Knowledge (XXG)

Mathematics of paper folding

Source đź“ť

1425:. A universality result defines the bounds of possibility given a particular model of folding. For example, a large enough piece of paper can be folded into any tree-shaped origami base, polygonal silhouette, and polyhedral surface. When universality results are not attainable, efficient decision algorithms can be used to test whether an object is foldable in polynomial time. Certain paper-folding problems do not have efficient algorithms. Computational intractability results show that there are no such polynomial-time algorithms that currently exist to solve certain folding problems. For example, it is NP-hard to evaluate whether a given crease pattern folds into any flat origami. 3884: 3321: 163: 1199: 428:, but can be solved using only a few paper folds. Paper fold strips can be constructed to solve equations up to degree 4. The Huzita–Justin axioms or Huzita–Hatori axioms are an important contribution to this field of study. These describe what can be constructed using a sequence of creases with at most two point or line alignments at once. Complete methods for solving all equations up to degree 4 by applying methods satisfying these axioms are discussed in detail in 96: 57:
folding of bases. Computational origami results either address origami design or origami foldability. In origami design problems, the goal is to design an object that can be folded out of paper given a specific target configuration. In origami foldability problems, the goal is to fold something using the creases of an initial configuration. Results in origami design problems have been more accessible than in origami foldability problems.
4954: 201: 1167: 495: 327: 31: 1438: 133: 319: 293:
In 2003, Jeremy Gibbons, a researcher from the University of Oxford, described a style of functional programming in terms of origami. He coined this paradigm as "origami programming." He characterizes fold and unfolds as natural patterns of computation over recursive datatypes that can be framed in
56:
Computational origami is a recent branch of computer science that is concerned with studying algorithms that solve paper-folding problems. The field of computational origami has also grown significantly since its inception in the 1990s with Robert Lang's TreeMaker algorithm to assist in the precise
1496:
In 2014, researchers at the Massachusetts Institute of Technology, Harvard University, and the Wyss Institute for Biologically Inspired Engineering published a method for building self-folding machines and credited advances in computational origami for the project's success. Their origami-inspired
1428:
In 2017, Erik Demaine of the Massachusetts Institute of Technology and Tomohiro Tachi of the University of Tokyo published a new universal algorithm that generates practical paper-folding patterns to produce any 3-D structure. The new algorithm built upon work that they presented in their paper in
1178:
can be solved using origami. This construction is due to Peter Messer: A square of paper is first creased into three equal strips as shown in the diagram. Then the bottom edge is positioned so the corner point P is on the top edge and the crease mark on the edge meets the other crease mark Q. The
150:
and Masamori Sakamaki demonstrated a novel map-folding technique whereby the folds are made in a prescribed parallelogram pattern, which allows the map to be expandable without any right-angle folds in the conventional manner. Their pattern allows the fold lines to be interdependent, and hence the
1511:
Applications of computational origami have been featured by various production companies and commercials. Lang famously worked with Toyota Avalon to feature an animated origami sequence, Mitsubishi Endeavor to create a world entirely out of origami figures, and McDonald's to form numerous origami
442:
As a result of origami study through the application of geometric principles, methods such as Haga's theorem have allowed paperfolders to accurately fold the side of a square into thirds, fifths, sevenths, and ninths. Other theorems and methods have allowed paperfolders to get other shapes from a
1481:
Computational origami has contributed to applications in robotics, engineering, biotechnology & medicine, industrial design. Applications for origami have also been developed in the study of programming languages and programming paradigms, particular in the setting of functional programming.
1209:
is another of the classical problems that cannot be solved using a compass and unmarked ruler but can be solved using origami. This construction, which was reported in 1980, is due to Hisashi Abe. The angle CAB is trisected by making folds PP' and QQ' parallel to the base with QQ' halfway in
502:
The side of a square can be divided at an arbitrary rational fraction in a variety of ways. Haga's theorems say that a particular set of constructions can be used for such divisions. Surprisingly few folds are necessary to generate large odd fractions. For instance
1429:
1999 that first introduced a universal algorithm for folding origami shapes that guarantees a minimum number of seams. The algorithm will be included in Origamizer, a free software for generating origami crease patterns that was first released by Tachi in 2008.
185:
in 1989. The first International Meeting of Origami Science and Technology (now known as the International Conference on Origami in Science, Math, and Education) was held in 1989 in Ferrara, Italy. At this meeting, a construction was given by Scimemi for the
289:
of spherical optics. In the same paper, Alperin showed a construction for a regular heptagon. In 2004, was proven algorithmically the fold pattern for a regular heptagon. Bisections and trisections were used by Alperin in 2005 for the same construction.
304:
In 2009, Alperin and Lang extended the theoretical origami to rational equations of arbitrary degree, with the concept of manifold creases. This work was a formal extension of Lang's unpublished 2004 demonstration of angle quintisection.
376:
at all points on its surface, and only folds naturally along lines of zero curvature. Curved surfaces that can't be flattened can be produced using a non-folded crease in the paper, as is easily done with wet paper or a fingernail.
1445:
There are several software design tools that are used for origami design. Users specify the desired shape or functionality and the software tool constructs the fold pattern and/or 2D or 3D model of the result. Researchers at the
1367:, in December 2001. In January 2002, she folded a 4,000-foot-long (1,200 m) piece of toilet paper twelve times in the same direction, debunking a long-standing myth that paper cannot be folded in half more than eight times. 334:
The construction of origami models is sometimes shown as crease patterns. The major question about such crease patterns is whether a given crease pattern can be folded to a flat model, and if so, how to fold them; this is an
1390:
Computational origami is a branch of computer science that is concerned with studying algorithms for solving paper-folding problems. In the early 1990s, origamists participated in a series of origami contests called the
1374:
asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained.
1210:
between. Then point P is folded over to lie on line AC and at the same time point A is made to lie on line QQ' at A'. The angle A'AB is one third of the original angle CAB. This is because PAQ, A'AQ and A'AR are three
226:
In late 2001 and early 2002, Britney Gallivan proved the minimum length of paper necessary to fold it in half a certain number of times and folded a 4,000-foot-long (1,200 m) piece of toilet paper twelve times.
1395:
in which artists attempted to out-compete their peers by adding complexity to their origami bugs. Most competitors in the contest belonged to the Origami Detectives, a group of acclaimed Japanese artists.
4861: 1416:
Paper-folding problems are classified as either origami design or origami foldability problems. There are predominantly three current categories of computational origami research: universality results,
1341: 1153: 1466:
have developed and posted publicly available tools in computational origami. TreeMaker, ReferenceFinder, OrigamiDraw, and Origamizer are among the tools that have been used in origami design.
155:
can be packed into a very compact shape. In 1985 Miura reported a method of packaging and deployment of large membranes in outer space, and as early as 2012 this technique had been applied to
2147:
Robu, Judit; Ida, Tetsuo; Ţepeneu, Dorin; Takahashi, Hidekazu; Buchberger, Bruno (2006). "Computational Origami Construction of a Regular Heptagon with Automated Proof of Its Correctness".
4102: 151:
map can be unpacked in one motion by pulling on its opposite ends, and likewise folded by pushing the two ends together. No unduly complicated series of movements are required, and folded
1485:
Robert Lang participated in a project with researchers at EASi Engineering in Germany to develop automotive airbag folding designs. In the mid-2000s, Lang worked with researchers at the
595: 3353: 846: 795: 49:
study. Fields of interest include a given paper model's flat-foldability (whether the model can be flattened without damaging it), and the use of paper folds to solve up-to cubic
5034: 752: 708: 1497:
robot was reported to fold itself in 4 minutes and walk away without human intervention, which demonstrated the potential for autonomous self-controlled assembly in robotics.
3883: 1408:, also participated in the contest. The contest helped initialize a collective interest in developing universal models and tools to aid in origami design and foldability. 301:, a game popularized in British television in which competitors used a list of source numbers to build an arithmetic expression as close to the target number as possible. 4893: 216:
showed that the problem of assigning a crease pattern of mountain and valley folds in order to produce a flat origami structure starting from a flat sheet of paper is
1255:
The maximum number of times an incompressible material can be folded has been derived. With each fold a certain amount of paper is lost to potential folding. The
4888: 4062: 3763: 667: 280: 260: 122:
In 1949, R C Yeates' book "Geometric Methods" described three allowed constructions corresponding to the first, second, and fifth of the Huzita–Hatori axioms.
1441:
Animation of folds to make a Samurai helmet, also called a kabuto. (On a laptop computer, Julia and GLMakie generated the 66 second .mp4 video in 10 seconds.)
4042: 3346: 1241:
is the problem of whether a square or rectangle of paper can be folded so the perimeter of the flat figure is greater than that of the original square.
357:
It follows from this that every vertex has an even number of creases, and therefore also the regions between the creases can be colored with two colors.
5050: 5015: 4992: 92:
published "Houdini's Paper Magic," which described origami techniques that drew informally from mathematical approaches that were later formalized.
5025: 1244:
The placement of a point on a curved fold in the pattern may require the solution of elliptic integrals. Curved origami allows the paper to form
1834: 1486: 1183: 413: 3339: 3202: 3180: 3132: 2627: 2585: 2516: 2463: 2407: 2164: 1754: 1714: 1447: 3588: 1663: 1252:
origami is a technique evolved by Yoshizawa that allows curved folds to create an even greater range of shapes of higher order complexity.
