Knowledge (XXG)

Francis turbine

Source 📝

129: 151: 31: 1059: 332: 316: 304: 292: 1491:, where a reservoir is filled by the turbine (acting as a pump) driven by the generator acting as a large electrical motor during periods of low power demand, and then reversed and used to generate power during peak demand. These pump storage reservoirs act as large energy storage sources to store "excess" electrical energy in the form of water in elevated reservoirs. This is one of a few methods that allow temporary excess electrical capacity to be stored for later utilization. 121: 1601: 42: 1067:
stator blades of the turbines and the volute casing as it has a varying cross-sectional area. For example, if the degree of reaction is given as 50%, that means that half of the total energy change of the fluid is taking place in the rotor blades and the other half is occurring in the stator blades. If the degree of reaction is zero it means that the energy changes due to the rotor blades is zero, leading to a different turbine design called the
140: 1821: 258: 998: 206:, improved on these designs to create more efficient turbines. He applied scientific principles and testing methods to produce a very efficient turbine design. More importantly, his mathematical and graphical calculation methods improved turbine design and engineering. His analytical methods allowed the design of high-efficiency turbines to precisely match a site's water flow and pressure ( 1457: 249:: The draft tube is a conduit that connects the runner exit to the tail race where the water is discharged from the turbine. Its primary function is to reduce the velocity of discharged water to minimize the loss of kinetic energy at the outlet. This permits the turbine to be set above the tail water without appreciable drop of available head. 241:: Runner blades are the heart of any turbine. These are the centers where the fluid strikes and the tangential force of the impact produces torque causing the shaft of the turbine to rotate. Close attention to design of blade angles at inlet and outlet is necessary, as these are major parameters affecting power production. 982: 272:
The Francis turbine is a type of reaction turbine, a category of turbine in which the working fluid comes to the turbine under immense pressure and the energy is extracted by the turbine blades from the working fluid. A part of the energy is given up by the fluid because of pressure changes occurring
1464:
Francis turbines may be designed for a wide range of heads and flows. This versatility, along with their high efficiency, has made them the most widely used turbine in the world. Francis type units cover a head range from 40 to 600 m (130 to 2,000 ft), and their connected generator output
228:
or scroll case. Throughout its length, it has numerous openings at regular intervals to allow the working fluid to impinge on the blades of the runner. These openings convert the pressure energy of the fluid into kinetic energy just before the fluid impinges on the blades. This maintains a constant
1066:
Degree of reaction can be defined as the ratio of pressure energy change in the blades to total energy change of the fluid. This means that it is a ratio indicating the fraction of total change in fluid pressure energy occurring in the blades of the turbine. The rest of the changes occur in the
111:
rotating runner controls the rate of water flow through the turbine for different power production rates. Francis turbines are usually mounted with a vertical shaft, to isolate water from the generator. This also facilitates installation and maintenance.
756: 1207: 1446: 649: 277:, while the remaining part of the energy is extracted by the volute casing of the turbine. At the exit, water acts on the spinning cup-shaped runner features, leaving at low velocity and low swirl with very little 1300: 542: 1476:, the Francis turbine operates at its best completely filled with water at all times. The turbine and the outlet channel may be placed lower than the lake or sea level outside, reducing the tendency for 745: 76:
The process of arriving at the modern Francis runner design took from 1848 to approximately 1920. It became known as the Francis turbine around 1920, being named after British-American engineer
235:: The primary function of the guide and stay vanes is to convert the pressure energy of the fluid into kinetic energy. It also serves to direct the flow at design angles to the runner blades. 229:
velocity despite the fact that numerous openings have been provided for the fluid to enter the blades, as the cross-sectional area of this casing decreases uniformly along the circumference.
