Knowledge

Fluxional molecule

Source 📝

346: 314: 452:, but the barriers for these processes are typically high such that these processes do not lead to line broadening. For some compounds, dynamics occur via dissociation of a ligand, giving a pentacoordinate intermediate, which is subject to the mechanisms discussed above. Yet another mechanism, exhibited by Fe(CO) 480: 96:
and typically involves recording spectra at various temperatures. In the ideal case, low temperature spectra can be assigned to the "slow exchange limit", whereas spectra recorded at higher temperatures correspond to molecules at "fast exchange limit". Typically, high temperature spectra are simpler
486:
At temperatures near 100 °C, the 500 MHz H NMR spectrum of DMF shows only one signal for the methyl groups. Near room temperature, however, separate signals are seen for the non-equivalent methyl groups. The rate of exchange can be calculated at the temperature where the two signals are
295: 579:
is the difference in Hz between the frequencies of the exchanging sites. These frequencies are obtained from the limiting low-temperature NMR spectrum. At these lower temperatures, the dynamics continue, of course, but the contribution of the dynamics to line broadening is negligible.
119:
For processes that are too slow for traditional DNMR analysis, the technique spin saturation transfer (SST, also called EXSY for exchange spectroscopy) is applicable. This magnetization transfer technique gives rate information, provided that the rates exceed
1347:
Vancea, L.; Bennett, M. J.; Jones, C. E.; Smith, R. A.; Graham, W. A. G. (1977). "Stereochemically Nonrigid Six-Coordinate Metal Carbonyl Complexes. 1. Polytopal Rearrangement and X-Ray Structure of Tetracarbonylbis(trimethylsilyl)iron".
97:
than those recorded at low temperatures, since at high temperatures, equivalent sites are averaged out. Prior to the advent of DNMR, kinetics of reactions were measured on non-equilibrium mixtures, monitoring the approach to equilibrium.
570: 91:
Temperature dependent changes in the NMR spectra result from dynamics associated with the fluxional molecules when those dynamics proceed at rates comparable to the frequency differences observed by NMR. The experiment is called
156: 337:
and carbon-13 NMR spectra of cyclohexane show each only singlets near room temperature. At low temperatures, the singlet in the H NMR spectrum decoalesces but the C NMR spectrum remains unchanged.
644: 1414:; Davison, A.; Faller, J. W.; Lippard, S. J.; Morehouse, S. M. (1966). "Stereochemically Nonrigid Organometallic Compounds. I. π-Cyclopentadienyliron Dicarbonyl σ-Cyclopentadiene". 365:, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. The apparent equivalency arises from the low barrier for 1072:
Casey H. Londergan; Clifford P. Kubiak (2003). "Electron Transfer and Dynamic Infrared-Band Coalescence: It Looks Like Dynamic NMR Spectroscopy, but a Billion Times Faster".
362: 358: 329:. Carbon–hydrogen bonds that are axial in one configuration become equatorial in the other, and vice versa. At room temperature the two chair conformations rapidly 1132: 100:
Many molecular processes exhibit fluxionality that can be probed on the NMR time scale. Beyond the examples highlighted below, other classic examples include the
493: 385:: only one signal is observed in the C NMR spectrum near room temperature) whereas at low temperatures, two signals in a 2:3 ratio can be resolved. In 1037:
Jarek, R. L.; Flesher, R. J.; Shin, S. K. (1997). "Kinetics of Internal Rotation of N,N-Dimethylacetamide: A Spin-Saturation Transfer Experiment".
1331: 345: 290:{\displaystyle k\sim \Delta \nu _{\circ }\sim 2(10\mathrm {cm} ^{-1})(300\cdot 10^{8}\mathrm {cm/s} )\sim 6\times 10^{11}\mathrm {s} ^{-1}\cdot } 300:
Clearly, processes that induce line-broadening on the IR time-scale must be much more rapid than the cases that exchange on the NMR time scale.
890: 464:
and related hydride complexes, is intramolecular scrambling of ligands over the faces of the tetrahedron defined by the four CO ligands.