77: 4673: 2293: 4833: 3609: 3114: 4847: 3509: 1469:
There are other software solutions associated with building computational origami models using non-paper materials such as Cadnano in
1405: 5030: 3756: 2320: 2131: 2055: 1924:
Benedetto Scimemi, Regular Heptagon by Folding, Proceedings of Origami, Science and Technology, ed. H. Huzita., Ferrara, Italy, 1990
1669: 2900: 2643: 4197: 1455: 81:
which used paper folding to demonstrate proofs of geometrical constructions. This work was inspired by the use of origami in the
4332: 1422: 143:
In 1980 a construction was reported which enabled an angle to be trisected. Trisections are impossible under Euclidean rules.
4908: 4878: 4318: 3650: 1262: 3720: 3416: 2441: 1214:
triangles. Aligning the two points on the two lines is another neusis construction as in the solution to doubling the cube.
365:
or Kawasaki-Justin theorem: at any vertex, the sum of all the odd angles (see image) adds up to 180 degrees, as do the even.
126: 5081: 3447: 1541: 417: 3311: 1092: 5076: 5010: 4985: 4958: 4771: 4433: 4283: 4252: 4147: 4094: 3908: 3749: 3595: 2840: 2445: 1911:
Justin, Jacques, "Resolution par le pliage de l'equation du troisieme degre et applications geometriques", reprinted in
394: 1363:
must be expressed in the same units, such as inches. This result was derived by Britney Gallivan, a high schooler from
3290: 85:
system. Row demonstrated an approximate trisection of angles and implied construction of a cube root was impossible.
3950: 3935: 3645: 1493:, particularly its large mirrors, to fit into a rocket using principles and algorithms from computational origami. 1490: 223:
In 1999, a theorem due to Haga provided constructions used to divide the side of a square into rational fractions.
156: 104: 463:. Methods for folding most regular polygons up to and including the regular 19-gon have been developed. A regular 5020: 4290: 3851: 2826: 3386: 407: 112: 4883: 4304: 3680: 3616: 3261: 2075: 1569: 609: 425: 235: 2801: 2775: 1378:
A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements. The
542: 4978: 4607: 4297: 3940: 3821: 3522: 3281: 2423: 2047: 1704: 801: 3051: 4898: 4797: 4745: 4739: 4635: 4016: 3406: 1795: 1573: 1531: 1418: 1238: 758: 239: 380:
Assigning a crease pattern mountain and valley folds in order to produce a flat model has been proven by
5045: 4779: 4753: 4601: 4580: 4422: 4167: 4122: 4048: 3999: 3806: 2071: 1459: 1211: 714: 231: 4339: 3391: 3320: 2360: 673: 362: 3232: 3211: 513:
can be generated with three folds; first halve a side, then use Haga's theorem twice to produce first
162: 4704: 4575: 4456: 4069: 3566: 3396: 3376: 3000: 1371: 1182:
The edge with the crease mark is considered a marked straightedge, something which is not allowed in
351: 286: 1838: 178: 4929: 4854: 4593: 4245: 4224: 3843: 3772: 3533: 3514: 2541: 1893: 1463: 1401: 1245: 1187: 381: 297:
In 2005, principles and concepts from mathematical and computational origami were applied to solve
209: 37:
for a 2×2 grid of squares: there are eight different ways to fold such a map along its creases
3272: 2925: 2226: 1198: 95: 4934: 4791: 4621: 4417: 4407: 4260: 4132: 3987: 3695: 3518: 3493: 3325: 3159: 3032: 2716: 2708: 2581: 2393: 2390:
The Proceedings of the Third International Meeting of Origami Science, Mathematics, and Education
2274: 2207: 2189: 1604: 385: 373: 213: 66: 4127: 2737: 2564: 1958:
Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996)
177:
The first complete statement of the seven axioms of origami by French folder and mathematician
4970: 4655: 4643: 4629: 4511: 4186: 4172: 3715: 3602: 3473: 3198: 3176: 3128: 3024: 3016: 2834: 2623: 2618:
Michael J Winckler; Kathrin D Wold; Hans Georg Bock (2011). "Hands-on Geometry with Origami".
2512: 2506: 2459: 2403: 2340: 2316: 2266: 2160: 2127: 2051: 2013: 1983: 1750: 1710: 1175: 430: 421: 147: 2791:
Schneider, Jonathan (December 10, 2004). "Flat-Foldability of Origami Crease Patterns" (PDF).
1650:
Origami USA: We are the American national society devoted to origami, the art of paperfolding
5071: 4805: 4501: 4496: 4446: 4392: 4347: 4326: 4312: 4276: 4076: 3856: 3675: 3640: 3571: 3543: 3528: 3411: 3244: 3223: 3151: 3120: 3008: 2700: 2451: 2308: 2256: 2199: 2152: 2119: 2091: 1852: 1622: 1588: 1526: 1234:
is a rigid fold that has been used to deploy large solar panel arrays for space satellites.
1206: 460: 456: 187: 2473: 1965: 1600: 4939: 4667: 4556: 4471: 4451: 4402: 3992: 3898: 3873: 3811: 3655: 3483: 3468: 3075: 2469: 1961: 1596: 171: 4461: 3442: 2855: 2669: 1592: 3300: 3004: 2647: 1885: 4506: 4481: 4427: 4412: 4368: 4239: 4231: 4112: 3831: 3725: 3700: 3690: 3685: 3670: 3665: 3548: 3381: 3190: 2533: 1397: 1231: 652: 483: 475: 468: 344: 265: 245: 194: 182: 136: 116: 2988: 2963: 2096: 2079: 5065: 4924: 4903: 4840: 4692: 4486: 4397: 4218: 4178: 4162: 4083: 4055: 3923: 3913: 3838: 3826: 3478: 3142:
Geretschlager, Robert (1995). "Euclidean Constructions and the Geometry of Origami".
2720: 1800: 1683: 1256: 1223: 197:
and others first attempted to write computer code that would solve origami problems.
89: 72: 3036: 2305:
Origami: Fourth International Meeting of Origami Science, Mathematics, and Education
2278: 4716: 4615: 4466: 4377: 4372: 4270: 4191: 4107: 4026: 3930: 3903: 3868: 3801: 3730: 3660: 3432: 3285: 3276: 3102: 2704: 2488: 2437: 2080:"Modelling the folding of paper into three dimensions using affine transformations" 1608: 1545: 1451: 479: 82: 2943: 2339:
Bertschinger, Thomas H.; Slote, Joseph; Spencer, Olivia Claire; Vinitsky, Samuel.
181:
was written in 1986, but were overlooked until the first six were rediscovered by
3265: 2041: 1856: 343:
problems. There are three mathematical rules for producing flat-foldable origami
4765: 4538: 4476: 4387: 4382: 3982: 3945: 3710: 3401: 3236: 3215: 1913:
Proceedings of the First International Meeting of Origami Science and Technology
1536: 1505: 1501: 1470: 1249: 1227: 389: 340: 336: 217: 108: 46: 34: 17: 3331: 1935: 200: 4586: 4491: 4441: 4021: 3816: 3705: 3538: 3463: 3295: 3124: 2591: 2261: 2244: 1776: 1379: 1364: 354:: at any vertex the number of valley and mountain folds always differ by two. 326: 30: 3248: 3020: 2455: 2270: 2016: 139:
for a Miura fold. The parallelograms of this example have 84° and 96° angles.
4550: 4137: 4117: 3786: 3623: 3012: 2021: 1508:, folding of manufacturing instruments, and surgery by tiny origami robots. 1437: 1166: 494: 448: 444: 166:
A diagram showing the first and last step of how origami can double the cube
3109:, PhD thesis, Department of Computer Science, University of Waterloo, 2001. 3028: 1953: 318: 1777:"a comparison between straight edge and compass constructions and origami" 132: 4363: 3965: 3863: 3791: 3437: 3106: 1521: 1392: 1226:, treating the folds as hinges joining two flat, rigid surfaces, such as 452: 50: 2712: 2565:"From Flapping Birds to Space Telescopes: The Modern Science of Origami" 2211: 4265: 4004: 3918: 3796: 3163: 2596: 2156: 1687: 392:. Further references and technical results are discussed in Part II of 42: 3741: 2764:
Demaine, Erik (2001). "Recent Results in Computational Origami" (PDF).
2312: 3970: 3488: 3227: 2987:
Felton, S.; Tolley, M.; Demaine, E.; Rus, D.; Wood, R. (2014-08-08).
2203: 2194: 2151:. Lecture Notes in Computer Science. Vol. 3763. pp. 19–33. 1382:
is a solution to the problem, and several others have been proposed.
1158:
Therefore, BQ:CQ=k:1 implies AP:BP=k:2 for a positive real number k.
3155: 2388:
Thomas C. Hull (2002). "The Combinatorics of Flat Folds: a Survey".
1823:, Tech. Report 618, The Institute of Space and Astronautical Science 2123: 3955: 3119:. Science Networks. Historical Studies. Vol. 59. Birkhäuser. 2398: 2180:
Alperin, Roger C. (2005). "Trisections and Totally Real Origami".
1436: 1179:
length PB will then be the cube root of 2 times the length of AP.
161: 94: 29: 1999:
K. Haga, Origamics, Part 1, Nippon Hyoron Sha, 1999 (in Japanese)
4862:
Viewpoints: Mathematical Perspective and Fractal Geometry in Art
3977: 3960: 3171:
Haga, Kazuo (2008). Fonacier, Josefina C; Isoda, Masami (eds.).
