Knowledge (XXG)

Folkman graph

Source đź“ť

29: 1097: 458: 937:. Its automorphism group includes symmetries taking any vertex to any other vertex that is on the same side of the bipartition, but none that take a vertex to the other side of the bipartition. Although one can argue directly that the Folkman graph is not vertex-transitive, this can also be explained group-theoretically: its symmetries act 1128:(the minimum number of colors needed to color its edges so that no two edges of the same color meet at a vertex) equals its maximum degree, which in this case is four. For instance, such a coloring can be obtained by using two colors in alternation for each cycle of a Hamiltonian decomposition. 719:
has symmetries taking every half-edge to every other half-edge, the result is edge-transitive. It is not vertex-transitive, because the subdivision vertices are not twins with any other vertex, making them different from the doubled vertices coming
275:
which gave examples of graphs meeting the symmetry condition but not the regularity condition. Folkman's original construction of this graph was a special case of a more general construction of semi-symmetric graphs using
634:
is doubled, replacing it by two vertices with the same neighbors. The ten subdivision vertices form one side of the bipartition of the Folkman graph, and the ten vertices in twin pairs coming from the doubled vertices of
917:
symmetries. This group acts transitively on the Folkman graph's edges (it includes a symmetry taking any edge to any other edge) but not on its vertices. The Folkman graph is the smallest undirected graph that is
266:
Semi-symmetric graphs are defined as regular graphs (that is, graphs in which all vertices touch equally many edges) in which each two edges are symmetric to each other, but some two vertices are not symmetric.
1086: 915: 995:. Every symmetry maps a doubled pair of vertices to another doubled pair of vertices, but there is no grouping of the subdivision vertices that is preserved by the symmetries. 751:
Every 4-regular semi-symmetric graph in which some two vertices have the same neighborhood can be constructed in the same way, by subdividing and then doubling a 4-regular
354: 1223: 1176: 993: 966: 873: 846: 780: 747: 717: 690: 660: 632: 605: 578: 543: 516: 489: 452: 426: 400: 819: 1196: 1149: 374: 318: 298: 231:
with symmetries taking every edge to every other edge, but the two sides of its bipartition are not symmetric with each other, making it the smallest possible
1370: 199: 1559: 1455: 271:
was inspired to define and research these graphs in a 1967 paper, after seeing an unpublished manuscript by E. Dauber and
938: 1746: 1005: 1117: 1105: 999: 930:
and were first studied by Folkman in 1967 who discovered the graph on 20 vertices that now is named after him.
1230: 1417:
PotoÄŤnik, PrimoĹľ; Wilson, Stephen E. (2014), "Linking rings structures and tetravalent semisymmetric graphs",