449: 977:{\displaystyle \eta _{b}={\frac {2V_{f1}^{2}(\cot \alpha _{1}(\cot \alpha _{1}+\cot \beta _{1}))}{V_{f2}^{2}+2V_{f1}^{2}(\cot \alpha _{1}(\cot \alpha _{1}+\cot \beta _{1}))}}\,.} 164:
of different types have been used for more than 1,000 years to power mills of all types, but they were relatively inefficient. Nineteenth-century efficiency improvements of
1346: 45:
Side-view cutaway of a vertical Francis turbine. Here water enters horizontally in a spiral-shaped pipe (spiral case) wrapped around the outside of the turbine's rotating
1785: 1506: 183:
developed a high-efficiency (80%) outward-flow water turbine. Water was directed tangentially through the turbine runner, causing it to spin. Another French engineer,
1657: 303: 315: 1077: 1465:
power varies from just a few kilowatts up to 1000 MW. Large Francis turbines are individually designed for each site to operate with the given water flow and
128: 291: 1354: 553: 187:, designed an inward-flow turbine in about 1820 that used the same principles. S. B. Howd obtained a US patent in 1838 for a similar design. 155: 1754: 335:
Ideal velocity diagram, illustrating that in ideal cases the whirl component of outlet velocity is zero and the flow is completely axial
1212:
The second equality above holds, since discharge is radial in a Francis turbine. Now, putting in the value of 'e' from above and using
1215: 460: 1810: 1045: 1019: 176:
were developed in the late 1800s, turbines were a natural source of generator power where potential hydropower sources existed.
1790: 1488: 195: 99:
diameters are between 1 and 10 m (3.3 and 32.8 ft). The speeds of different turbine units range from 70 to 1000 
1023: 670: 1668: 1904: 1899: 30: 1008: 392: 1058: 1027: 1012: 150: 339:
Usually the flow velocity (velocity perpendicular to the tangential direction) remains constant throughout, i.e.
331: 73:
concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency.
1747: 104: 1894: 1853: 1717:. NLA Monograph Series. Stony Brook, NY: Research Foundation of the State University of New York, 1992. 1664: 203: 1715:
From Rule of Thumb to Scientific Engineering: James B. Francis and the Invention of the Francis Turbine
1571: 184: 285:
left. The turbine's exit tube is shaped to help decelerate the water flow and recover the pressure.
1740: 1305: 132: 120: 386:
is the energy transfer to the rotor per unit mass of the fluid. From the inlet velocity triangle,
1868: 1062:
Actual velocity diagram, illustrating that the whirl component of the outlet velocity is non-zero
274: 173: 84: 70: 1718: 1619: 1589: 180: 41: 1829: 1771: 1579: 1575: 1484: 1466: 282: 261: 207: 191: 144: 139: 77: 62: 35: 1632: 1820: 1605: 1600: 1534:, a device used to study the impact of fish travelling through Francis and Kaplan turbines 1202:{\displaystyle R=1-{\frac {V_{1}^{2}-V_{2}^{2}}{2e}}=1-{\frac {V_{1}^{2}-V_{f2}^{2}}{2e}}} 1604: This article incorporates text from this source, which is available under the 1584: 1559: 1843: 1560:"Major historical developments in the design of water wheels and Francis hydroturbines" 1521: 1516: 1473: 355:
and is equal to that at the inlet to the draft tube. Using the Euler turbine equation,
278: 92: 83:
Francis turbines are primarily used for producing electricity. The power output of the
66: 1888: 1863: 1848: 265: 225: 165: 108: 58: 1858: 1526: 1441:{\displaystyle R=1-{\frac {\cot \alpha _{1}}{2(\cot \alpha _{1}+\cot \beta _{1})}}} 1068: 257: 169: 1873: 1800: 1795: 1531: 997: 161: 644:{\displaystyle e=V_{f1}^{2}\cot \alpha _{1}(\cot \alpha _{1}+\cot \beta _{1}).} 17: 1805: 1763: 1511: 1501: 1477: 1456: 245: 88: 1593: 168:
allowed them to replace nearly all water wheel applications and compete with
1722: 96: 199: 1689:(Revised ninth ed.). India: Laxmi publications. pp. 880–883. 224:: The spiral casing around the runner of the turbine is known as the 1455: 1057: 330: 256: 149: 138: 127: 119: 91:
installations may be lower. The best performance is seen when the
40: 29: 1469:
at the highest possible efficiency, typically over 90% (to 99%).