1259:
for folding paper in half in a single direction was given to be
4974: 3745: 3335: 3195:
Origami Design Secrets: Mathematical Methods for an Ancient Art
2829:. Julia code animating kabuto is in example 3.4. 31 March 2024. 2116:
Mathematical Origami: Another View of Alhazen's Optical Problem
620:
then a number of other lengths are also rational functions of
3304: 3116:
A History of Folding in Mathematics: Mathematizing the Margins
1821:
Method of packaging and deployment of large membranes in space
339:. Related problems when the creases are orthogonal are called 3175:. University of Tsukuba, Japan: World Scientific Publishing. 2875: 1662:
T. Sundara Row (1917). Beman, Wooster; Smith, David (eds.).
1809:, 1981, and online at the British Origami Society web site. 170:
In 1986, Messer reported a construction by which one could
3173:
Origamics: Mathematical Explorations Through Paper Folding
2691:
Hull, Thomas (2002). "In search of a practical map fold".
2114:
Alperin, Roger C. (2002). "Ch.12". In Hull, Thomas (ed.).
1574:"Solving cubics with creases: the work of Beloch and Lill" 1901:(10): 284–285 – via Canadian Mathematical Society. 1347:
is the minimum length of the paper (or other material),
1336:{\displaystyle L={\tfrac {\pi t}{6}}(2^{n}+4)(2^{n}-1)} 1186:. Using a marked straightedge in this way is called a 45:
or paper folding has received a considerable amount of
1857:"Miura folding: Applying origami to space exploration" 1273: 3309: 3291:
Britney Gallivan has solved the Paper Folding Problem
3237:"An Overview of Mechanisms and Patterns with Origami" 1864:
International Journal of Pure and Applied Mathematics
1265: 1095: 804: 761: 717: 676: 655: 545: 536:
The accompanying diagram shows Haga's first theorem:
268: 248: 3282:
Dividing a Segment into Equal Parts by Paper Folding
1837:. Japan Aerospace Exploration Agency. Archived from 1648:"Lecture: Recent Results in Computational Origami". 174:, which is impossible with Euclidean constructions. 4917: 4871: 4825: 4732: 4685: 4568: 4531: 4524: 4356: 4209: 4155: 4146: 4093: 4035: 3891: 3779: 3633: 3580: 3559: 3502: 3456: 3425: 3369: 2592:"Numberphile: How to Trisect an Angle with Origami" 1230:, has great practical importance. For example, the 1148:{\displaystyle {\frac {BQ}{CQ}}={\frac {2AP}{BP}}.} 626: 238:brought to the theoretical origami the language of 4759:The Drawing of Geometric Patterns in Saracenic Art 2901:"How Origami Is Revolutionizing Industrial Design" 1335: 1147: 840: 789: 746: 702: 661: 589: 274: 254: 129:of instruction by diagram was introduced in 1961. 4894:Goudreau Museum of Mathematics in Art and Science 2035: 2033: 2806:MIT News | Massachusetts Institute of Technology 2245:"Countdown: A case study in origami programming" 2243:Bird, Richard; Mu, Shin-Cheng (September 2005). 1355:is the number of folds possible. The distances 282:in only the case of single-vertex construction. 2776:"A Computational Algorithm for Origami Design" 2500: 2498: 4986: 4889:European Society for Mathematics and the Arts 4063:Mathematica: A World of Numbers... and Beyond 3757: 3347: 2989:"A method for building self-folding machines" 1086:Haga's theorems are generalized as follows: 8: 4043:List of works designed with the golden ratio 2534:"A Note on Haga's theorems in paper folding" 2109: 2107: 2007: 2005: 27:Overview of the mathematics of paper folding 2558: 2556: 2294:"One-, Two-, and Multi-Fold Origami Axioms" 2292:Lang, Robert J.; Alperin, Roger C. (2009). 1938:. University of Cambridge. + plus magazine. 1879: 1877: 1623:"origami - History of origami | Britannica" 414:classical construction problems of geometry 4993: 4979: 4971: 4528: 4152: 3764: 3750: 3742: 3354: 3340: 3332: 1770: 1768: 1766: 4103:Cathedral of Saint Mary of the Assumption 3241:International Journal of Space Structures 2450:. Cambridge: Cambridge University Press. 2397: 2260: 2193: 2095: 1995: 1993: 1947: 1945: 1318: 1296: 1272: 1264: 1170:Doubling the cube: PB/PA = cube root of 2 1119: 1096: 1094: 818: 805: 803: 775: 762: 760: 718: 716: 677: 675: 654: 555: 544: 467:-gon can be constructed by paper folding 267: 247: 2964:"Webb and Origami - Webb Telescope/NASA" 2827:"Julia and Projective Geometric Algebra" 1984:"How to Divide the Side of Square Paper" 1977: 1975: 1564: 1562: 1197: 1165: 493: 325: 317: 199: 131: 4649:Vier BĂĽcher von Menschlicher Proportion 3316: 3301:Introduction to Statistics with Origami 3216:"Folding optimal polygons from squares" 2590:Dancso, Zsuzsanna (December 12, 2014). 2334: 2332: 1558: 590:{\displaystyle BQ={\frac {2AP}{1+AP}}.} 2899:Magazine, Smithsonian; Morrison, Jim. 2832: 1487:Lawrence Livermore National Laboratory 1184:compass and straightedge constructions 841:{\displaystyle {\frac {1+x^{2}}{1+x}}} 2760: 2758: 2732: 2730: 2489:"Origami and Geometric Constructions" 1952:Bern, Marshall; Hayes, Barry (1996). 1448:Massachusetts Institute of Technology 455:, and special rectangles such as the 7: 3589:Geometric Exercises in Paper Folding 2668:Korpal, Gaurish (25 November 2015). 2043:How to Free Your Inner Mathematician 1915:, H. Huzita ed. (1989), pp. 251–261. 1665:Geometric Exercises in Paper Folding 1644: 1642: 1593:10.4169/amer.math.monthly.118.04.307 1512:figures from cheeseburger wrappers. 1423:computational intractability results 790:{\displaystyle {\frac {1-x^{2}}{2}}} 424:— are proven to be unsolvable using 78:Geometric Exercises in Paper Folding 4834:Journal of Mathematics and the Arts 3610:A History of Folding in Mathematics 2424:"Robert Lang folds way-new origami" 2084:Linear Algebra and Its Applications 1960:. ACM, New York. pp. 175–183. 1082:A generalization of Haga's theorems 368:A sheet can never penetrate a fold. 4848:Making Mathematics with Needlework 1406:California Institute of Technology 747:{\displaystyle {\frac {1-x}{1+x}}} 111:', later used in the sixth of the 25: 4674:I quattro libri dell'architettura 2249:Journal of Functional Programming 2182:The American Mathematical Monthly 1986:. Japan Origami Academic Society. 1670:The Open Court Publishing Company 1351:is the material's thickness, and 703:{\displaystyle {\frac {2x}{1+x}}} 600:The function changing the length 4953: 4952: 4198:Self-portrait in a Convex Mirror 3882: 3319: 2570:. Usenix Conference, Boston, MA. 1954:"The complexity of flat origami" 3510:Alexandrov's uniqueness theorem 2149:Automated Deduction in Geometry 1934:Newton, Liz (1 December 2009). 1749:. Chrysalis Books. p. 18. 1456:University of California Irvine 498:BQ is always rational if AP is. 4909:National Museum of Mathematics 4661:Regole generali d'architettura 2705:10.1080/10724117.2002.11975147 2680:(3). Teachers of India: 20–23. 2505:Geretschläger, Robert (2008). 1489:to develop a solution for the 1330: 1311: 1308: 1289: 1: 3448:Regular paperfolding sequence 2097:10.1016/S0024-3795(01)00608-5 1734:. Louisiana State University. 