1751: 1261: 923: 83: 73: 1234: 1198:. However, there are pairs of subdivision vertices from the construction (coming from disjoint edges of 919: 878: 224: 53: 786:. However, there also exist larger 4-regular semi-symmetric graphs that do not have any twin vertices. 1636:"New methods for finding minimum genus embeddings of graphs on orientable and non-orientable surfaces" 1226: 927: 232: 189: 93: 1265: 63: 1512:
Interactions between Coherent Configurations and Some Classes of Objects in Extremal Combinatorics
1368:; Gronemann, Martin; Kaufmann, Michael; Pupyrev, Sergey (2021), "On dispersable book embeddings", 1723: 1697: 1604: 1453:
PotoÄŤnik, PrimoĹľ; Wilson, Steve (2007), "Tetravalent edge-transitive graphs of girth at most 4",
1379: 795: 277: 243: 103: 1530: 1113: 1101: 323: 179: 1707: 1657: 1647: 1614: 1568: 1464: 1426: 1389: 1365: 1340: 1298: 1121: 113: 1719: 1671: 1582: 1478: 1440: 1401: 1310: 1225:) that are four steps apart from each other. Because the graph contains many 4-cycles, its 1201: 1154: 971: 944: 851: 824: 758: 725: 695: 668: 638: 610: 583: 556: 521: 494: 467: 1715: 1667: 1578: 1474: 1436: 1397: 1306: 1249: 1125: 934: 752: 607:, subdividing each edge into a two-edge path. Then, each of the five original vertices of 255: 228: 169: 143: 133: 123: 1685: 1635: 431: 405: 379: 801: 1631: 1257: 1181: 1134: 550: 462: 359: 303: 283: 251: 247: 174: 1345: 1260:
3, but requires five pages for a "dispersable" book embedding in which each page is a
1740: 1727: 1491: 1269: 220: 184: 1510: 1253: 1242: 1104:. The edges that are not used in this cycle form the second Hamiltonian cycle of a 272: 212: 153: 1534: 1496:
Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica
1711: 1652: 1554: 1328: 518:, and the red pairs of vertices are the result of doubling the five vertices of 268: 236: 208: 46: 28: 1469: 1431: 1096: 376:, and Folkman uses modular arithmetic to construct a semi-symmetric graph with 250:. Beyond the investigation of its symmetry, it has also been investigated as a 1393: 783: 1539: 1238: 968:, but imprimitively on the vertices constructed by doubling the vertices of 1573: 1302: 457: 1595:
Heule, Marijn; Szeider, Stefan (2015), "A SAT approach to clique-width",
1178:
construction, then all other vertices are at most three steps away from
665:
Because each edge of the result comes from a doubled half of an edge of
1289:
Boesch, F.; Tindell, R. (1984), "Circulants and their connectivities",
1662: 1618: 1229:
is 4, the minimum possible for a bipartite graph. It is also 4-
1702: 1384: 402:
vertices. The Folkman graph is the result of this construction for
1609: 1095: 456: 875:
ways of swapping some pairs of doubled vertices, for a total of
1557:(1995), "The list chromatic index of a bipartite multigraph", 1120:
into two Hamiltonian cycles. Like every bipartite graph, its
300:
congruent to 1 mod 4. For each such prime, there is a number
798:
of the Folkman graph (its group of symmetries) combines the
549:
Another construction for the Folkman graph begins with the
1498:, Reading, Massachusetts: Addison-Wesley, pp. 186–187 1686:"A practical algorithm for the computation of the genus" 1518:(Doctoral thesis), Ben-Gurion University, pp. 24–25 1204: 1184: 1157: 1137: 1008: 974: 947: 941:
on the vertices constructed as subdivision points of
933:
Like all semi-symmetric graphs, the Folkman graph is