309:
Cut-away view, with wicket gates (yellow) at minimum flow setting
87:
generally ranges from just a few kilowatts up to 1000 MW, though
1736: 1295:{\displaystyle V_{1}^{2}-V_{f2}^{2}=V_{f1}^{2}\cot \alpha _{2}} 664:. Therefore, neglecting friction, the blade efficiency becomes 537:{\displaystyle U_{1}=V_{f1}(\cot \alpha _{1}+\cot \beta _{1}),} 1780: 991: 321:
Cut-away view, with wicket gates (yellow) at full flow setting
273:
on the blades of the turbine, quantified by the expression of
100: 1732: 49:
and exits vertically down through the center of the turbine.
1699:
L. Suo, ... H. Xie, in Comprehensive Renewable Energy, 2012
135:
in Lowell, Massachusetts; site of the first Francis turbine
654:
The loss of kinetic energy per unit mass at the outlet is
218:
A Francis turbine consists of the following main parts:
297:
Francis turbine (exterior view) attached to a generator
1564:
IOP Conference Series: Earth and Environmental Science
1357: 1308: 1218: 1080: 759: 740:{\displaystyle \eta _{b}={e \over (e+V_{f2}^{2}/2)},} 673: 556: 463: 395: 1687:
A textbook of fluid mechanics and hydraulic machines
1558:
Lewis, B J; Cimbala, J M; Wouden, A M (2014-03-01).
95:
height is between 100–300 metres (330–980 ft).
1828: 1770: 1440: 1340: 1294: 1201: 976: 739: 643: 536: 443: 1786:List of conventional hydroelectric power stations 1507:Evolution from Francis turbine to Kaplan turbine 1748: 444:{\displaystyle V_{w1}=V_{f1}\cot \alpha _{1}} 8: 1026:. Unsourced material may be challenged and 1755: 1741: 1733: 172:wherever water power was available. After 80:who in 1848 created a new turbine design. 1583: 1426: 1407: 1383: 1370: 1356: 1329: 1313: 1307: 1286: 1270: 1262: 1249: 1241: 1228: 1223: 1217: 1182: 1174: 1161: 1156: 1149: 1123: 1118: 1105: 1100: 1093: 1079: 1046:Learn how and when to remove this message 970: 955: 936: 917: 898: 890: 874: 866: 848: 829: 810: 791: 783: 773: 764: 758: 720: 714: 706: 687: 678: 672: 629: 610: 591: 575: 567: 555: 522: 503: 481: 468: 462: 435: 416: 400: 394: 194:, while working as head engineer of the 1728:S. M. Yahya, page number 13, fig. 1.14. 1545: 287: 156:Raccoon Mountain Pumped-Storage Plant 7: 1553: 1551: 1549: 1024:adding citations to reliable sources 25: 1811:Run-of-the-river hydroelectricity 1658:"Lowell Notes – James B. Francis" 1819: 1599: 1460:Small Swiss-made Francis turbine 996: 314: 302: 290: 1791:Pumped-storage hydroelectricity 264:Francis turbine runner, on the 1432: 1394: 964: 961: 923: 904: 857: 854: 816: 797: 728: 693: 635: 597: 528: 490: 1: 1620:Power Generation Technologies 1585:10.1088/1755-1315/22/1/012020 1341:{\displaystyle V_{f2}=V_{f1}} 1487:, they may also be used for 179:In 1826 the French engineer 34:Francis inlet scroll at