Knowledge (XXG)

Bedform

Source đź“ť

31: 164:
with a static morphology or frozen equilibrium; on the contrary, the bed moves and adjusts in a dynamic equilibrium with the flow and sediment transport for that particular condition. These phase diagrams are used for two main purposes: i) for prediction of bed states in a known flow and sediment transport condition, and, ii) as a tool for the reconstruction of paleoenvironments from a known bed state or sedimentary structure. Despite the great utility of such diagrams, they are very difficult to construct, making them either incomplete or very hard to interpret. This complexity lies in the number of variables needed to quantify the system.
168: 331: 1155: 362: 402: 132:
rates since for high rates defects maybe washed away and bedforms generally initiated across the entire bed spontaneously. Venditti et al. (2005) report that instantaneous initiation begins with the formation of a cross-hatch pattern, which leads to chevron-shaped forms that migrate independently of
323:
This chart is for general use, because changes in grain size and flow depth can change the bedform present and skip bedforms in certain scenarios. Bidirectional environments (e.g. tidal flats) produce similar bedforms, but the reworking the sediments and opposite directions of flow complicates the
163:
Phase or stability diagrams are defined as graphs that show the regimes of existence of one or more stable bed states. The stability of the bed can be defined when the bedform is in equilibrium and does not change in time for the same flow condition. This invariance over time must not be confused
114:
The defect theory proposes that the turbulent sweeps that are generated in turbulent flows entrain sediment that upon deposition generates defects in a non-cohesive material. These deposits then propagate downstream via a flow separation process, thus developing bedform fields. The origin of the
137:
type between a highly active pseudofluid sediment layer and the fluid above it. In addition, Venditti et al. (2005) imply that there is no linkage between the instantaneous initiation and coherent turbulent flow structures, since spatially- and temporally-random events should lock in place to
150:
in the laminar regime. However, instantaneous process, such as burst and sweeps, which are infrequent at low Reynolds number but still present, can be the driving mechanisms to generate the bedforms. The generation of bedforms in laminar flows is still a topic of debate within the scientific
119:
give rise to entrainment corridors on the mobile bed, forming grain lineations that interact with the low-speed streaks generating an agglomeration of grains. Once a critical height of grains is reached, flow separation occurs over the new structure. Sediment will be eroded close from the
105:
are omnipresent in many environments (e.g., fluvial, eolian, glaciofluvial, deltaic and deep sea), although there is still some debate on how they develop. There are two separate, though not mutually exclusive, models of bedform initiation: defect initiation and instantaneous initiation.
133:
the pattern structure. This chevron-like structure reorganizes to form the future crest lines of the bedforms. Venditti et al. (2006), based on the earlier model by Liu (1957), proposed that instantaneous initiation is a manifestation of an interfacial hydrodynamic instability of
334:
Bedforms formed in sand in channels under unidirectional flow. Numbers correspond broadly to increasing flow regime, i.e., increasing water flow velocity. Blue arrows show schematically flow lines in the water above the bed. Flow is always from left to
120:
reattachment point and deposited downstream creating a new defect. This new defect will thus induce formation of another defect and the process will continue, propagating downstream while the accumulations of grains quickly evolve into small bedforms.
151:
community, since if true, it suggests that there should be other processes for defect development other than the one suggested by Best (1992). This alternative model for bedform development at low
180:
Typical unidirectional bedforms represent a specific flow velocity, assuming typical sediments (sands and silts) and water depths, and a chart such as below can be used for interpreting
138:
generate the cross-hatch pattern. Moreover, there is no clear explanation of the effect of turbulence in the formation of bedforms since bedforms may also occur under
600:
Best, J. L. (1992). "On the entrainment of sediment and initiation of bed defects: insights from recent developments within turbulent boundary layer research".
171:
Dimensional phase diagram for combined flows. Relationships of combined-flow bed-phases stability fields in a plot of Oscillatory vs Unidirectional velocity.
30: 1140: 816: 582:
Grass, A. J. (1983). "The influence of boundary layer turbulence on the mechanics of sediment transport". In Sumer, B. M.; Muller, A. (eds.).
142:. It is important to note, that laminar-generated bedform studies used the temporally-averaged flow conditions to determine the degree of 90:
setting. Bedforms are often characteristic to the flow parameters, and may be used to infer flow depth and velocity, and therefore the
782: 758: 134: 1179: 849: 809: 167: 539:
Lu, S. S.; Willmarth, W. W. (1973). "Measurements of the structure of the reynolds stress in a turbulent boundary layer".
116: 719:
Perillo, Mauricio M.; Best, James L.; Garcia, Marcelo H. (2014). "A new phase diagram for combined-flow bedforms".
39: 1158: 802: 370: 181: 972: 205: 349:"Lower plane bed" refers to the flat configuration the bed of a river that is produced in via low rates of 902: 420: 1084: 1079: 330: 87: 155:
rates should explain the generation of defects and bedforms for cases where the flow is not turbulent.
1105: 728: 691: 649: 609: 548: 505: 452: 410: 640:
Venditti, J. G.; Church, M. A.; Bennett, S. J. (2005). "Bed form initiation from a flat sand bed".
139: 377:"Upper plane bed" features are flat and characterized by a unidirectional flow with high rates of 1135: 1089: 564: 521: 378: 350: 290: 152: 129: 55: 35: 1130: 967: 778: 754: 390: 366: 897: 825: 736: 699: 657: 617: 556: 513: 460: 1125: 912: 874: 859: 147: 67: 732: 695: 653: 613: 552: 509: 464: 456: 1115: 982: 932: 884: 844: 839: 621: 386: 496:
Willmarth, W. W.; Lu, S. S. (1972). "Structure of the reynolds stress near the wall".
1173: 1120: 1002: 962: 907: 568: 525: 415: 393:, which are typically subtle streaks on the bed surface due to the high energy flow. 91: 63: 1053: 864: 236: 1069: 1020: 987: 977: 869: 83: 361: 115:
defects is thought to be linked to packets of hairpin vortex structures. These
1074: 1015: 942: 922: 560: 517: 249: 143: 75: 947: 937: 892: 298: 27:
Geological feature resulting from the movement of bed material by fluid flow
680:"On interfacial instability as a cause of transverse subcritical bed forms" 17: 443:
Southard, J B (1991). "Experimental Determination of Bed-Form Stability".
1043: 917: 704: 679: 661: 382: 66:, the result of bed material being moved by fluid flow. Examples include 773:
Klaus K.E. Neuendorf; James P. Mehl Jr.; Julia A. Jackson, eds. (2005).
740: 1110: 992: 927: 854: 401: 753:
Prothero, D. R. and Schwab, F., 1996, Sedimentary Geology, pg. 45-49,
1010: 957: 952: 128:
In general, the defect propagation theory plays a bigger role at low
794: 400: 360: 329: 166: 79: 59: 29: 327:
This bed form sequence can also be illustrated diagrammatically:
1048: 262: 71: 43: 798: 1038: 190: 777:. Alexandria: American Geological Institute. p. 382. 483:
Flow, sediment transport and bedforms under combined flows
678:
Venditti, J. G.; Church, M. A.; Bennett, S. J. (2006).
306:
Water in phase with bedform, low angle, subtle laminae