881: 854: 827: 804: 761: 728: 698: 671: 641: 613: 586: 580:. A new vertex is placed on each of the ten edges of 559: 524: 497: 470: 434: 408: 382: 362: 326: 306: 286: 16:
Bipartite 4-regular graph with 20 nodes and 40 edges
1272:need only a number of pages equal to their degree. 162: 152: 142: 132: 122: 112: 102: 92: 82: 72: 62: 52: 42: 21: 1256:, but not on any simpler oriented surface. It has 1217: 1190: 1170: 1143: 1100:The Folkman graph with its vertices arranged in a 1080: 987: 960: 909: 867: 840: 813: 774: 741: 711: 684: 654: 626: 599: 572: 537: 510: 483: 446: 420: 394: 368: 348: 312: 292: 242:The Folkman graph can be constructed either using 1264:, disproving a conjecture of Frank Bernhart and 239:, who constructed it for this property in 1967. 246:or as the subdivided double of the five-vertex 1081:{\displaystyle (x-4)x^{10}(x+4)(x^{2}-6)^{4}} 8: 491:. The green vertices subdivide each edge of 461:Construction of the Folkman graph from the 1131:Its radius is 3 and its diameter is 4. If 27: 1701: 1661: 1651: 1608: 1572: 1468: 1430: 1383: 1344: 1331:(1967), "Regular line-symmetric graphs", 1323: 1321: 1319: 1209: 1203: 1183: 1162: 1156: 1136: 1072: 1056: 1028: 1007: 979: 973: 952: 946: 895: 880: 859: 853: 832: 826: 803: 766: 760: 733: 727: 703: 697: 676: 670: 646: 640: 618: 612: 591: 585: 564: 558: 529: 523: 502: 496: 475: 469: 433: 407: 381: 361: 331: 325: 305: 285: 1364:Alam, Jawaherul Md.; Bekos, Michael A.; 1359: 1357: 1355: 662:form the other side of the bipartition. 1597:ACM Transactions on Computational Logic 1281: 34: 1412: 1410: 1151:is one of the doubled vertices of the 18: 7: 1268:that dispersable book embeddings of 910:{\displaystyle 5!\cdot 2^{5}=3840} 14: 1560:Journal of Combinatorial Theory 1456:Journal of Combinatorial Theory 1333:Journal of Combinatorial Theory 1069: 1049: 1046: 1034: 1021: 1009: 227:and 40 edges. It is a regular 200:Table of graphs and parameters 1: 1690:Ars Mathematica Contemporanea 1640:Ars Mathematica Contemporanea 1419:Ars Mathematica Contemporanea 1346:10.1016/S0021-9800(67)80069-3 1371:Theoretical Computer Science 1712:10.26493/1855-3974.2320.c2d 1653:10.26493/1855-3974.1800.40c 1252:3: it can be embedded on a 1768: 1684:Brinkmann, Gunnar (2022), 1470:10.1016/j.jctb.2006.03.007 1432:10.26493/1855-3974.311.4a8 280:, based on a prime number 1394:10.1016/j.tcs.2021.01.035 1118:Hamiltonian decomposition 1106:Hamiltonian decomposition 1000:characteristic polynomial 926:. Such graphs are called 254:for certain questions of 198: 26: 1634:; Stokes, Klara (2019), 1112:The Folkman graph has a 1002:of the Folkman graph is 349:{\displaystyle r^{2}=-1} 1291:Journal of Graph Theory 1574:10.1006/jctb.1995.1011 1509:Ziv-Av, Matan (2013), 1303:10.1002/jgt.3190080406 1248:The Folkman graph has 1219: 1192: 1172: 1145: 1116:, and more strongly a 1109: 1082: 989: 962: 911: 869: 842: 815: 776: 743: 713: 686: 656: 628: 601: 574: 546: 539: 512: 485: 448: 422: 396: 370: 350: 314: 294: 1220: 1218:{\displaystyle K_{5}} 1193: 1173: 1171:{\displaystyle K_{5}} 1146: 1099: 1083: 990: 988:{\displaystyle K_{5}} 963: 961:{\displaystyle K_{5}} 928:semi-symmetric graphs 