the 198:in the water wheel-powered 1921: 107:around the outside of the 1817: 196:Locks and Canals company 1576:2014E&ES...22a2020L 61:. It is an inward-flow 1854:Gorlov helical turbine 1461: 1442: 1342: 1296: 1203: 1063: 978: 741: 645: 538: 445: 336: 269: 158: 147: 136: 125: 50: 38: 1665:National Park Service 1622:(Third Edition), 2019 1485:electrical production 1459: 1443: 1343: 1297: 1204: 1061: 979: 742: 646: 539: 446: 334: 260: 204:Lowell, Massachusetts 154:A Francis turbine at 153: 142: 131: 124:Francis turbine parts 123: 44: 33: 27:Type of water turbine 1707:General bibliography 1355: 1306: 1216: 1078: 1020:improve this section 757: 671: 554: 461: 393: 233:Guide and stay vanes 185:Jean-Victor Poncelet 1905:American inventions 1685:Bansal, RK (2010). 1472:In contrast to the 1275: 1254: 1233: 1187: 1166: 1128: 1110: 903: 879: 796: 719: 580: 253:Theory of operation 174:electric generators 133:Pawtucket Gatehouse 85:electric generators 1900:English inventions 1869:Cross-flow turbine 1462: 1438: 1338: 1292: 1258: 1237: 1219: 1199: 1170: 1152: 1114: 1096: 1064: 988:Degree of reaction 974: 886: 862: 779: 737: 702: 641: 563: 534: 441: 337: 275:degree of reaction 270: 159: 148: 137: 126: 51: 39: 1882: 1881: 1713:Layton, Edwin T. 1633:"Design Overview" 1436: 1197: 1138: 1056: 1055: 1048: 968: 732: 181:Benoit Fourneyron 16:(Redirected from 1912: 1830:Hydroelectricity 1823: 1772:Hydroelectricity 1757: 1750: 1743: 1734: 1700: 1697: 1691: 1690: 1682: 1676: 1675: 1673: 1667:. Archived from 1662: 1654: 1648: 1647: 1645: 1644: 1629: 1623: 1616: 1610: 1603: 1597: 1587: 1555: 1447: 1445: 1444: 1439: 1437: 1435: 1431: 1430: 1412: 1411: 1389: 1388: 1387: 1371: 1347: 1345: 1344: 1339: 1337: 1336: 1321: 1320: 1301: 1299: 1298: 1293: 1291: 1290: 1274: 1269: 1253: 1248: 1232: 1227: 1208: 1206: 1205: 1200: 1198: 1196: 1188: 1186: 1181: 1165: 1160: 1150: 1139: 1137: 1129: 1127: 1122: 1109: 1104: 1094: 1051: 1044: 1040: 1037: 1031: 1000: 992: 983: 981: 980: 975: 969: 967: 960: 959: 941: 940: 922: 921: 902: 897: 878: 873: 860: 853: 852: 834: 833: 815: 814: 795: 790: 774: 769: 768: 746: 744: 743: 738: 733: 731: 724: 718: 713: 688: 683: 682: 663: 650: 648: 647: 642: 634: 633: 615: 614: 596: 595: 579: 574: 543: 541: 540: 535: 527: 526: 508: 507: 489: 488: 473: 472: 450: 448: 447: 442: 440: 439: 424: 423: 408: 407: 381: 354: 327:Blade efficiency 318: 306: 294: 283:potential energy 262:Three Gorges Dam 202:factory city of 192:James B. Francis 145:Grand Coulee Dam 143:Francis Runner, 78:James B. Francis 63:reaction turbine 36:Grand Coulee Dam 21: 1920: 1919: 1915: 1914: 1913: 1911: 1910: 1909: 1885: 1884: 1883: 1878: 1839:Francis turbine 1824: 1815: 1766: 1761: 1731: 1709: 1704: 1703: 1698: 1694: 