55:, the term fluxional depends on the context and the method used to assess the dynamics. Often, a molecule is considered fluxional if its 444:, featuring close-packed array of six ligating atoms surrounding a central atom. Such compounds do rearrange intramolecularly via the 1449: 1375:
H. S. Gutowsky; C. H. Holm (1956). "Rate Processes and Nuclear Magnetic Resonance Spectra. II. Hindered Internal Rotation of Amides".
361:
consists of a P-coupled doublet, indicating that the equatorial and axial fluorine centers interchange rapidly on the NMR timescale.
1467: 1116: 951: 864: 867: 683: 64: 416:
there is no rigid molecular structure; the H atoms are always in motion. More precisely, the spatial distribution of protons in
852:: The use of permutation-inversion groups for the symmetry classification of the states of fluxional (or non-rigid) molecules. 1154:-butylcyclohexane by Dynamic NMR Spectroscopy and Computational Methods. Observation of Chair and Twist-Boat Conformations". 67:) due to chemical exchange. In some cases, where the rates are slow, fluxionality is not detected spectroscopically, but by 441: 593: 47:
interchange between symmetry-equivalent positions. Because virtually all molecules are fluxional in some respects, e.g.
150:. Application of the equation for coalescence of two signals separated by 10 cm gives the following result: 354: 109: 48: 733:
ligand splits at low temperatures owing to the slow hopping of the Fe center from carbon to carbon in the η-C
440:
While nonrigidity is common for pentacoordinate species, six-coordinate species typically adopt a more rigid
1190:
Gutowsky, H. S.; McCall, D. W.; Slichter, C. P. (1953). "Nuclear Magnetic Resonance Multiplets in Liquids".
80: 139: 1328: 487:
just merged. This "coalescence temperature" depends on the measuring field. The relevant equation is:
1384: 1245: 1200: 1046: 1011: 833: 386: 330: 750: 791: 1271: 1126: 766: 374: 101: 1445: 1306: 1263: 1236: 1172: 1112: 1089: 947: 886: 860: 781: 741:
ligand. Two mechanisms have been proposed, with the consensus favoring the 1,2 shift pathway.
473: 143: 68: 24: 875:, Wiley, New York, 1975 (reprinted by Dover 1992), describing the term "semi-rigid molecule". 1423: 1411: 1392: 1357: 1298: 1253: 1208: 1164: 1081: 1054: 1019: 986: 922: 841: 121: 52: 880: 1335: 786: 370: 1289:
Thompson, KC; Crittenden, DL; Jordan, MJ (2005). "CH5+: Chemistry's chameleon unmasked".
1388: 1249: 1204: 1050: 1015: 837: 1192: 771: 565:{\displaystyle k={\frac {\pi \Delta \nu _{\circ }}{2^{1/2}}}\sim 2\Delta \nu _{\circ }} 445: 366: 313: 1461: 1156: 709:
At 30 °C, the H NMR spectrum shows only two peaks, one typical (δ5.6) of the η-C
413: 147: 60: 56: 1275: 1226:
Asvany, O.; Kumar P, P.; Redlich, B.; Hegemann, I.; Schlemmer, S.; Marx, D. (2005).
990: 776: 449: 393:), a similar pattern is observed even though this compound has only four ligands. 322: 113: 1440:
Robert B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems (
914: 373:, by which the axial and equatorial fluorine atoms rapidly exchange positions. 846: 821: 755: 334: 105: 138:
Although less common, some dynamics are also observable on the time-scale of
1258: 1227: 927: 761: 647: 397: 326: 20: 1310: 1267: 1176: 1093: 1085: 40: 1427: 1361: 981:
John W. Faller "Stereochemical Nonrigidity of Organometallic Complexes"
1396: 1302: 1212: 1168: 1058: 1023: 767:
Molecular symmetry § Molecular rotation and molecular nonrigidity
317:
Cyclohexane chair flip (ring inversion) reaction via boat conformation
1329:
http://www.theochem.ruhr-uni-bochum.de/research/marx/topic4b.en.html
1146:
Gill, G.; Pawar, D. M.; Noe, E. A. (2005). "Conformational Study of
682: 479: 681: 312: 44: 16:
Molecules whose atoms interchange between symmetric positions
478: 344: 83:
exhibit fluxionality. Fluxionality is, however, pervasive.