922:and regular, but not 912: 870: 868:{\displaystyle 2^{5}} 843: 841:{\displaystyle K_{5}} 816: 777: 775:{\displaystyle K_{5}} 744: 742:{\displaystyle K_{5}} 714: 712:{\displaystyle K_{5}} 687: 685:{\displaystyle K_{5}} 657: 655:{\displaystyle K_{5}} 629: 627:{\displaystyle K_{5}} 602: 600:{\displaystyle K_{5}} 575: 573:{\displaystyle K_{5}} 540: 538:{\displaystyle K_{5}} 513: 511:{\displaystyle K_{5}} 486: 484:{\displaystyle K_{5}} 460: 449: 423: 397: 371: 351: 315: 295: 1202: 1182: 1155: 1135: 1006: 972: 945: 879: 852: 825: 802: 790:Algebraic properties 782:or the graph of the 759: 726: 696: 669: 639: 611: 584: 557: 522: 495: 468: 432: 406: 380: 360: 324: 304: 284: 235:. It is named after 233:semi-symmetric graph 447:{\displaystyle r=2} 421:{\displaystyle p=5} 395:{\displaystyle 2pr} 1696:(4), Paper No. 1, 1531:Weisstein, Eric W. 1215: 1188: 1168: 1141: 1110: 1078: 985: 958: 907: 865: 838: 814:{\displaystyle 5!} 811: 796:automorphism group 772: 739: 709: 682: 652: 624: 597: 570: 553:on five vertices, 547: 535: 508: 481: 444: 418: 392: 366: 346: 310: 290: 278:modular arithmetic 244:modular arithmetic 33:Drawing following 1747:Individual graphs 1603:(3): 24:1–24:27, 1191:{\displaystyle v} 1144:{\displaystyle v} 1114:Hamiltonian cycle 1102:Hamiltonian cycle 924:vertex-transitive 369:{\displaystyle p} 313:{\displaystyle r} 293:{\displaystyle p} 205: 204: 1759: 1731: 1730: 1705: 1681: 1675: 1674: 1665: 1655: 1628: 1622: 1621: 1612: 1592: 1586: 1585: 1576: 1551: 1545: 1544: 1543: 1526: 1520: 1519: 1517: 1506: 1500: 1499: 1488: 1482: 1481: 1472: 1450: 1444: 1443: 1434: 1414: 1405: 1404: 1387: 1361: 1350: 1349: 1348: 1325: 1314: 1313: 1286: 1231:vertex-connected 1224: 1222: 1221: 1216: 1214: 1213: 1197: 1195: 1194: 1189: 1177: 1175: 1174: 1169: 1167: 1166: 1150: 1148: 1147: 1142: 1124:is two, and its 1122:chromatic number 1092:Other properties 1087: 1085: 1084: 1079: 1077: 1076: 1061: 1060: 1033: 1032: 994: 992: 991: 986: 984: 983: 967: 965: 964: 959: 957: 956: 916: 914: 913: 908: 900: 899: 874: 872: 871: 866: 864: 863: 847: 845: 844: 839: 837: 836: 820: 818: 817: 812: 781: 779: 778: 773: 771: 770: 750: 748: 746: 745: 740: 738: 737: 718: 716: 715: 710: 708: 707: 691: 689: 688: 683: 681: 680: 661: 659: 658: 653: 651: 650: 633: 631: 630: 625: 623: 622: 606: 604: 603: 598: 596: 595: 579: 577: 576: 571: 569: 568: 544: 542: 541: 536: 534: 533: 517: 515: 514: 509: 507: 506: 490: 488: 487: 482: 480: 479: 453: 451: 450: 445: 427: 425: 424: 419: 401: 399: 398: 393: 375: 373: 372: 367: 355: 353: 352: 347: 336: 335: 319: 317: 316: 311: 299: 297: 296: 291: 114:Chromatic number 31: 19: 1767: 1766: 1762: 1761: 1760: 1758: 1757: 1756: 1737: 1736: 1735: 1734: 1683: 1682: 1678: 1632:Conder, Marston 1630: 1629: 1625: 1619:10.1145/2736696 1594: 1593: 1589: 1553: 1552: 1548: 1535:"Folkman Graph" 1529: 1528: 1527: 1523: 1515: 1508: 1507: 1503: 1490: 1489: 1485: 1452: 1451: 1447: 1416: 1415: 1408: 1363: 1362: 1353: 1327: 1326: 1317: 1288: 1287: 1283: 1278: 1205: 1200: 1199: 1180: 1179: 1158: 1153: 1152: 1133: 1132: 1126:chromatic index 1094: 1068: 1052: 1024: 1004: 1003: 975: 970: 969: 948: 943: 942: 920:edge-transitive 