1684: 1683: 1679: 1671: 1660: 1656: 1655: 1651: 1642: 1640: 1631: 1630: 1626: 1617: 1613: 1557: 1556: 1547: 1542: 1537: 1497: 1483:In addition to 1454: 1422: 1403: 1390: 1379: 1372: 1353: 1352: 1325: 1309: 1304: 1303: 1282: 1214: 1213: 1189: 1151: 1130: 1095: 1076: 1075: 1052: 1041: 1035: 1032: 1017: 1001: 990: 951: 932: 913: 861: 844: 825: 806: 775: 760: 755: 754: 692: 674: 669: 668: 661: 655: 625: 606: 587: 552: 551: 518: 499: 477: 464: 459: 458: 431: 412: 396: 391: 390: 380: 374: 356: 353: 346: 340: 329: 322: 319: 310: 307: 298: 295: 255: 216: 118: 55:Francis turbine 28: 23: 22: 18:Francis Turbine 15: 12: 11: 5: 1918: 1916: 1908: 1907: 1902: 1897: 1895:Water turbines 1887: 1886: 1880: 1879: 1877: 1876: 1871: 1866: 1861: 1856: 1851: 1846: 1844:Kaplan turbine 1841: 1835: 1833: 1826: 1825: 1818: 1816: 1814: 1813: 1808: 1803: 1798: 1793: 1788: 1783: 1777: 1775: 1768: 1767: 1762: 1760: 1759: 1752: 1745: 1737: 1730: 1729: 1726: 1710: 1708: 1705: 1702: 1701: 1692: 1677: 1674:on 2016-03-10. 1649: 1624: 1611: 1544: 1543: 1541: 1538: 1536: 1535: 1529: 1524: 1522:Kaplan turbine 1519: 1517:Jonval turbine 1514: 1509: 1504: 1498: 1496: 1493: 1489:pumped storage 1474:Pelton turbine 1453: 1450: 1449: 1448: 1434: 1429: 1425: 1421: 1418: 1415: 1410: 1406: 1402: 1399: 1396: 1393: 1386: 1382: 1378: 1375: 1369: 1366: 1363: 1360: 1335: 1332: 1328: 1324: 1319: 1316: 1312: 1289: 1285: 1281: 1278: 1273: 1268: 1265: 1261: 1257: 1252: 1247: 1244: 1240: 1236: 1231: 1226: 1222: 1210: 1209: 1195: 1192: 1185: 1180: 1177: 1173: 1169: 1164: 1159: 1155: 1148: 1145: 1142: 1136: 1133: 1126: 1121: 1117: 1113: 1108: 1103: 1099: 1092: 1089: 1086: 1083: 1069:Pelton Turbine 1054: 1053: 1004: 1002: 995: 989: 986: 985: 984: 973: 966: 963: 958: 954: 950: 947: 944: 939: 935: 931: 928: 925: 920: 916: 912: 909: 906: 901: 896: 893: 889: 885: 882: 877: 872: 869: 865: 859: 856: 851: 847: 843: 840: 837: 832: 828: 824: 821: 818: 813: 809: 805: 802: 799: 794: 789: 786: 782: 778: 772: 767: 763: 748: 747: 736: 730: 727: 723: 717: 712: 709: 705: 701: 698: 695: 691: 686: 681: 677: 659: 652: 651: 640: 637: 632: 628: 624: 621: 618: 613: 609: 605: 602: 599: 594: 590: 586: 583: 578: 573: 570: 566: 562: 559: 545: 544: 533: 530: 525: 521: 517: 514: 511: 506: 502: 498: 495: 492: 487: 484: 480: 476: 471: 467: 452: 451: 438: 434: 430: 427: 422: 419: 415: 411: 406: 403: 399: 378: 372: 351: 344: 328: 325: 324: 323: 320: 313: 311: 308: 301: 299: 296: 289: 254: 251: 215: 212: 166:water turbines 117: 114: 65:that combines 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1917: 1906: 1903: 1901: 1898: 1896: 1893: 1892: 1890: 1875: 1872: 1870: 1867: 1865: 1864:Turgo turbine 1862: 1860: 1857: 1855: 1852: 1850: 1849:Tyson turbine 1847: 1845: 