816:, McGraw-Hill, New York, 1955 (reprinted by Dover 1980) 321:
The interconversion of equivalent chair conformers of
596: 496: 159: 43:
that undergo dynamics such that some or all of their
983:
Encyclopedia of Inorganic and Bioinorganic Chemistry
639:{\displaystyle k\sim 2(500)=1000\mathrm {s} ^{-1}} 638: 564: 289: 428:is many times broader than its parent molecule CH 341:Berry pseudorotation of pentacoordinate compounds 1002:Bryant, Robert G. (1983). "The NMR time scale". 1228:"Understanding the Infrared Spectrum of Bare CH 946:(2nd ed.). Philadelphia: W. B. Saunders. 812:E. B. Wilson, J. C. Decius, and P. C. Cross, 472:A classic example of a fluxional molecule is 8: 822:"The symmetry groups of non-rigid molecules" 679:exhibits the phenomenon of "ring whizzing". 325:(and many other cyclic compounds) is called 762:Hapticity § Hapticity and fluxionality 1131:: CS1 maint: location missing publisher ( 885:(2 ed.). Ottawa: NRC Research Press. 1257: 926: 845: 627: 622: 595: 556: 531: 527: 516: 503: 495: 275: 270: 263: 238: 231: 225: 200: 192: 173: 158: 807:Molecular Vibrational-Rotational Spectra 686:The structure of the ring whizzer Fe(η-C 906: 1323:For an animation of the dynamics of CH 1124: 1111:(2nd ed.). Oxford. p. 373. 879:Philip R. Bunker; Per Jensen (2006). 353:A prototypical fluxional molecule is 7: 396:A well-studied fluxional ion is the 882:Molecular Symmetry and Spectroscopy 857:Fundamentals of Molecular Symmetry 623: 549: 509: 349:Iron-pentacarbonyl-Berry-mechanism 271: 243: 235: 232: 196: 193: 166: 14: 725:. The singlet assigned to the η-C 381:) follows the pattern set for PF 65:Heisenberg uncertainty principle 991:10.1002/9781119951438.eibc0211 820:Longuet-Higgins, H.C. (1963). 612: 606: 247: 212: 209: 185: 1: 1442:Topics in Inorganic Chemistry 1074:Chemistry: A European Journal 1039:Journal of Chemical Education 1004:Journal of Chemical Education 944:Physical Methods in Chemistry 805:D. Papoušek and M. R. Aliev, 442:octahedral molecular geometry 309:Cyclohexane and related rings 63:(beyond that dictated by the 855:P. R. Bunker and P. Jensen, 363:Fluorine-19 NMR spectroscopy 146:in a mixed-valence dimer of 985:2011, Wiley-VCH, Weinheim. 1484: 942:Drago, Russell S. (1977). 873:Molecular Rotation Spectra 717:and the other assigned η-C 847:10.1080/00268976300100501 809:Elsevier, Amsterdam, 1982 1468:Chemical bond properties 969:Dynamic NMR Spectroscopy 355:phosphorus pentafluoride 81:organometallic compounds 1259:10.1126/science.1113729 928:10.1351/goldbook.F02463 1086:10.1002/chem.200305028 758:, a fluxional molecule 706: 640: 587:= 1ppm @ 500 MHz 566: 483: 436:Six-coordinate species 350: 318: 291: 967:J. Sandström (1982). 685: 646:(ca. 0.5 millisecond 641: 567: 482: 348: 316: 292: 75:Spectroscopic studies 1410:Bennett, Jr. M. J.; 814:Molecular Vibrations 594: 494: 387:sulfur tetrafluoride 157: 1428:10.1021/ja00971a012 1389:1956JChPh..25.1228G 1362:10.1021/ic50170a035 1350:Inorganic Chemistry 1250:2005Sci...309.1219A 1244:(5738): 1219–1222. 