1703:George Edward Martin (1997). 1581:American Mathematical Monthly 1542:Regular paperfolding sequence 1419:efficient decision algorithms 418:trisecting an arbitrary angle 4434:Garden of Cosmic Speculation 3596:Geometric Folding Algorithms 3363:Mathematics of paper folding 2644:"Siggraph: "Curved Origami"" 2447:Geometric folding algorithms 1400:, a research-scientist from 443:square, such as equilateral 395:Geometric Folding Algorithms 119:to be solved using origami. 1730:Robert Carl Yeates (1949). 1500:Other applications include 5098: 5051:three-phase electric power 5016:artificial neural networks 3951:Islamic geometric patterns 3646:Margherita Piazzola Beloch 3296:Overview of Origami Axioms 3266:"Origami Mathematics Page" 3113:Friedman, Michael (2018). 3050:Brewin, Bob (2004-05-10). 2622:. CRC Press. p. 225. 2342:The Mathematics of Origami 2040:D'Agostino, Susan (2020). 1491:James Webb Space Telescope 405: 157:solar panels on spacecraft 64: 5006: 5001:"Mathematics of" articles 4948: 4772:A Mathematician's Apology 3880: 3417:Yoshizawa–Randlett system 3125:10.1007/978-3-319-72487-4 2262:10.1017/S0956796805005642 1709:. Springer. p. 145. 1174:The classical problem of 474:is a product of distinct 242:, with an extension from 127:Yoshizawa–Randlett system 75:T. Sundara Row published 4884:The Bridges Organization 3617:Origami Polyhedra Design 3249:10.1260/0266-3511.27.1.1 3076:"The Origami Resolution" 2924:Gibbons, Jeremy (2003). 2839:: CS1 maint: location ( 2532:Hiroshi Okumura (2014). 2456:10.1017/CBO9780511735172 2359:Lang, Robert J. (2004). 2225:Gibbons, Jeremy (2003). 1202:Trisecting the angle CAB 1081: 489: 426:compass and straightedge 294:the context of origami. 285:In 2002, Alperin solved 204:Mountain-valley counting 107:showed that use of the ' 5026:cyclic redundacy checks 4746:The Grammar of Ornament 4698:Nature's Harmonic Unity 4608:De prospectiva pingendi 3107:"Folding and Unfolding" 3052:"Computational Origami" 3013:10.1126/science.1252610 2856:"Computational Origami" 2670:"Folding Paper in Half" 2563:Lang, Robert J (2008). 2048:Oxford University Press 1706:Geometric constructions 1652:. Retrieved 2022-05-08. 1627:Encyclopedia Britannica 4899:Institute For Figuring 4811:The 'Life' of a Carpet 4636:A Treatise on Painting 3407:Napkin folding problem 3273:Paper Folding Geometry 3222:79(4): 272–280, 2006. 2072:Belcastro, Sarah-Marie 1936:"The power of origami" 1745:Nick Robinson (2004). 1532:Napkin folding problem 1442: 1337: 1239:napkin folding problem 1203: 1171: 1149: 842: 791: 748: 704: 663: 591: 499: 331: 330:Angles around a vertex 323: 276: 256: 240:affine transformations 205: 167: 140: 115:, allowed the general 100: 51:mathematical equations 38: 4780:George David Birkhoff 4754:Ernest Hanbury Hankin 4622:De divina proportione 4602:Piero della Francesca 4581:Leon Battista Alberti 4168:Piero della Francesca 3807:Hyperboloid structure 2926:"Origami Programming" 2361:"Angle Quintisection" 2227:"Origami Programming" 1884:Peter Messer (1986). 1689:Houdini's Paper Magic 1460:University of Tsukuba 1440: 1386:Computational origami 1338: 1201: 1169: 1150: 843: 792: 749: 705: 664: 628:Haga's first theorem 592: 497: 329: 321: 277: 257: 232:Sarah-Marie Belcastro 203: 165: 135: 98: 33: 5082:NP-complete problems 4705:Frederik Macody Lund 4576:Filippo Brunelleschi 4457:Hamid Naderi Yeganeh 4319:La condition humaine 3567:Fold-and-cut theorem 3523:Steffen's polyhedron 3387:Huzita–Hatori axioms 3377:Big-little-big lemma 3220:Mathematics Magazine 3144:Mathematics Magazine 2905:Smithsonian Magazine 2307:. pp. 383–406. 1841:on 25 November 2005. 1553:Notes and references 1433:Software & tools 1372:fold-and-cut problem 1263: 1246:developable surfaces 1093: 802: 759: 715: 674: 653: 543: 408:Huzita–Hatori axioms 402:Huzita–Justin axioms 372:Paper exhibits zero 266: 246: 113:Huzita–Hatori axioms 105:Margharita P. Beloch 5077:Mathematics and art 4930:Mathematical beauty 4855:Rhythm of Structure 4798:Gödel, Escher, Bach 4594:De re aedificatoria 4225:The Ancient of Days 3844:Projective geometry 3773:Mathematics and art 3515:Flexible polyhedron 3243:27(1): 1–14, 2012. 3005:2014Sci...345..644F 2542:Forum Geometricorum 2348:. Carleton College. 1894:Crux Mathematicorum 1796:"The Miura-Ori map" 1464:University of Tokyo 1402:Stanford University 1248:that are not flat. 1194:Trisecting an angle 1188:neusis construction 629: 337:NP-complete problem 5031:general relativity 4935:Patterns in nature 4792:Douglas Hofstadter 4418:Desmond Paul Henry 4408:Bathsheba Grossman 4340:The Swallow's Tail 4261:Giorgio de Chirico 4133:Sydney Opera House 3988:Croatian interlace 3696:Toshikazu Kawasaki 3519:Bricard octahedron 3494:Yoshimura buckling 3392:Kawasaki's theorem 2802:"Origami anything" 2157:10.1007/11615798_2 2118:. pp. 83–93. 2014:Weisstein, Eric W. 1819:Miura, K. (1985), 1794:Bain, Ian (1980), 1775:Hull, Tom (1997). 1544:(for example, the 1443: 1333: 1287: 1204: 1172: 1145: 838: 787: 744: 700: 659: 627: 587: 500: 374:Gaussian curvature 363:Kawasaki's theorem 332: 324: 272: 252: 206: 168: 141: 101: 67:History of origami 41:The discipline of 39: 5059: 5058: 4968: 4967: 4821: 4820: 4785:Aesthetic Measure 4656:Sebastiano Serlio 4630:Leonardo da Vinci 4520: 4519: 4512:Margaret Wertheim 4173:Leonardo da Vinci 3739: 3738: 3603:Geometric Origami 3474:Paper bag problem 3397:Maekawa's theorem 3233:Dureisseix, David 3212:Dureisseix, David 3204:978-1-56881-194-9 3182:978-981-283-490-4 3134:978-3-319-72486-7 2999:(6197): 644–646. 2738:"The Origami Lab" 2629:978-1-56881-714-9 2518:978-0-9555477-1-3 2508:Geometric Origami 2465:978-0-521-85757-4 2409:978-1-56881-181-9 2313:10.1201/b10653-38 2166:978-3-540-31332-8 1982:Hatori, Koshiro. 1853:Nishiyama, Yutaka 1756:978-1-84340-105-6 1747:The Origami Bible 1716:978-0-387-98276-2 1286: 1176:doubling the cube 1162:Doubling the cube 1140: 1114: 1079: 1078: 836: 785: 742: 698: 662:{\displaystyle x} 582: 431:Geometric Origami 422:doubling the cube 352:Maekawa's theorem 287:Alhazen's problem 275:{\displaystyle R} 255:{\displaystyle R} 16:(Redirected from 5089: 4995: 4988: 4981: 4972: 4956: 4955: 4806:Nikos Salingaros 4529: 4497:Hiroshi Sugimoto 4447:Robert Longhurst 4393:Helaman Ferguson 4348:Crockett Johnson 4277:Circle Limit III 4246:Danseuse au cafĂ© 4153: 4123:Pyramid of Khufu 3886: 3766: 3759: 3752: 3743: 3676:David A. Huffman 3641:Roger C. Alperin 3544:Source unfolding 3412:Pureland origami 3356: 3349: 3342: 3333: 3324: 3323: 3315: 3269: 3228:10.2307/27642951 3208: 3186: 3167: 3138: 3103:Demaine, Erik D. 3090: 3089: 3087: 3086: 3080:Damn Interesting 3072: 3066: 3065: 3063: 3062: 3047: 3041: 3040: 2984: 2978: 2977: 2975: 2974: 2960: 2954: 2953: 2951: 2950: 2944:"Airbag Folding" 2939: 2933: 2932: 2930: 2921: 2915: 2914: 2912: 2911: 2896: 2890: 2889: 2887: 2886: 2872: 2866: 2865: 2863: 2862: 2851: 2845: 2844: 2838: 2830: 2823: 2817: 2816: 2814: 2813: 2798: 2792: 2789: 2783: 2782: 2780: 2771: 2765: 2762: 2753: 2752: 2750: 2749: 2734: 2725: 2724: 2688: 2682: 2681: 2665: 2659: 2658: 2656: 2655: 2646:. Archived from 2640: 2634: 2633: 2615: 2609: 2608: 2606: 2604: 2578: 2572: 2571: 2569: 2560: 2551: 2550: 2538: 2529: 2523: 2522: 2502: 2493: 2492: 2484: 2478: 2477: 2442:O'Rourke, Joseph 2438:Demaine, Erik D. 2434: 2428: 2427: 2420: 2414: 2413: 2401: 2385: 2379: 2378: 2376: 2374: 2365: 2356: 2350: 2349: 2347: 2336: 2327: 2326: 2298: 2289: 2283: 2282: 2264: 2240: 2234: 2233: 2231: 2222: 2216: 2215: 2204:10.2307/30037438 2197: 2177: 2171: 2170: 2144: 2138: 2137: 2111: 2102: 2101: 2099: 2090:(1–3): 273–282. 