891: 877: 876: 855: 850: 849: 828: 823: 822: 800: 799: 792: 762: 757: 756: 753:symmetric graph 729: 724: 723: 721: 699: 694: 693: 672: 667: 666: 642: 637: 636: 614: 609: 608: 587: 582: 581: 560: 555: 554: 525: 520: 519: 498: 493: 492: 471: 466: 465: 430: 429: 404: 403: 378: 377: 358: 357: 327: 322: 321: 302: 301: 282: 281: 264: 256:graph embedding 229:bipartite graph 194: 124:Chromatic index 38: 17: 12: 11: 5: 1765: 1763: 1755: 1754: 1752:Regular graphs 1749: 1739: 1738: 1733: 1732: 1676: 1623: 1587: 1567:(1): 153–158, 1546: 1521: 1501: 1492:Skiena, Steven 1483: 1463:(2): 217–236, 1445: 1425:(2): 341–352, 1406: 1366:Dujmović, Vida 1351: 1339:(3): 215–232, 1315: 1297:(4): 487–499, 1280: 1279: 1277: 1274: 1270:regular graphs 1258:book thickness 1235:edge-connected 1212: 1208: 1187: 1165: 1161: 1140: 1093: 1090: 1075: 1071: 1067: 1064: 1059: 1055: 1051: 1048: 1045: 1042: 1039: 1036: 1031: 1027: 1023: 1020: 1017: 1014: 1011: 982: 978: 955: 951: 906: 903: 898: 894: 890: 887: 884: 862: 858: 835: 831: 821:symmetries of 810: 807: 791: 788: 769: 765: 736: 732: 706: 702: 692:, and because 679: 675: 649: 645: 621: 617: 594: 590: 567: 563: 551:complete graph 532: 528: 505: 501: 478: 474: 463:complete graph 443: 440: 437: 417: 414: 411: 391: 388: 385: 365: 345: 342: 339: 334: 330: 309: 289: 263: 260: 252:counterexample 248:complete graph 223:graph with 20 203: 202: 196: 195: 193: 192: 190:Semi-symmetric 187: 182: 177: 172: 166: 164: 160: 159: 156: 150: 149: 146: 144:Book thickness 140: 139: 136: 130: 129: 126: 120: 119: 116: 110: 109: 106: 100: 99: 96: 90: 89: 86: 80: 79: 76: 70: 69: 66: 60: 59: 56: 50: 49: 44: 40: 39: 35:Folkman (1967) 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1764: 1753: 1750: 1748: 1745: 1744: 1742: 1729: 1725: 1721: 1717: 1713: 1709: 1704: 1699: 1695: 1691: 1687: 1680: 1677: 1673: 1669: 1664: 1659: 1654: 1649: 1645: 1641: 1637: 1633: 1627: 1624: 1620: 1616: 1611: 1606: 1602: 1598: 1591: 1588: 1584: 1580: 1575: 1570: 1566: 1562: 1561: 1556: 1550: 1547: 1542: 1541: 1536: 1532: 1525: 1522: 1514: 1513: 1505: 1502: 1497: 1493: 1487: 1484: 1480: 1476: 1471: 1466: 1462: 1458: 1457: 1449: 1446: 1442: 1438: 1433: 1428: 1424: 1420: 1413: 1411: 1407: 1403: 1399: 1395: 1391: 1386: 1381: 1377: 1373: 1372: 1367: 1360: 1358: 1356: 1352: 1347: 1342: 1338: 1334: 1330: 1324: 1322: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1282: 1275: 1273: 1271: 1267: 1263: 1259: 1255: 1251: 1246: 1244: 1240: 1236: 1232: 1228: 1210: 1206: 1185: 1163: 1159: 1138: 1129: 1127: 1123: 1119: 1115: 1107: 1103: 1098: 1091: 1089: 1073: 1065: 1062: 1057: 1053: 1043: 1040: 1037: 1029: 1025: 1018: 1015: 1012: 1001: 996: 980: 976: 953: 949: 940: 936: 931: 929: 925: 921: 904: 901: 896: 892: 888: 885: 882: 860: 856: 833: 829: 808: 805: 797: 789: 787: 785: 767: 763: 754: 734: 730: 704: 700: 677: 673: 663: 647: 643: 619: 615: 592: 588: 565: 561: 552: 530: 526: 503: 499: 476: 472: 464: 459: 455: 441: 438: 435: 415: 412: 409: 389: 386: 383: 363: 343: 340: 337: 332: 328: 307: 287: 279: 274: 270: 261: 259: 257: 253: 249: 245: 240: 238: 234: 230: 226: 222: 218: 217:Folkman graph 214: 210: 201: 