1205:1953JChPh..21..279G 1163:(26): 10726–10731. 1107:J, Clayden (2003). 1051:1997JChEd..74..978J 1016:1983JChEd..60..933B 838:1963MolPh...6..445L 751:Pyramidal inversion 659:The compound Fe(η-C 71:and other methods. 59:signature exhibits 1334:2007-12-24 at the 859:, CRC Press, 1998 707: 636: 583:For example, if Δν 562: 484: 375:Iron pentacarbonyl 351: 319: 287: 102:Cope rearrangement 1397:10.1063/1.1743184 1303:10.1021/ja0482280 1297:(13): 4954–4958. 1213:10.1063/1.1698874 1169:10.1021/jo051654z 1109:Organic chemistry 1059:10.1021/ed074p978 1024:10.1021/ed060p933 971:. Academic Press. 892:978-0-660-19628-2 826:Molecular Physics 782:Bartell mechanism 541: 474:dimethylformamide 468:Dimethylformamide 144:electron transfer 142:. One example is 69:isotopic labeling 53:organic compounds 25:molecular physics 1475: 1452: 1438: 1432: 1431: 1416:J. Am. Chem. Soc 1407: 1401: 1400: 1383:(6): 1228–1234. 1372: 1366: 1365: 1344: 1338: 1321: 1315: 1314: 1291:J. Am. Chem. Soc 1286: 1280: 1279: 1261: 1223: 1217: 1216: 1187: 1181: 1180: 1143: 1137: 1136: 1130: 1122: 1104: 1098: 1097: 1069: 1063: 1062: 1034: 1028: 1027: 999: 993: 979: 973: 972: 964: 958: 957: 939: 933: 932: 930: 911: 896: 851: 849: 645: 643: 642: 637: 635: 634: 626: 571: 569: 568: 563: 561: 560: 542: 540: 539: 535: 522: 521: 520: 504: 427: 426: 425: 411: 410: 409: 296: 294: 293: 288: 283: 282: 274: 268: 267: 246: 242: 230: 229: 208: 207: 199: 178: 177: 87:NMR spectroscopy 1483: 1482: 1478: 1477: 1476: 1474: 1473: 1472: 1458: 1457: 1456: 1455: 1439: 1435: 1409: 1408: 1404: 1374: 1373: 1369: 1346: 1345: 1341: 1336:Wayback Machine 1326: 1322: 1318: 1288: 1287: 1283: 1231: 1225: 1224: 1220: 1189: 1188: 1184: 1145: 1144: 1140: 1123: 1119: 1106: 1105: 1101: 1071: 1070: 1066: 1036: 1035: 1031: 1001: 1000: 996: 980: 976: 966: 965: 961: 954: 941: 940: 936: 919:IUPAC Gold Book 913: 912: 908: 903: 893: 878: 819: 802: 800:Further reading 787:Berry mechanism 747: 740: 736: 732: 728: 724: 720: 716: 712: 705: 701: 697: 693: 689: 678: 674: 670: 666: 662: 657: 655:"Ring whizzing" 621: 592: 591: 586: 578: 552: 523: 512: 505: 492: 491: 470: 463: 459: 455: 438: 431: 424: 421: 420: 419: 417: 408: 405: 404: 403: 401: 392: 384: 380: 371:Berry mechanism 343: 311: 306: 269: 259: 221: 191: 169: 155: 154: 140:IR spectroscopy 136: 134:IR spectroscopy 128: 110:chair inversion 89: 77: 61:line-broadening 17: 12: 11: 5: 1481: 1479: 1471: 1470: 1460: 1459: 1454: 1453: 1450:978-0195301007 1433: 1402: 1367: 1356:(4): 897–902. 1339: 1324: 1316: 1281: 1229: 1218: 1193:J. Chem. Phys. 1182: 1138: 1117: 1099: 1080:(24): 5969ff. 1064: 1029: 994: 974: 959: 952: 934: 905: 904: 902: 899: 898: 897: 891: 876: 869: 853: 832:(5): 445–460. 