1842: 1840: 1837: 1836: 1834: 1831: 1827: 1822: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1778: 1776: 1773: 1769: 1765: 1758: 1753: 1751: 1746: 1744: 1739: 1738: 1735: 1727: 1724: 1720: 1716: 1712: 1711: 1706: 1696: 1693: 1688: 1681: 1678: 1670: 1666: 1659: 1653: 1650: 1638: 1634: 1628: 1625: 1621: 1618:Paul Breeze, 1615: 1612: 1609: 1607: 1602: 1595: 1591: 1586: 1581: 1577: 1573: 1570:(1): 012020. 1569: 1565: 1561: 1554: 1552: 1550: 1546: 1539: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1499: 1494: 1492: 1490: 1486: 1481: 1479: 1475: 1470: 1468: 1458: 1451: 1427: 1423: 1419: 1416: 1413: 1408: 1404: 1400: 1397: 1391: 1384: 1380: 1376: 1373: 1367: 1364: 1361: 1358: 1351: 1350: 1349: 1333: 1330: 1326: 1322: 1317: 1314: 1310: 1287: 1283: 1279: 1276: 1271: 1266: 1263: 1259: 1255: 1250: 1245: 1242: 1238: 1234: 1229: 1224: 1220: 1193: 1190: 1183: 1178: 1175: 1171: 1167: 1162: 1157: 1153: 1146: 1143: 1140: 1134: 1131: 1124: 1119: 1115: 1111: 1106: 1101: 1097: 1090: 1087: 1084: 1081: 1074: 1073: 1072: 1070: 1060: 1050: 1047: 1039: 1029: 1025: 1021: 1015: 1014: 1010: 1005:This section 1003: 999: 994: 993: 987: 971: 956: 952: 948: 945: 942: 937: 933: 929: 926: 918: 914: 910: 907: 899: 894: 891: 887: 883: 880: 875: 870: 867: 863: 849: 845: 841: 838: 835: 830: 826: 822: 819: 811: 807: 803: 800: 792: 787: 784: 780: 776: 770: 765: 761: 753: 752: 751: 734: 725: 721: 715: 710: 707: 703: 699: 696: 689: 684: 679: 675: 667: 666: 665: 658: 638: 630: 626: 622: 619: 616: 611: 607: 603: 600: 592: 588: 584: 581: 576: 571: 568: 564: 560: 557: 550: 549: 548: 531: 523: 519: 515: 512: 509: 504: 500: 496: 493: 485: 482: 478: 474: 469: 465: 457: 456: 455: 436: 432: 428: 425: 420: 417: 413: 409: 404: 401: 397: 389: 388: 387: 385: 377: 371: 367: 363: 359: 350: 343: 333: 326: 317: 312: 305: 300: 293: 288: 286: 284: 280: 276: 267: 266:Yangtze River 263: 259: 252: 250: 248: 247: 242: 240: 239:Runner blades 236: 234: 230: 227: 226:volute casing 223: 222:Spiral casing 219: 213: 211: 209: 205: 201: 197: 193: 188: 186: 182: 177: 175: 171: 170:steam engines 167: 163: 157: 152: 146: 141: 134: 130: 122: 115: 113: 110: 106: 102: 98: 94: 90: 86: 81: 79: 74: 72: 68: 64: 60: 59:water turbine 57:is a type of 56: 48: 43: 37: 32: 19: 1859:Pelton wheel 1838: 1714: 1695: 1686: 1680: 1669:the original 1652: 1641:. Retrieved 1639:. 