2068: 2062: 2061: 2037: 2028: 2027: 2026: 2009: 2000: 1997: 1988: 1987: 1979: 1970: 1969: 1949: 1940: 1939: 1931: 1925: 1922: 1916: 1909: 1903: 1902: 1890: 1881: 1872: 1871: 1861: 1849: 1843: 1842: 1831: 1825: 1824: 1816: 1810: 1805:. Reproduced in 1804: 1791: 1785: 1784: 1772: 1761: 1760: 1742: 1736: 1735: 1727: 1721: 1720: 1700: 1694: 1693: 1680: 1674: 1673: 1659: 1653: 1646: 1637: 1636: 1634: 1633: 1619: 1613: 1612: 1578: 1566: 1342: 1340: 1339: 1334: 1323: 1322: 1301: 1300: 1288: 1282: 1274: 1218:Related problems 1207:Angle trisection 1154: 1152: 1151: 1146: 1141: 1139: 1131: 1120: 1115: 1113: 1105: 1097: 1075: 1074: 1070: 1064: 1063: 1059: 1053: 1052: 1048: 1042: 1041: 1037: 1031: 1030: 1026: 1018: 1017: 1013: 1007: 1006: 1002: 996: 995: 991: 985: 984: 980: 974: 973: 969: 961: 960: 956: 950: 949: 945: 939: 938: 934: 928: 927: 923: 917: 916: 912: 904: 903: 899: 893: 892: 888: 882: 881: 877: 871: 870: 866: 860: 859: 855: 847: 845: 844: 839: 837: 835: 824: 823: 822: 806: 796: 794: 793: 788: 786: 781: 780: 779: 763: 753: 751: 750: 745: 743: 741: 730: 719: 709: 707: 706: 701: 699: 697: 686: 678: 668: 666: 665: 660: 630: 596: 594: 593: 588: 583: 581: 567: 556: 532: 531: 527: 522: 521: 517: 512: 511: 507: 461:silver rectangle 457:golden rectangle 322:Two-colorability 281: 279: 278: 273: 261: 259: 258: 253: 188:regular heptagon 71:In 1893, Indian 21: 18:Flat-foldability 5097: 5096: 5092: 5091: 5090: 5088: 5087: 5086: 5062: 5061: 5060: 5055: 5002: 4999: 4969: 4964: 4944: 4940:Sacred geometry 4913: 4879:Ars Mathematica 4867: 4817: 4728: 4681: 4668:Andrea Palladio 4564: 4557:De architectura 4516: 4472:Antoine Pevsner 4452:Jeanette McLeod 4403:Susan Goldstine 4352: 4211: 4205: 4142: 4128:Sagrada FamĂ­lia 4089: 4031: 3899:Algorithmic art 3887: 3878: 3874:Wallpaper group 3812:Minimal surface 3775: 3770: 3740: 3735: 3721:Joseph O'Rourke 3656:Robert Connelly 3629: 3576: 3555: 3498: 3484:Schwarz lantern 3469:Modular origami 3452: 3421: 3365: 3360: 3330: 3318: 3310: 3260: 3257: 3205: 3191:Lang, Robert J. 3189: 3183: 3170: 3156:10.2307/2690924 3141: 3135: 3112: 3099: 3097:Further reading 3094: 3093: 3084: 3082: 3074: 3073: 3069: 3060: 3058: 3049: 3048: 3044: 2986: 2985: 2981: 2972: 2970: 2962: 2961: 2957: 2948: 2946: 2941: 2940: 2936: 2928: 2923: 2922: 2918: 2909: 2907: 2898: 2897: 2893: 2884: 2882: 2874: 2873: 2869: 2860: 2858: 2853: 2852: 2848: 2831: 2825: 2824: 2820: 2811: 2809: 2800: 2799: 2795: 2790: 2786: 2778: 2773: 2772: 2768: 2763: 2756: 2747: 2745: 2736: 2735: 2728: 2690: 2689: 2685: 2674:At Right Angles 2667: 2666: 2662: 2653: 2651: 2642: 2641: 2637: 2630: 2617: 2616: 2612: 2602: 2600: 2589: 2586:Wayback Machine 2579: 2575: 2567: 2562: 2561: 2554: 2536: 2531: 2530: 2526: 2519: 2511:. UK: Arbelos. 2504: 2503: 2496: 2486: 2485: 2481: 2466: 2436: 2435: 2431: 2422: 2421: 2417: 2410: 2387: 2386: 2382: 2372: 2370: 2368:langorigami.com 2363: 2358: 2357: 2353: 2345: 2338: 2337: 2330: 2323: 2296: 2291: 2290: 2286: 2242: 2241: 2237: 2229: 2224: 2223: 2219: 2179: 2178: 2174: 2167: 2146: 2145: 2141: 2134: 2113: 2112: 2105: 2076:Hull, Thomas C. 2070: 2069: 2065: 2058: 2039: 2038: 2031: 2012: 2011: 2010: 2003: 1998: 1991: 1981: 1980: 1973: 1951: 1950: 1943: 1933: 1932: 1928: 1923: 1919: 1910: 1906: 1888: 1883: 1882: 1875: 1859: 1851: 1850: 1846: 1833: 1832: 1828: 1818: 1817: 1813: 1807:British Origami 1793: 1792: 1788: 1774: 1773: 1764: 1757: 1744: 1743: 1739: 1732:Geometric Tools 1729: 1728: 1724: 1717: 1702: 1701: 1697: 1682: 1681: 1677: 1661: 1660: 1656: 1647: 1640: 1631: 1629: 1621: 1620: 1616: 1576: 1570:Hull, Thomas C. 1568: 1567: 1560: 1555: 1518: 1479: 1435: 1414: 1388: 1314: 1292: 1275: 1261: 1260: 1222:The problem of 1220: 1196: 1164: 1132: 1121: 1106: 1098: 1091: 1090: 1084: 1072: 1068: 1067: 1061: 1057: 1056: 1050: 1046: 1045: 1039: 1035: 1034: 1028: 1024: 1023: 1015: 1011: 1010: 1004: 1000: 999: 993: 989: 988: 982: 978: 977: 971: 967: 966: 958: 954: 953: 947: 943: 942: 936: 932: 931: 925: 921: 920: 914: 910: 909: 901: 897: 896: 890: 886: 885: 879: 875: 874: 868: 864: 863: 857: 853: 852: 825: 814: 807: 800: 799: 771: 764: 757: 756: 731: 720: 713: 712: 687: 679: 672: 671: 651: 650: 624:. For example: 568: 557: 541: 540: 529: 525: 524: 519: 515: 514: 509: 505: 504: 492: 490:Haga's theorems 484:powers of three 476:Pierpont primes 440: 410: 404: 345:crease patterns 316: 311: 264: 263: 244: 243: 172:double the cube 99:The Beloch fold 69: 63: 28: 23: 22: 15: 12: 11: 5: 5095: 5093: 5085: 5084: 5079: 5074: 5064: 5063: 5057: 5056: 5054: 5053: 5048: 5043: 5038: 5028: 5023: 5018: 5013: 5007: 5004: 5003: 5000: 4998: 4997: 4990: 4983: 4975: 4966: 4965: 4963: 4962: 4949: 4946: 4945: 4943: 4942: 4937: 4932: 4927: 4921: 4919: 4915: 4914: 4912: 4911: 4906: 4901: 4896: 4891: 4886: 4881: 4875: 4873: 4869: 4868: 4866: 4865: 4858: 4851: 4844: 4837: 4829: 4827: 4823: 4822: 4819: 4818: 4816: 4815: 4814: 4813: 4803: 4802: 4801: 4789: 4788: 4787: 4777: 4776: 4775: 4763: 4762: 4761: 4751: 4750: 4749: 4736: 4734: 4730: 4729: 4727: 4726: 4725: 4724: 4722:The Greek Vase 4714: 4713: 4712: 4702: 4701: 4700: 4689: 4687: 4683: 4682: 4680: 4679: 4678: 4677: 4665: 4664: 4663: 4653: 4652: 4651: 4644:Albrecht DĂĽrer 4641: 4640: 4639: 4627: 4626: 4625: 4613: 4612: 4611: 4599: 4598: 4597: 4590: 4578: 4572: 4570: 4566: 4565: 4563: 4562: 4561: 4560: 4548: 4547: 4546: 4535: 4533: 4526: 4522: 4521: 4518: 4517: 4515: 4514: 4509: 4507:Roman Verostko 4504: 4499: 4494: 4489: 4484: 4482:Alba Rojo Cama 4479: 4474: 4469: 4464: 4459: 4454: 4449: 4444: 4439: 4438: 4437: 4428:Charles Jencks 4425: 4420: 4415: 4413:George W. Hart 4410: 4405: 4400: 4395: 4390: 4385: 4380: 4375: 4366: 4360: 4358: 4354: 4353: 4351: 4350: 4345: 4344: 4343: 4336: 4324: 4323: 4322: 4310: 4309: 4308: 4301: 4294: 4287: 4280: 4268: 4263: 4258: 4257: 4256: 4249: 4240:Jean Metzinger 4237: 4236: 4235: 4228: 4215: 4213: 4207: 4206: 4204: 4203: 4202: 4201: 4189: 4187:Albrecht DĂĽrer 4184: 4183: 4182: 4170: 4165: 4159: 4157: 4150: 4144: 4143: 4141: 4140: 4135: 4130: 4125: 4120: 4115: 4110: 4105: 