817: 810: 801: 798: 797: 796: 795: 794: 792:Ray–Dutt twist 789: 784: 779: 772:Pseudorotation 769: 764: 759: 753: 746: 743: 738: 734: 730: 726: 722: 718: 714: 710: 703: 699: 695: 691: 687: 676: 672: 668: 664: 660: 656: 653: 652: 651: 633: 630: 625: 620: 617: 614: 611: 608: 605: 602: 599: 584: 576: 573: 572: 559: 555: 551: 548: 545: 538: 534: 530: 526: 519: 515: 511: 508: 502: 499: 469: 466: 461: 457: 453: 446:Ray-Dutt twist 437: 434: 429: 422: 406: 390: 382: 378: 367:pseudorotation 359:F NMR spectrum 342: 339: 310: 307: 305: 302: 298: 297: 286: 281: 278: 273: 266: 262: 258: 255: 252: 249: 245: 241: 237: 234: 228: 224: 220: 217: 214: 211: 206: 203: 198: 195: 190: 187: 184: 181: 176: 172: 168: 165: 162: 148:metal clusters 135: 132: 126: 88: 85: 76: 73: 49:bond rotations 15: 13: 10: 9: 6: 4: 3: 2: 1480: 1469: 1466: 1465: 1463: 1451: 1447: 1443: 1437: 1434: 1429: 1425: 1421: 1417: 1413: 1412:Cotton, F. A. 1406: 1403: 1398: 1394: 1390: 1386: 1382: 1378: 1377:J. Chem. Phys 1371: 1368: 1363: 1359: 1355: 1351: 1343: 1340: 1337: 1333: 1330: 1320: 1317: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1282: 1277: 1273: 1269: 1265: 1260: 1255: 1251: 1247: 1243: 1239: 1238: 1233: 1222: 1219: 1214: 1210: 1206: 1202: 1198: 1195: 1194: 1186: 1183: 1178: 1174: 1170: 1166: 1162: 1159: 1158: 1157:J. Org. Chem. 1153: 1149: 1142: 1139: 1134: 1128: 1120: 1118:9780191666216 1114: 1110: 1103: 1100: 1095: 1091: 1087: 1083: 1079: 1075: 1068: 1065: 1060: 1056: 1052: 1048: 1044: 1040: 1033: 1030: 1025: 1021: 1017: 1013: 1009: 1005: 998: 995: 992: 988: 984: 978: 975: 970: 963: 960: 955: 953:0-7216-3184-3 949: 945: 938: 935: 929: 924: 920: 916: 910: 907: 900: 894: 888: 884: 883: 877: 874: 871:H. W. Kroto, 870: 868: 866: 865:0-7503-0941-5 862: 858: 854: 848: 843: 839: 835: 831: 827: 823: 818: 815: 811: 808: 804: 803: 799: 793: 790: 788: 785: 783: 780: 778: 775: 774: 773: 770: 768: 765: 763: 760: 757: 754: 752: 749: 748: 744: 742: 684: 680: 654: 649: 631: 628: 618: 615: 609: 603: 600: 597: 590: 589: 588: 581: 557: 553: 546: 543: 536: 532: 528: 524: 517: 513: 506: 500: 497: 490: 489: 488: 481: 477: 475: 467: 465: 451: 447: 443: 435: 433: 415: 414:absolute zero 399: 394: 388: 376: 372: 368: 364: 360: 356: 347: 340: 338: 336: 332: 328: 327:ring flipping 324: 315: 308: 303: 301: 284: 279: 276: 264: 260: 256: 253: 250: 239: 226: 222: 218: 215: 204: 201: 188: 182: 179: 174: 170: 163: 160: 153: 152: 151: 149: 145: 141: 133: 131: 129: 125: 117: 115: 111: 107: 103: 98: 95: 86: 84: 82: 74: 72: 70: 66: 62: 58: 57:spectroscopic 54: 50: 46: 42: 38: 34: 30: 26: 22: 1441: 1436: 1422:(88): 4371. 1419: 1415: 1405: 1380: 1376: 1370: 1353: 1349: 1342: 1319: 1294: 1290: 1284: 1241: 1235: 1221: 1196: 1191: 1185: 1160: 1155: 1151: 1147: 1141: 1108: 1102: 1077: 1073: 1067: 1042: 1038: 1032: 1007: 1003: 997: 982: 977: 968: 962: 943: 937: 918: 909: 881: 872: 856: 829: 825: 813: 806: 777:Bailar twist 708: 658: 582: 574: 485: 471: 450:Bailar twist 439: 395: 352: 320: 299: 137: 123: 118: 99: 93: 90: 78: 36: 32: 28: 18: 1010:(11): 933. 