2015-11-13 1637:Harlaw Hydro 1636: 1627: 1614: 1598: 1567: 1563: 1527:Pelton wheel 1482: 1471: 1463: 1211: 1065: 1042: 1033: 1018:Please help 1006: 749: 656: 653: 546: 453: 383: 375: 369: 365: 361: 357: 348: 341: 338: 271: 244: 243: 238: 237: 232: 231: 221: 220: 217: 189: 178: 162:Water wheels 160: 82: 75: 54: 52: 46: 1874:Water wheel 1801:Micro hydro 1796:Small hydro 1532:Sensor fish 1452:Application 116:Development 105:wicket gate 1889:Categories 1806:Pico hydro 1774:generation 1764:Hydropower 1723:1073565482 1643:2024-07-02 1512:Hydropower 1502:Draft tube 1478:cavitation 1467:water head 1036:March 2018 547:Therefore 246:Draft tube 214:Components 208:water head 89:mini-hydro 71:axial flow 1832:equipment 1606:CC BY 3.0 1594:1755-1315 1540:Citations 1424:β 1420:⁡ 1405:α 1401:⁡ 1381:α 1377:⁡ 1368:− 1284:α 1280:⁡ 1235:− 1168:− 1147:− 1112:− 1091:− 1007:does not 953:β 949:⁡ 934:α 930:⁡ 915:α 911:⁡ 846:β 842:⁡ 827:α 823:⁡ 808:α 804:⁡ 762:η 676:η 627:β 623:⁡ 608:α 604:⁡ 589:α 585:⁡ 520:β 516:⁡ 501:α 497:⁡ 433:α 429:⁡ 109:turbine's 1608:license. 1495:See also 382:, where 190:In 1848 97:Penstock 1572:Bibcode 1028:removed 1013:sources 279:kinetic 268:, China 200:textile 1721:  1592:  67:radial 47:runner 1672:(PDF) 1661:(PDF) 750:i.e. 454:and 1719:OCLC 1590:ISSN 1302:(as 1011:any 1009:cite 103:. A 93:head 69:and 53:The 1781:Dam 1580:doi 1417:cot 1398:cot 1374:cot 1277:cot 1022:by 946:cot 927:cot 908:cot 839:cot 820:cot 801:cot 620:cot 601:cot 582:cot 513:cot 494:cot 426:cot 281:or 210:). 101:rpm 1891:: 1663:. 1635:. 1588:. 1578:. 1568:22 1566:. 1562:. 1548:^ 1480:. 1348:) 1071:. 662:/2 660:f2 373:w1 352:f2 345:f1 1756:e 1749:t 1742:v 1725:. 1646:. 1596:. 1582:: 1574:: 1433:) 1428:1 1414:+ 1409:1 1395:( 1392:2 1385:1 1365:1 1362:= 1359:R 1334:1 1331:f 1327:V 1323:= 1318:2 1315:f 1311:V 1288:2 1272:2 1267:1 1264:f 1260:V 1256:= 1251:2 1246:2 1243:f 1239:V 1230:2 1225:1 1221:V 1194:e 1191:2 1184:2 1179:2 1176:f 1172:V 1163:2 1158:1 1154:V 1144:1 1141:= 1135:e 1132:2 1125:2 1120:2 1116:V 1107:2 1102:1 1098:V 1088:1 1085:= 1082:R 1049:) 1043:( 1038:) 1034:( 1030:. 1016:. 972:. 965:) 962:) 957:1 943:+ 938:1 924:( 919:1 905:( 900:2 895:1 892:f 888:V 884:2 881:+ 876:2 871:2 868:f 864:V 858:) 855:) 850:1 836:+ 831:1 817:( 812:1 798:( 793:2 788:1 785:f 781:V 777:2 771:= 766:b 735:, 729:) 726:2 722:/ 716:2 711:2 708:f 704:V 700:+ 697:e 694:( 690:e 685:= 680:b 657:V 639:. 636:) 631:1 617:+ 612:1 598:( 593:1 577:2 572:1 569:f 565:V 561:= 558:e 532:, 529:) 524:1 510:+ 505:1 491:( 486:1 483:f 479:V 475:= 470:1 466:U 437:1 421:1 418:f 414:V 410:= 405:1 402:w 398:V 384:e 379:1 376:U 370:V 368:= 366:e 364:= 362:m 360:/ 358:E 349:V 347:= 342:V 20:)

Index

Francis Turbine

Grand Coulee Dam

water turbine
reaction turbine
radial
axial flow
James B. Francis
electric generators
mini-hydro
head
Penstock
rpm
wicket gate
turbine's


Pawtucket Gatehouse

Grand Coulee Dam

Raccoon Mountain Pumped-Storage Plant
Water wheels
water turbines
steam engines
electric generators
Benoit Fourneyron
Jean-Victor Poncelet
James B. Francis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.