485:(Ph.D.). University of Illinois at Urbana-Champaign. 1098: 1062: 1029: 1001: 883: 832: 365:Parting lineation, from lower left to upper right; 438: 436: 389:. Upper plane bed conditions can produce parting 34:Current ripples preserved in sandstone of the 810: 476: 474: 445:Annual Review of Earth and Planetary Sciences 8: 1141:List of rivers that have reversed direction 768: 766: 817: 803: 795: 703: 595: 593: 673: 671: 635: 633: 631: 432: 82:. Bedforms are often preserved in the 257:Rare, longer wavelength than ripples 231:Flat laminae, almost lack of current 188:water velocity going down the chart. 7: 465:10.1146/annurev.ea.19.050191.002231 622:10.1111/j.1365-3091.1992.tb02154.x 289:Flat laminae, +/- aligned grains ( 86:as a result of being present in a 58:that develops at the interface of 25: 1154: 1153: 850:Drainage system (geomorphology) 721:Journal of Sedimentary Research 642:Journal of Geophysical Research 586:. A. A. Balkema. pp. 3–18. 584:Mechanics of Sediment Transport 860:Strahler number (stream order) 1: 481:Perillo, Mauricio M. (2013). 117:coherent turbulent structures 244:Small, cm-scale undulations 271:Large, meter-scale ripples 1196: 541:Journal of Fluid Mechanics 498:Journal of Fluid Mechanics 317:Mostly erosional features 40:Capitol Reef National Park 1149: 561:10.1017/S0022112073000315 518:10.1017/S002211207200165X 371:Canyonlands National Park 275: 217: 182:depositional environments 684:Water Resources Research 124:Instantaneous Initiation 973:River channel migration 1180:Sedimentary structures 903:Bar (river morphology) 421:Sedimentary structures 406: 374: 336: 206:Preservation Potential 172: 159:Bedform phase diagrams 47: 1085:Erosion and tectonics 1080:Degradation (geology) 404: 364: 333: 170: 33: 1106:Deposition (geology) 833:Large-scale features 705:10.1029/2005wr004346 662:10.1029/2004jf000149 411:Churn turbulent flow 405:Megaripple from Utah 775:Glossary of geology 741:10.2110/jsr.2014.25 733:2014JSedR..84..301P 696:2006WRR....42.7423V 654:2005JGRF..110.1009V 614:1992Sedim..39..797B 553:1973JFM....60..481L 510:1972JFM....55...65W 457:1991AREPS..19..423S 212:Identification Tips 98:Bedforms Initiation 1136:Sediment transport 1090:River rejuvenation 1063:Regional processes 407: 391:current lineations 379:sediment transport 375: 351:sediment transport 337: 291:parting lineations 173: 153:sediment transport 130:sediment transport 56:geological feature 48: 36:Moenkopi Formation 1167: 1166: 968:River bifurcation 367:Kayenta Formation 340:Types of Bedforms 321: 320: 176:Bedforms vs. flow 110:Defect Initiation 16:(Redirected from 1187: 1157: 1156: 898:Avulsion (river) 826:River morphology 819: 812: 805: 796: 789: 788: 770: 761: 751: 745: 744: 716: 710: 709: 707: 675: 666: 665: 637: 626: 625: 597: 588: 587: 579: 573: 572: 536: 530: 529: 493: 487: 486: 478: 469: 468: 440: 191: 135:Kelvin-Helmholtz 46:, United States. 21: 1195: 1194: 1190: 1189: 1188: 1186: 1185: 1184: 1170: 1169: 1168: 1163: 1145: 1126:Helicoidal flow 1094: 1058: 1025: 997: 913:Channel pattern 885:Alluvial rivers 879: 875:River sinuosity 828: 823: 793: 792: 785: 772: 771: 764: 752: 748: 718: 717: 713: 677: 676: 669: 639: 638: 629: 599: 598: 591: 581: 580: 576: 538: 537: 533: 495: 494: 490: 480: 479: 472: 442: 441: 434: 429: 399: 359: 357:Upper Plane Bed 347: 345:Lower Plane Bed 342: 283:Upper plane bed 225:Lower plane bed 178: 161: 148:Reynolds number 126: 112: 100: 62:and a moveable 28: 23: 22: 15: 12: 11: 5: 1193: 1191: 1183: 1182: 1172: 1171: 1165: 1164: 1162: 1161: 1150: 1147: 1146: 1144: 1143: 1138: 1133: 1131:Playfair's law 1128: 1123: 1118: 1116:Exner equation 1113: 1108: 1102: 1100: 1096: 1095: 1093: 1092: 1087: 1082: 1077: 1072: 1066: 1064: 1060: 1059: 1057: 1056: 1054:Current ripple 1051: 1046: 1041: 1035: 1033: 1027: 1026: 1024: 1023: 1018: 1013: 1007: 1005: 999: 998: 996: 995: 990: 985: 983:Slip-off slope 980: 975: 970: 965: 960: 955: 950: 945: 940: 935: 933:Meander cutoff 930: 925: 920: 915: 910: 905: 900: 895: 889: 887: 881: 880: 878: 877: 872: 867: 862: 857: 852: 847: 845:Drainage basin 842: 840:Alluvial plain 836: 834: 830: 829: 824: 822: 821: 814: 807: 799: 791: 790: 783: 762: 746: 727:(4): 301–313. 711: 667: 648:(F1): F01009. 627: 608:(5): 797–811. 589: 574: 547:(3): 481–511. 