4099: 4097: 4091: 4090: 4088: 4087: 4080: 4073: 4066: 4059: 4052: 4045: 4039: 4037: 4033: 4032: 4030: 4029: 4024: 4019: 4014: 4013: 4012: 4002: 3997: 3996: 3995: 3990: 3985: 3975: 3974: 3973: 3968: 3963: 3958: 3948: 3943: 3938: 3933: 3928: 3927: 3926: 3921: 3916: 3906: 3904:Anamorphic art 3901: 3895: 3893: 3889: 3888: 3881: 3879: 3877: 3876: 3871: 3866: 3861: 3860: 3859: 3854: 3846: 3841: 3836: 3835: 3834: 3832:Camera obscura 3829: 3819: 3814: 3809: 3804: 3799: 3794: 3789: 3783: 3781: 3777: 3776: 3771: 3769: 3768: 3761: 3754: 3746: 3737: 3736: 3734: 3733: 3728: 3726:Tomohiro Tachi 3723: 3718: 3713: 3708: 3703: 3701:Robert J. Lang 3698: 3693: 3691:Humiaki Huzita 3688: 3683: 3678: 3673: 3671:Rona Gurkewitz 3668: 3666:Martin Demaine 3663: 3658: 3653: 3648: 3643: 3637: 3635: 3631: 3630: 3628: 3627: 3620: 3613: 3606: 3599: 3592: 3584: 3582: 3578: 3577: 3575: 3574: 3569: 3563: 3561: 3557: 3556: 3554: 3553: 3552: 3551: 3549:Star unfolding 3546: 3541: 3536: 3526: 3512: 3506: 3504: 3500: 3499: 3497: 3496: 3491: 3486: 3481: 3476: 3471: 3466: 3460: 3458: 3454: 3453: 3451: 3450: 3445: 3440: 3435: 3429: 3427: 3423: 3422: 3420: 3419: 3414: 3409: 3404: 3399: 3394: 3389: 3384: 3382:Crease pattern 3379: 3373: 3371: 3367: 3366: 3361: 3359: 3358: 3351: 3344: 3336: 3329: 3328: 3308: 3307: 3298: 3293: 3288: 3279: 3270: 3256: 3255:External links 3253: 3252: 3251: 3230: 3209: 3203: 3197:. A K Peters. 3187: 3181: 3168: 3150:(5): 357–371. 3139: 3133: 3110: 3098: 3095: 3092: 3091: 3067: 3042: 2979: 2955: 2934: 2916: 2891: 2867: 2846: 2818: 2808:. 22 June 2017 2793: 2784: 2774:Lang, Robert. 2766: 2754: 2742:The New Yorker 2726: 2683: 2660: 2635: 2628: 2610: 2573: 2552: 2524: 2517: 2494: 2479: 2464: 2429: 2415: 2408: 2380: 2351: 2328: 2321: 2284: 2255:(5): 679–702. 2235: 2217: 2188:(3): 200–211. 2172: 2165: 2139: 2132: 2124:10.1201/b15735 2103: 2063: 2056: 2050:. p. 22. 2029: 2001: 1989: 1971: 1941: 1926: 1917: 1904: 1886:"Problem 1054" 1873: 1844: 1826: 1811: 1786: 1781:origametry.net 1762: 1755: 1737: 1722: 1715: 1695: 1684:Houdini, Harry 1675: 1654: 1638: 1614: 1587:(4): 307–315. 1557: 1556: 1554: 1551: 1550: 1549: 1539: 1534: 1529: 1524: 1517: 1514: 1478: 1475: 1434: 1431: 1413: 1410: 1387: 1384: 1332: 1329: 1326: 1321: 1317: 1313: 1310: 1307: 1304: 1299: 1295: 1291: 1285: 1281: 1278: 1271: 1268: 1232:Miura map fold 1219: 1216: 1195: 1192: 1163: 1160: 1156: 1155: 1144: 1138: 1135: 1130: 1127: 1124: 1118: 1112: 1109: 1104: 1101: 1083: 1080: 1077: 1076: 1065: 1054: 1043: 1032: 1020: 1019: 1008: 997: 986: 975: 963: 962: 951: 940: 929: 918: 906: 905: 894: 883: 872: 861: 849: 848: 834: 831: 828: 821: 817: 813: 810: 797: 784: 778: 774: 770: 767: 754: 740: 737: 734: 729: 726: 723: 710: 696: 693: 690: 685: 682: 669: 658: 647: 646: 643: 640: 637: 634: 598: 597: 586: 580: 577: 574: 571: 566: 563: 560: 554: 551: 548: 491: 488: 469:if and only if 439: 436: 406:Main article: 403: 400: 370: 369: 366: 360: 359: 358: 315: 312: 310: 307: 271: 251: 195:Robert J. Lang 183:Humiaki Huzita 179:Jacques Justin 146:Also in 1980, 137:Crease pattern 117:cubic equation 62: 59: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5094: 5083: 5080: 5078: 5075: 5073: 5070: 5069: 5067: 5052: 5049: 5047: 5044: 5042: 5041:paper folding 5039: 5036: 5032: 5029: 5027: 5024: 5022: 5019: 5017: 5014: 5012: 5011:apportionment 5009: 5008: 5005: 4996: 4991: 4989: 4984: 4982: 4977: 4976: 4973: 4961: 4960: 4951: 4950: 4947: 4941: 4938: 4936: 4933: 4931: 4928: 4926: 4925:Droste effect 4923: 4922: 4920: 4916: 4910: 4907: 4905: 4904:Mathemalchemy 4902: 4900: 4897: 4895: 4892: 4890: 4887: 4885: 4882: 4880: 4877: 4876: 4874: 4872:Organizations 4870: 4864: 4863: 4859: 4857: 4856: 4852: 4850: 4849: 4845: 4843: 4842: 4841:Lumen Naturae 4838: 4836: 4835: 4831: 4830: 4828: 4824: 4812: 4809: 4808: 4807: 4804: 4800: 4799: 4795: 4794: 4793: 4790: 4786: 4783: 4782: 4781: 4778: 4774: 4773: 4769: 4768: 4767: 4764: 4760: 4757: 4756: 4755: 4752: 4748: 4747: 4743: 4742: 4741: 4738: 4737: 4735: 4731: 4723: 4720: 4719: 4718: 4715: 4711: 4708: 4707: 4706: 4703: 4699: 4696: 4695: 4694: 4693:Samuel Colman 4691: 4690: 4688: 4684: 4676: 4675: 4671: 4670: 4669: 4666: 4662: 4659: 4658: 4657: 4654: 4650: 4647: 4646: 4645: 4642: 4638: 4637: 4633: 4632: 4631: 4628: 4624: 4623: 4619: 4618: 4617: 4614: 4610: 4609: 4605: 4604: 4603: 4600: 4596: 4595: 4591: 4589: 4588: 4584: 4583: 4582: 4579: 4577: 4574: 4573: 4571: 4567: 4559: 4558: 4554: 4553: 4552: 4549: 4545: 4542: 4541: 4540: 4537: 4536: 4534: 4530: 4527: 4523: 4513: 4510: 4508: 4505: 4503: 4502:Daina Taimiņa 4500: 4498: 4495: 4493: 4490: 4488: 4487:Reza Sarhangi 4485: 4483: 4480: 4478: 4475: 4473: 4470: 4468: 4465: 4463: 4460: 4458: 4455: 4453: 4450: 4448: 4445: 4443: 4440: 4436: 4435: 4431: 4430: 4429: 4426: 4424: 4421: 4419: 4416: 4414: 4411: 4409: 4406: 4404: 4401: 4399: 4398:Peter Forakis 4396: 4394: 4391: 4389: 4386: 4384: 4381: 4379: 4376: 4374: 4370: 4367: 4365: 4362: 4361: 4359: 4355: 4349: 4346: 4342: 4341: 4337: 4335: 4334: 4330: 4329: 4328: 4327:Salvador DalĂ­ 4325: 4321: 4320: 4316: 4315: 4314: 4313:RenĂ© Magritte 4311: 4307: 4306: 4302: 4300: 4299: 4295: 4293: 4292: 4288: 4286: 4285: 4284:Print Gallery 4281: 4279: 4278: 4274: 4273: 4272: 4269: 4267: 4264: 4262: 4259: 4255: 4254: 4253:L'Oiseau bleu 4250: 4248: 4247: 4243: 4242: 4241: 4238: 4234: 4233: 4229: 4227: 4226: 4222: 4221: 4220: 4219:William Blake 4217: 4216: 4214: 4208: 4200: 4199: 4195: 4194: 4193: 4190: 4188: 4185: 4181: 4180: 4179:Vitruvian Man 4176: 4175: 4174: 4171: 4169: 4166: 4164: 4163:Paolo Uccello 4161: 4160: 4158: 4154: 4151: 4149: 4145: 4139: 4136: 4134: 4131: 4129: 4126: 4124: 4121: 4119: 4116: 4114: 4111: 4109: 4106: 4104: 4101: 4100: 4098: 4096: 4092: 4086: 4085: 4084:Pi in the Sky 4081: 4079: 4078: 4074: 4072: 4071: 4067: 4065: 4064: 4060: 4058: 4057: 4056:Mathemalchemy 4053: 4051: 4050: 4046: 4044: 4041: 4040: 4038: 4034: 4028: 4025: 4023: 4020: 4018: 4015: 4011: 4008: 4007: 4006: 4003: 4001: 3998: 3994: 3991: 3989: 3986: 3984: 3981: 3980: 3979: 3976: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3953: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3932: 3929: 3925: 3924:Vastu shastra 3922: 3920: 3917: 3915: 3914:Geodesic dome 3912: 3911: 3910: 3907: 3905: 3902: 3900: 3897: 3896: 3894: 3890: 3885: 3875: 3872: 3870: 3867: 3865: 3862: 3858: 3855: 3853: 3850: 3849: 3847: 3845: 3842: 3840: 3839:Plastic ratio 3837: 3833: 3830: 3828: 3827:Camera lucida 3825: 3824: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3784: 3782: 3778: 3774: 3767: 3762: 3760: 3755: 3753: 3748: 3747: 3744: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3707: 3704: 3702: 3699: 3697: 3694: 3692: 3689: 3687: 3684: 3682: 3679: 3677: 3674: 3672: 3669: 3667: 3664: 3662: 3659: 3657: 3654: 3652: 3649: 3647: 3644: 3642: 3639: 3638: 3636: 3632: 3626: 