H 1502:G 1495:H 1493:/ 1491:G 1476:H 1474:/ 1472:G 1466:H 1456:G 1452:H 1450:/ 1448:G 1429:H 1427:/ 1425:G 1421:T 1417:G 1413:H 1405:T 1403:/ 1401:G 1397:T 1390:G 1378:m 1374:m 1366:F 1360:, 1358:V 1354:V 1344:V 1332:V 1316:G 1312:P 1310:/ 1308:G 1301:G 1297:P 1293:P 1291:/ 1289:G 1285:G 1270:G 1263:F 1261:, 1259:n 1234:) 1229:k 1225:n 1221:( 1218:O 1206:) 1201:1 1197:n 1193:( 1190:O 1186:/ 1182:) 1179:n 1176:( 1173:O 1147:) 1142:k 1138:n 1134:( 1131:U 1119:) 1114:1 1110:n 1106:( 1103:U 1099:/ 1095:) 1092:n 1089:( 1086:U 1073:F 1066:P 1062:F 1060:, 1058:n 1054:F 1052:, 1050:n 1046:P 1039:0 1036:d 1030:i 1026:d 1021:i 1017:d 1012:i 1008:n 999:i 995:d 990:i 986:V 982:F 980:, 978:n 974:G 970:F 966:V 962:F 958:V 954:G 947:V 943:1 940:d 932:k 928:i 924:i 919:i 915:d 911:F 906:k 902:d 898:n 894:V 889:k 885:d 881:2 878:d 874:1 871:d 854:) 850:F 846:, 841:k 837:d 830:, 825:2 821:d 817:, 812:1 808:d 804:( 801:F 780:n 776:n 772:n 764:n 745:n 741:T 736:/ 732:) 729:n 726:( 723:U 703:V 695:F 684:F 682:, 680:n 669:F 665:n 663:( 661:n 656:n 652:B 648:F 646:, 644:n 635:n 631:B 615:i 611:i 607:n 603:n 599:F 597:, 595:n 591:F 587:V 569:F 565:V 561:n 541:k 537:d 533:1 530:d 518:i 514:i 509:i 505:d 497:n 493:k 489:V 481:n 464:, 461:n 458:= 453:k 449:d 434:2 430:d 421:1 417:d 408:0 404:d 400:= 397:0 383:i 379:d 374:i 370:V 353:. 350:V 347:= 342:k 338:V 323:2 319:V 310:1 306:V 297:0 293:V 289:= 286:} 283:0 280:{ 259:F 255:V 237:R 233:R 210:G 190:G 178:G 174:P 167:P 165:/ 163:G 157:- 155:F 151:X 143:F 139:G 128:F 124:X 105:F 97:F 93:V 63:F 59:F 52:V 20:)

Index

Flag variety
mathematics
homogeneous space
flags
vector space
field
smooth
complex manifold
projective varieties
special linear group
symplectic group
smooth
transitive action
reductive group
characteristic
rational point
parabolic subgroup
highest weight
representation
compact
Cartan geometries
Riemannian manifolds
maximal compact subgroup
coadjoint orbits
compact Lie groups
symmetric spaces
Hermitian symmetric spaces
flag (linear algebra)
subspaces
filtration

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.