197: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 167: 165: 161: 157: 155: 151: 147: 145: 141: 137: 135: 131: 127: 125: 121: 117: 115: 111: 108:5! · 2 = 3840 107: 105: 104:Automorphisms 101: 97: 95: 91: 87: 85: 81: 77: 75: 71: 67: 65: 61: 57: 55: 51: 48: 45: 41: 36: 30: 25: 22:Folkman graph 20: 1693: 1689: 1679: 1643: 1639: 1626: 1600: 1596: 1590: 1564: 1563:, Series B, 1558: 1555:Galvin, Fred 1549: 1538: 1524: 1511: 1504: 1495: 1486: 1460: 1459:, Series B, 1454: 1448: 1422: 1418: 1375: 1369: 1336: 1332: 1294: 1290: 1284: 1254:triple torus 1247: 1245:are both 5. 1243:clique-width 1130: 1111: 997: 932: 793: 664: 548: 273:Frank Harary 265: 262:Construction 241: 216: 213:graph theory 209:mathematical 206: 154:Queue number 1646:(1): 1–35, 1329:Folkman, J. 1266:Paul Kainen 939:primitively 269:Jon Folkman 237:Jon Folkman 180:Hamiltonian 47:Jon Folkman 43:Named after 1741:Categories 1703:2005.08243 1663:2292/57926 1385:1803.10030 1276:References 784:octahedron 320:such that 163:Properties 37:, Figure 1 1728:218674244 1610:1304.5498 1540:MathWorld 1239:treewidth 1063:− 1016:− 935:bipartite 889:⋅ 848:with the 341:− 211:field of 170:Bipartite 1494:(1990), 1378:: 1–22, 1262:matching 755:such as 225:vertices 175:Eulerian 84:Diameter 54:Vertices 1720:4498572 1672:3992757 1583:1309363 1479:2290322 1441:3240442 1402:4221556 1311:0766498 221:regular 219:is a 4- 207:In the 185:Regular 1726:  1718:  1670:  1581:  1477:  1439:  1400:  1309:  1237:. Its 1233:and 4- 215:, the 74:Radius 1724:S2CID 1698:arXiv 1605:arXiv 1516:(PDF) 1380:arXiv 1250:genus 1227:girth 722:from 134:Genus 94:Girth 64:Edges 1241:and 998:The 905:3840 794:The 428:and 356:mod 1708:doi 1658:hdl 1648:doi 1615:doi 1569:doi 1465:doi 1427:doi 1390:doi 1376:861 1341:doi 1299:doi 1743:: 1722:, 1716:MR 1714:, 1706:, 1694:22 1692:, 1688:, 1668:MR 1666:, 1656:, 1644:17 1642:, 1638:, 1613:, 1601:16 1599:, 1579:MR 1577:, 1565:63 1537:, 1533:, 1475:MR 1473:, 1461:97 1437:MR 1435:, 1421:, 1409:^ 1398:MR 1396:, 1388:, 1374:, 1354:^ 1335:, 1318:^ 1307:MR 1305:, 1293:, 1088:. 1030:10 454:. 258:. 68:40 58:20 1710:: 1700:: 1660:: 1650:: 1617:: 1607:: 1571:: 1467:: 1429:: 1423:7 1392:: 1382:: 1343:: 1337:3 1301:: 1295:8 1211:5 1207:K 1186:v 1164:5 1160:K 1139:v 1108:. 1074:4 1070:) 1066:6 1058:2 1054:x 1050:( 1047:) 1044:4 1041:+ 1038:x 1035:( 1026:x 1022:) 1019:4 1013:x 1010:( 981:5 977:K 954:5 950:K 902:= 897:5 893:2 886:! 883:5 861:5 857:2 834:5 830:K 809:! 806:5 768:5 764:K 749:. 735:5 731:K 705:5 701:K 678:5 674:K 648:5 644:K 620:5 616:K 593:5 589:K 566:5 562:K 545:. 531:5 527:K 504:5 500:K 477:5 473:K 442:2 439:= 436:r 416:5 413:= 410:p 390:r 387:p 384:2 364:p 344:1 338:= 333:2 329:r 308:r 288:p 158:2 148:3 138:3 128:4 118:2 98:4 88:4 78:3

Index


Folkman (1967)
Jon Folkman
Vertices
Edges
Radius
Diameter
Girth
Automorphisms
Chromatic number
Chromatic index
Genus
Book thickness
Queue number
Bipartite
Eulerian
Hamiltonian
Regular
Semi-symmetric
Table of graphs and parameters
mathematical
graph theory
regular
vertices
bipartite graph
semi-symmetric graph
Jon Folkman
modular arithmetic
complete graph
counterexample

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