3625: 3621: 3619: 3618: 3614: 3612: 3611: 3607: 3605: 3604: 3600: 3598: 3597: 3593: 3591: 3590: 3586: 3585: 3583: 3579: 3573: 3572:Lill's method 3570: 3568: 3565: 3564: 3562: 3560:Miscellaneous 3558: 3550: 3547: 3545: 3542: 3540: 3537: 3535: 3532: 3531: 3530: 3527: 3524: 3520: 3516: 3513: 3511: 3508: 3507: 3505: 3501: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3479:Rigid origami 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3461: 3459: 3457:3d structures 3455: 3449: 3446: 3444: 3441: 3439: 3436: 3434: 3431: 3430: 3428: 3426:Strip folding 3424: 3418: 3415: 3413: 3410: 3408: 3405: 3403: 3400: 3398: 3395: 3393: 3390: 3388: 3385: 3383: 3380: 3378: 3375: 3374: 3372: 3368: 3364: 3357: 3352: 3350: 3345: 3343: 3338: 3337: 3334: 3327: 3322: 3317: 3313: 3306: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3283: 3280: 3278: 3274: 3271: 3267: 3263: 3259: 3258: 3254: 3250: 3246: 3242: 3238: 3234: 3231: 3229: 3225: 3221: 3217: 3213: 3210: 3206: 3200: 3196: 3192: 3188: 3184: 3178: 3174: 3169: 3165: 3161: 3157: 3153: 3149: 3145: 3140: 3136: 3130: 3126: 3122: 3118: 3117: 3111: 3108: 3104: 3101: 3100: 3096: 3081: 3077: 3071: 3068: 3057: 3056:Computerworld 3053: 3046: 3043: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 3002: 2998: 2994: 2990: 2983: 2980: 2969: 2968:webb.nasa.gov 2965: 2959: 2956: 2945: 2938: 2935: 2927: 2920: 2917: 2906: 2902: 2895: 2892: 2881: 2877: 2871: 2868: 2857: 2850: 2847: 2842: 2836: 2828: 2822: 2819: 2807: 2803: 2797: 2794: 2788: 2785: 2777: 2770: 2767: 2761: 2759: 2755: 2743: 2739: 2733: 2731: 2727: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2693:Math Horizons 2687: 2684: 2679: 2675: 2671: 2664: 2661: 2650:on 2017-05-08 2649: 2645: 2639: 2636: 2631: 2625: 2621: 2614: 2611: 2599: 2598: 2593: 2587: 2583: 2577: 2574: 2566: 2559: 2557: 2553: 2548: 2544: 2543: 2535: 2528: 2525: 2520: 2514: 2510: 2509: 2501: 2499: 2495: 2490: 2483: 2480: 2475: 2471: 2467: 2461: 2457: 2453: 2449: 2448: 2443: 2439: 2433: 2430: 2425: 2419: 2416: 2411: 2405: 2400: 2395: 2392:. AK Peters. 2391: 2384: 2381: 2369: 2362: 2355: 2352: 2344: 2343: 2335: 2333: 2329: 2324: 2322:9780429106613 2318: 2314: 2310: 2306: 2302: 2295: 2288: 2285: 2280: 2276: 2272: 2268: 2263: 2258: 2254: 2250: 2246: 2239: 2236: 2228: 2221: 2218: 2213: 2209: 2205: 2201: 2196: 2191: 2187: 2183: 2176: 2173: 2168: 2162: 2158: 2154: 2150: 2143: 2140: 2135: 2133:9780429064906 2129: 2125: 2121: 2117: 2110: 2108: 2104: 2098: 2093: 2089: 2085: 2081: 2077: 2073: 2067: 2064: 2059: 2057:9780198843597 2053: 2049: 2045: 2044: 2036: 2034: 2030: 2024: 2023: 2018: 2015: 2008: 2006: 2002: 1996: 1994: 1990: 1985: 1978: 1976: 1972: 1967: 1963: 1959: 1955: 1948: 1946: 1942: 1937: 1930: 1927: 1921: 1918: 1914: 1908: 1905: 1900: 1896: 1895: 1887: 1880: 1878: 1874: 1869: 1865: 1858: 1854: 1848: 1845: 1840: 1836: 1830: 1827: 1822: 1815: 1812: 1808: 1803: 1802: 1801:New Scientist 1797: 1790: 1787: 1782: 1778: 1771: 1769: 1767: 1763: 1758: 1752: 1748: 1741: 1738: 1733: 1726: 1723: 1718: 1712: 1708: 1707: 1699: 1696: 1691: 1690: 1685: 1679: 1676: 1671: 1667: 1666: 1658: 1655: 1651: 1645: 1643: 1639: 1628: 1624: 1618: 1615: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1575: 1571: 1565: 1563: 1559: 1552: 1547: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1527:Lill's method 1525: 1523: 1520: 1519: 1515: 1513: 1509: 1507: 1503: 1498: 1494: 1492: 1488: 1483: 1476: 1474: 1472: 1467: 1465: 1461: 1457: 1453: 1449: 1439: 1432: 1430: 1426: 1424: 1420: 1411: 1409: 1407: 1403: 1399: 1394: 1385: 1383: 1381: 1376: 1373: 1368: 1366: 1362: 1358: 1354: 1350: 1346: 1327: 1324: 1319: 1315: 1305: 1302: 1297: 1293: 1283: 1279: 1276: 1269: 1266: 1258: 1257:loss function 1253: 1251: 1247: 1242: 1240: 1235: 1233: 1229: 1225: 1224:rigid origami 1217: 1215: 1213: 1208: 1200: 1193: 1191: 1190:in geometry. 1189: 1185: 1180: 1177: 1168: 1161: 1159: 1142: 1136: 1133: 1128: 1125: 1122: 1116: 1110: 1107: 1102: 1099: 1089: 1088: 1087: 1066: 1055: 1044: 1033: 1022: 1021: 1009: 998: 987: 976: 965: 964: 952: 941: 930: 919: 908: 907: 895: 884: 873: 862: 851: 850: 832: 829: 826: 819: 815: 811: 808: 798: 782: 776: 772: 768: 765: 755: 738: 735: 732: 727: 724: 721: 711: 694: 691: 688: 683: 680: 670: 656: 649: 648: 644: 641: 638: 635: 632: 631: 625: 623: 619: 615: 611: 607: 603: 584: 578: 575: 572: 569: 564: 561: 558: 552: 549: 546: 539: 538: 537: 534: 496: 487: 485: 481: 480:powers of two 477: 473: 470: 466: 462: 458: 454: 450: 446: 438:Constructions 437: 435: 433: 432: 427: 423: 419: 415: 409: 401: 399: 397: 396: 391: 387: 383: 382:Marshall Bern 378: 375: 367: 364: 361: 356: 355: 353: 350: 349: 348: 346: 342: 338: 328: 320: 313: 308: 306: 302: 300: 295: 291: 288: 283: 269: 249: 241: 237: 233: 228: 224: 221: 219: 215: 211: 210:Marshall Bern 202: 198: 196: 193:Around 1990, 191: 189: 184: 180: 175: 173: 164: 160: 158: 154: 149: 144: 138: 134: 130: 128: 123: 120: 118: 114: 110: 106: 97: 93: 91: 90:Harry Houdini 86: 84: 80: 79: 74: 73:civil servant 68: 60: 58: 54: 52: 48: 44: 36: 32: 19: 5040: 5035:introduction 4957: 4860: 4853: 4846: 4839: 4832: 4826:Publications 4810: 4796: 4784: 4770: 4758: 4744: 4721: 4717:Jay Hambidge 4710:Ad Quadratum 4709: 4697: 4672: 4660: 4648: 4634: 4620: 4616:Luca Pacioli 4606: 4592: 4585: 4555: 4543: 4467:Hinke Osinga 4462:István Orosz 4432: 4423:Anthony Hill 4378:Scott Draves 4373:Erik Demaine 4357:Contemporary 4338: 4331: 4317: 4303: 4296: 4289: 4282: 4275: 4271:M. C. Escher 4251: 4244: 4230: 4223: 4196: 4192:Parmigianino 4177: 4108:Hagia Sophia 4082: 4075: 4068: 4061: 4054: 4047: 4009: 3931:Computer art 3909:Architecture 3869:Tessellation 3852:Architecture 3802:Golden ratio 3731:Eve Torrence 3661:Erik Demaine 3622: 3615: 3608: 3601: 3594: 3587: 3581:Publications 3443:Möbius strip 3433:Dragon curve 3370:Flat folding 3362: 3305:Mario Cigada 3286:cut-the-knot 3277:cut-the-knot 3262:Dr. Tom Hull 3240: 3219: 3194: 3172: 3147: 3143: 3115: 3083:. Retrieved 3079: 3070: 3059:. Retrieved 3055: 3045: 2996: 2992: 2982: 2971:. Retrieved 2967: 2958: 2947:. Retrieved 2937: 2919: 2908:. Retrieved 2904: 2894: 2883:. Retrieved 2879: 2870: 2859:. Retrieved 2849: 2821: 2810:. Retrieved 2805: 2796: 2787: 2769: 2746:. Retrieved 2744:. 2007-02-12 2741: 2699:(3): 22–24. 