915:"Fluxional" 432:, methane. 331:equilibrate 323:cyclohexane 114:cyclohexane 1199:(2): 279. 1045:(8): 978. 901:References 756:Bullvalene 412:. Even at 106:bullvalene 1444:), 2007. 1127:cite book 648:half-life 629:− 601:∼ 558:∘ 554:ν 550:Δ 544:∼ 518:∘ 514:ν 510:Δ 507:π 398:methanium 285:⋅ 277:− 257:× 251:∼ 219:⋅ 202:− 180:∼ 175:∘ 171:ν 167:Δ 164:∼ 41:molecules 37:molecules 33:non-rigid 29:fluxional 21:chemistry 1462:Category 1332:Archived 1311:15796561 1276:28745636 1268:15994376 1177:16355992 1150:-1,4-Di- 1094:14679508 921:. 2014. 745:See also 575:where Δν 448:and the 369:via the 304:Examples 108:and the 51:in most 1385:Bibcode 1246:Bibcode 1237:Science 1201:Bibcode 1047:Bibcode 1012:Bibcode 834:Bibcode 476:(DMF). 377:(Fe(CO) 335:proton- 1448:  1327:, see 1309:  1274:  1266:  1175:  1115:  1092:  950:  889:  863:  694:) (η-C 400:ion, 357:. Its 333:. The 1272:S2CID 702:)(CO) 675:)(CO) 667:)(η-C 456:(SiMe 79:Many 45:atoms 1446:ISBN 1420:1966 1307:PMID 1264:PMID 1173:PMID 1152:tert 1133:link 1113:ISBN 1090:PMID 948:ISBN 887:ISBN 861:ISBN 619:1000 94:DNMR 39:are 31:(or 23:and 1424:doi 1393:doi 1358:doi 1299:doi 1295:127 1254:doi 1242:309 1209:doi 1165:doi 1148:cis 1082:doi 1055:doi 1020:doi 987:doi 923:doi 842:doi 610:500 389:(SF 216:300 112:in 104:in 19:In 1464:: 1418:. 1391:. 1381:25 1379:. 1354:16 1352:. 1305:. 1293:. 1270:. 1262:. 1252:. 1240:. 1234:. 1207:. 1197:21 1171:. 1161:70 1129:}} 1125:{{ 1088:. 1076:. 1053:. 1043:74 1041:. 1018:. 1008:60 1006:. 917:. 840:. 828:. 824:. 418:CH 402:CH 265:11 261:10 223:10 189:10 130:. 122:1/ 116:. 35:) 27:, 1430:. 1426:: 1399:. 1395:: 1387:: 1364:. 1360:: 1325:5 1313:. 1301:: 1278:. 1256:: 1248:: 1232:" 1230:5 1215:. 1211:: 1203:: 1179:. 1167:: 1135:) 1121:. 1096:. 1084:: 1078:9 1061:. 1057:: 1049:: 1026:. 1022:: 1014:: 989:: 956:. 931:. 925:: 895:. 850:. 844:: 836:: 830:6 739:5 737:H 735:5 731:5 729:H 727:5 723:5 721:H 719:5 715:5 713:H 711:5 704:2 700:5 698:H 696:5 692:5 690:H 688:5 677:2 673:5 671:H 669:5 665:5 663:H 661:5 650:) 632:1 624:s 616:= 613:) 607:( 604:2 598:k 585:o 577:o 547:2 537:2 533:/ 529:1 525:2 501:= 498:k 462:2 460:) 458:3 454:4 430:4 423:5 407:5 391:4 383:5 379:5 280:1 272:s 254:6 248:) 244:s 240:/ 236:m 233:c 227:8 213:( 210:) 205:1 197:m 194:c 186:( 183:2 161:k 127:1 124:T

Index

chemistry
molecular physics
molecules
atoms
bond rotations
organic compounds
spectroscopic
line-broadening
Heisenberg uncertainty principle
isotopic labeling
organometallic compounds
Cope rearrangement
bullvalene
chair inversion
cyclohexane
1/T1
IR spectroscopy
electron transfer
metal clusters

cyclohexane
ring flipping
equilibrate
proton-
Iron-pentacarbonyl-Berry-mechanism
phosphorus pentafluoride
F NMR spectrum
Fluorine-19 NMR spectroscopy
pseudorotation
Berry mechanism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.