531: 488: 470: 431: 430: 428: 425: 424: 423: 418: 413: 398: 395: 387:suspended load 358: 355: 346: 343: 341: 338: 319: 318: 315: 312: 311:Pool and chute 308: 307: 304: 301: 295: 294: 287: 284: 280: 279: 273: 272: 269: 266: 259: 258: 255: 252: 246: 245: 242: 239: 233: 232: 229: 226: 222: 221: 215: 214: 209: 202: 197: 177: 174: 160: 157: 125: 122: 111: 108: 99: 96: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1192: 1181: 1178: 1177: 1175: 1160: 1152: 1151: 1148: 1142: 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1112: 1111:Water erosion 1109: 1107: 1104: 1103: 1101: 1097: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1067: 1065: 1061: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1036: 1034: 1032: 1028: 1022: 1019: 1017: 1014: 1012: 1009: 1008: 1006: 1004: 1003:Bedrock river 1000: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 963:Riparian zone 961: 959: 956: 954: 951: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 924: 921: 919: 916: 914: 911: 909: 908:Braided river 906: 904: 901: 899: 896: 894: 891: 890: 888: 886: 882: 876: 873: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 841: 838: 837: 835: 831: 827: 820: 815: 813: 808: 806: 801: 800: 797: 786: 784:0-922152-76-4 780: 776: 769: 767: 763: 760: 759:0-7167-2726-9 756: 750: 747: 742: 738: 734: 730: 726: 722: 715: 712: 706: 701: 697: 693: 690:(7): W07423. 689: 685: 681: 674: 672: 668: 663: 659: 655: 651: 647: 643: 636: 634: 632: 628: 623: 619: 615: 611: 607: 603: 602:Sedimentology 596: 594: 590: 585: 578: 575: 570: 566: 562: 558: 554: 550: 546: 542: 535: 532: 527: 523: 519: 515: 511: 507: 503: 499: 492: 489: 484: 477: 475: 471: 466: 462: 458: 454: 450: 446: 439: 437: 433: 426: 422: 419: 417: 416:Sedimentation 414: 412: 409: 408: 403: 396: 394: 392: 388: 384: 380: 372: 368: 363: 356: 354: 352: 344: 339: 332: 328: 325: 316: 313: 310: 309: 305: 302: 300: 297: 296: 292: 288: 285: 282: 281: 278: 274: 270: 267: 264: 261: 260: 256: 254:Medium to low 253: 251: 248: 247: 243: 240: 238: 235: 234: 230: 227: 224: 223: 220: 216: 213: 210: 208: 207: 203: 201: 198: 196: 193: 192: 189: 187: 183: 175: 169: 165: 158: 156: 154: 149: 146:, indicating 145: 141: 140:laminar flows 136: 131: 123: 121: 118: 109: 107: 104: 97: 95: 93: 92:Froude number 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 45: 41: 37: 32: 19: 1030: 865:River valley 774: 749: 724: 720: 714: 687: 683: 645: 641: 605: 601: 583: 577: 544: 540: 534: 504:(1): 65–92. 501: 497: 491: 482: 448: 444: 376: 348: 326: 324:structures. 322: 276: 265:/Megaripples 237:Ripple marks 218: 211: 204: 199: 194: 185: 179: 162: 127: 113: 102: 101: 88:depositional 51: 49: 1070:Aggradation 1021:Plunge pool 988:Stream pool 978:River mouth 870:River delta 451:: 423–455. 195:Flow Regime 84:rock record 18:Flow regime 1121:Hack's law 1075:Base level 1016:Knickpoint 943:Oxbow lake 923:Floodplain 427:References 250:Sand waves 186:increasing 144:turbulence 1099:Mechanics 948:Point bar 938:Mouth bar 893:Anabranch 569:124179402 526:121418853 299:Antidunes 1174:Category 1159:Category 1044:Antidune 1031:Bedforms 918:Cut bank 397:See also 383:bed load 381:as both 314:Very low 103:Bedforms 993:Thalweg 928:Meander 855:Estuary 729:Bibcode 692:Bibcode 650:Bibcode 610:Bibcode 549:Bibcode 506:Bibcode 453:Bibcode 200:Bedform 184:, with 74:on the 68:ripples 52:bedform 1011:Canyon 958:Rapids 953:Riffle 781:  757:  567:  524:  335:right. 565:S2CID 522:S2CID 277:Upper 263:Dunes 219:Lower 80:river 78:of a 72:dunes 60:fluid 54:is a 1049:Dune 779:ISBN 755:ISBN 385:and 286:High 268:High 241:High 228:High 70:and 44:Utah 1039:Ait 737:doi 700:doi 658:doi 646:110 618:doi 557:doi 514:doi 461:doi 303:Low 76:bed 64:bed 1176:: 765:^ 735:. 725:84 723:. 698:. 688:42 686:. 682:. 670:^ 656:. 644:. 630:^ 616:. 606:39 604:. 592:^ 563:. 555:. 545:60 543:. 520:. 512:. 502:55 500:. 473:^ 459:. 449:19 447:. 435:^ 369:, 353:. 293:) 94:. 50:A 42:, 38:, 818:e 811:t 804:v 787:. 743:. 739:: 731:: 708:. 702:: 694:: 664:. 660:: 652:: 624:. 620:: 612:: 571:. 559:: 551:: 528:. 516:: 508:: 467:. 463:: 455:: 373:. 20:)

Index

Flow regime

Moenkopi Formation
Capitol Reef National Park
Utah
geological feature
fluid
bed
ripples
dunes
bed
river
rock record
depositional
Froude number
coherent turbulent structures
sediment transport
Kelvin-Helmholtz
laminar flows
turbulence
Reynolds number
sediment transport

depositional environments
Preservation Potential
Ripple marks
Sand waves
Dunes
parting lineations
Antidunes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