2696: 2692: 2686: 2677: 2673: 2663: 2652:. Retrieved 2648:the original 2638: 2619: 2613: 2601:. Retrieved 2595: 2582:Ghostarchive 2580:Archived at 2576: 2546: 2540: 2527: 2507: 2482: 2446: 2432: 2418: 2389: 2383: 2371:. Retrieved 2367: 2354: 2341: 2304: 2300: 2287: 2252: 2248: 2238: 2220: 2195:math/0408159 2185: 2181: 2175: 2148: 2142: 2115: 2087: 2083: 2066: 2042: 2020: 1957: 1929: 1920: 1912: 1907: 1898: 1892: 1870:(2): 269–279 1867: 1863: 1847: 1839:the original 1829: 1820: 1814: 1806: 1799: 1789: 1780: 1746: 1740: 1731: 1725: 1705: 1698: 1688: 1678: 1664: 1657: 1649: 1630:. Retrieved 1626: 1617: 1584: 1580: 1546:dragon curve 1510: 1499: 1495: 1484: 1480: 1477:Applications 1468: 1452:Georgia Tech 1444: 1427: 1415: 1389: 1377: 1369: 1360: 1356: 1352: 1348: 1344: 1254: 1243: 1236: 1221: 1205: 1181: 1173: 1157: 1085: 621: 617: 613: 610:self inverse 605: 601: 599: 535: 501: 471: 464: 441: 429: 411: 393: 379: 371: 333: 314:Flat folding 309:Pure origami 303: 298: 296: 292: 284: 229: 225: 222: 207: 192: 176: 169: 152: 145: 142: 124: 121: 102: 87: 83:kindergarten 76: 70: 55: 47:mathematical 40: 4766:G. H. Hardy 4569:Renaissance 4539:Polykleitos 4477:Tony Robbin 4388:John Ernest 4383:Jan Dibbets 4333:Crucifixion 4156:Renaissance 4010:Mathematics 3983:Celtic knot 3946:Fractal art 3848:Proportion 3822:Perspective 3716:KĹŤryĹŤ Miura 3711:Jun Maekawa 3686:KĂ´di Husimi 3402:Map folding 3326:Mathematics 1537:Map folding 1506:RNA origami 1502:DNA origami 1471:DNA origami 1398:Robert Lang 1250:Wet-folding 1228:sheet metal 390:NP-complete 386:Barry Hayes 341:map folding 218:NP-complete 214:Barry Hayes 148:KĹŤryĹŤ Miura 109:Beloch fold 35:Map folding 5066:Categories 5021:bookmaking 4740:Owen Jones 4587:De pictura 4492:Oliver Sin 4442:Andy Lomas 4291:Relativity 4022:String art 3936:Fiber arts 3817:Paraboloid 3706:Anna Lubiw 3539:Common net 3464:Miura fold 3085:2022-05-08 3061:2022-05-08 2973:2022-05-08 2949:2022-05-08 2910:2022-05-08 2885:2022-05-08 2861:2022-05-08 2812:2022-05-08 2748:2022-05-09 2654:2008-10-08 2603:October 2, 2549:: 241–242. 2487:Tom Hull. 2373:16 January 1835:"2D Array" 1632:2022-05-08 1380:Miura fold 1365:California 65:See also: 4551:Vitruvius 4525:Theorists 4305:Waterfall 4210:19th–20th 4138:Taj Mahal 4118:Parthenon 4095:Buildings 4049:Continuum 4017:Sculpture 3993:Interlace 3787:Algorithm 3624:Origamics 3503:Polyhedra 3021:0036-8075 2876:"Cadnano" 2721:126397750 2620:Origami 5 2399:1307.1065 2301:Origami 4 2271:1469-7653 2022:MathWorld 2017:"Folding" 1325:− 1277:π 1212:congruent 769:− 725:− 523:and then 449:pentagons 445:triangles 416:— namely 299:Countdown 230:In 2002, 208:In 1996, 153:Miura-ori 88:In 1922, 4959:Category 4686:Romantic 4364:Max Bill 4298:Reptiles 4113:Pantheon 4070:Octacube 4036:Artworks 3978:Knotting 3966:Muqarnas 3864:Symmetry 3792:Catenary 3780:Concepts 3681:Tom Hull 3651:Yan Chen 3534:Blooming 3438:Flexagon 3193:(2003). 3037:18415193 3029:25104380 2835:cite web 2713:25678354 2584:and the 2444:(2007). 2279:46359986 2212:30037438 2078:(2002). 1855:(2012), 1572:(2011). 1522:Flexagon 1516:See also 1412:Research 1404:and the 1393:Bug Wars 1343:, where 459:and the 453:hexagons 236:Tom Hull 103:In 1936 5072:Origami 4918:Related 4532:Ancient 4266:Man Ray 4212:Century 4148:Artists 4005:Origami 3919:Pyramid 3797:Fractal 3164:2690924 3001:Bibcode 2993:Science 2942:TASON. 2880:cadnano 2854:TASON. 2597:YouTube 2474:2354878 1966:1381938 1609:2540978 1601:2800341 1071:⁄ 1060:⁄ 1049:⁄ 1038:⁄ 1027:⁄ 1014:⁄ 1003:⁄ 992:⁄ 981:⁄ 970:⁄ 957:⁄ 946:⁄ 935:⁄ 924:⁄ 913:⁄ 900:⁄ 889:⁄ 878:⁄ 867:⁄ 856:⁄ 528:⁄ 518:⁄ 508:⁄ 61:History 43:origami 5046:Sudoku 4733:Modern 4369:Martin 4232:Newton 4027:Tiling 3971:Zellij 3941:4D art 3634:People 3489:Sonobe 3312:Portal 3201:  3179:  3162:  3131:  3035:  3027:  3019:  2719:  2711:  2626:  2515:  2472:  2462:  2406:  2319:  2277:  2269:  2210:  2163:  2130:  2054:  1964:  1753:  1713:  1607:  1599:  1462:, and 1421:, and 612:. Let 482:, and 388:to be 4544:Canon 4000:Music 3956:Girih 3892:Forms 3857:Human 3160:JSTOR 3033:S2CID 2929:(PDF) 2779:(PDF) 2717:S2CID 2709:JSTOR 2568:(PDF) 2537:(PDF) 2394:arXiv 2364:(PDF) 2346:(PDF) 2297:(PDF) 2275:S2CID 2230:(PDF) 2208:JSTOR 2190:arXiv 1889:(PDF) 1860:(PDF) 1605:S2CID 1577:(PDF) 412:Some 4371:and 3961:Jali 3199:ISBN 3177:ISBN 3129:ISBN 3025:PMID 3017:ISSN 2841:link 2624:ISBN 2605:2021 2513:ISBN 2460:ISBN 2404:ISBN 2375:2021 2317:ISBN 2267:ISSN 2161:ISBN 2128:ISBN 2052:ISBN 1751:ISBN 1711:ISBN 1504:and 1370:The 1359:and 1237:The 384:and 234:and 212:and 125:The 3529:Net 3303:by 3284:at 3275:at 3245:doi 3224:doi 3152:doi 3121:doi 3009:doi 2997:345 2701:doi 2452:doi 2309:doi 2257:doi 2200:doi 2186:112 2153:doi 2120:doi 2092:doi 2088:348 1589:doi 1585:118 645:PQ 616:be 608:is 604:to 420:or 262:to 5068:: 4077:Pi 3521:, 3264:. 3239:, 3235:, 3218:, 3214:, 3158:. 3148:68 3146:. 3127:. 3105:, 3078:. 3054:. 3031:. 3023:. 3015:. 3007:. 2995:. 2991:. 2966:. 2903:. 2878:. 2837:}} 2833:{{ 2804:. 2757:^ 2740:. 2729:^ 2715:. 2707:. 2695:. 2676:. 2672:. 2594:. 2588:: 2555:^ 2547:14 2545:. 2539:. 2497:^ 2470:MR 2468:. 2458:. 2440:; 2402:. 2366:. 2331:^ 2315:. 2303:. 2299:. 2273:. 2265:. 2253:15 2251:. 2247:. 2206:. 2198:. 2184:. 2159:. 2126:. 2106:^ 2086:. 2082:. 2074:; 2046:. 2032:^ 2019:. 2004:^ 1992:^ 1974:^ 1962:MR 1956:. 1944:^ 1899:12 1897:. 1891:. 1876:^ 1868:79 1866:, 1862:, 1798:, 1779:. 1765:^ 1686:. 1668:. 1641:^ 1625:. 1603:. 1597:MR 1595:. 1583:. 1579:. 1561:^ 1473:. 1458:, 1454:, 1450:, 1073:15 1069:13 1062:25 1058:12 1016:15 1012:13 1005:18 642:AR 639:QC 636:BQ 633:AP 618:AP 606:QC 602:AP 533:. 486:. 478:, 451:, 447:, 434:. 398:. 347:: 220:. 190:. 159:. 53:. 5037:) 5033:( 4994:e 4987:t 4980:v 3765:e 3758:t 3751:v 3525:) 3517:( 3355:e 3348:t 3341:v 3314:: 3268:. 3247:: 3226:: 3207:. 3185:. 3166:. 3154:: 3137:. 3123:: 3088:. 3064:. 3039:. 3011:: 3003:: 2976:. 2952:. 2931:. 2913:. 2888:. 2864:. 2843:) 2815:. 2781:. 2751:. 2723:. 2703:: 2697:9 2678:4 2657:. 2632:. 2607:. 2521:. 2491:. 2476:. 2454:: 2426:. 2412:. 2396:: 2377:. 2325:. 2311:: 2281:. 2259:: 2232:. 2214:. 2202:: 2192:: 2169:. 2155:: 2136:. 2122:: 2100:. 2094:: 2060:. 2025:. 1968:. 1783:. 1759:. 1719:. 1692:. 1672:. 1635:. 1611:. 1591:: 1548:) 1361:t 1357:L 1353:n 1349:t 1345:L 1331:) 1328:1 1320:n 1316:2 1312:( 1309:) 1306:4 1303:+ 1298:n 1294:2 1290:( 1284:6 1280:t 1270:= 1267:L 1143:. 1137:P 1134:B 1129:P 1126:A 1123:2 1117:= 1111:Q 1108:C 1103:Q 1100:B 1051:3 1047:2 1040:3 1036:1 1029:5 1025:1 1001:5 994:5 990:1 983:5 979:4 972:3 968:2 959:6 955:5 948:9 944:4 937:2 933:1 926:2 922:1 915:3 911:1 902:6 898:5 891:8 887:3 880:3 876:1 869:3 865:2 858:2 854:1 833:x 830:+ 827:1 820:2 816:x 812:+ 809:1 783:2 777:2 773:x 766:1 739:x 736:+ 733:1 728:x 722:1 695:x 692:+ 689:1 684:x 681:2 657:x 622:x 614:x 585:. 579:P 576:A 573:+ 570:1 565:P 562:A 559:2 553:= 550:Q 547:B 530:5 526:1 520:3 516:2 510:5 506:1 472:n 465:n 270:R 250:R 20:)

Index

Flat-foldability

Map folding
origami
mathematical
mathematical equations
History of origami
civil servant
Geometric Exercises in Paper Folding
kindergarten
Harry Houdini

Margharita P. Beloch
Beloch fold
Huzita–Hatori axioms
cubic equation
Yoshizawa–Randlett system

Crease pattern
KĹŤryĹŤ Miura
solar panels on spacecraft

double the cube
Jacques Justin
Humiaki Huzita
regular heptagon
Robert J. Lang

Marshall Bern
Barry Hayes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