Knowledge

Artin–Tits group

Source 📝

1859: 1636: 3992:
is of spherical type. Such groups act cocompactly on a CAT(0) cubical complex, and, as a consequence, one can find a rational normal form for their elements and deduce a solution to the word problem (Joe Altobelli and Charney ). An alternative normal form is provided by multifraction reduction, which
2946:
In the case of a spherical Artin–Tits group, the group is a group of fractions for the monoid, making the study much easier. Every above-mentioned problem is solved in the positive for spherical Artin–Tits groups: the word and conjugacy problems are decidable, their torsion is trivial, the center is
2663:
is finite — the alternative terminology "Artin–Tits group of finite type" is to be avoided, because of its ambiguity: a "finite type group" is just one that admits a finite generating set. Recall that a complete classification is known, the 'irreducible types' being labeled as the infinite series
1030: 1854:{\displaystyle G=\langle \sigma _{1},\ldots ,\sigma _{n-1}\mid \sigma _{i}\sigma _{j}\sigma _{i}=\sigma _{j}\sigma _{i}\sigma _{j}{\text{ for }}\vert i-j\vert =1,\sigma _{i}\sigma _{j}=\sigma _{j}\sigma _{i}{\text{ for }}\vert i-j\vert \geqslant 2\rangle } 2617:
Every (finitely generated) Artin–Tits monoid admits a finite Garside family (Matthew Dyer and Christophe Hohlweg). As a consequence, the existence of common right-multiples in Artin–Tits monoids is decidable, and reduction of multifractions is
4410:: the associated Coxeter group acts geometrically on a Euclidean space. As a consequence, their center is trivial, and their word problem is decidable (Jon McCammond and Robert Sulway ). In 2019, a proof of the 3990: 1544: 869: 1383: 2023: 1932: 861: 810: 3794: 2612: 2580: 2548: 2355: 1109: 682: 643: 514: 212: 122: 2080:
Artin–Tits monoids are cancellative, and they admit greatest common divisors and conditional least common multiples (a least common multiple exists whenever a common multiple does).
2461: 4404: 4368: 4332: 4296: 4260: 4198: 4136: 4100: 4038: 2061: 3882: 3706: 3637: 3540:
The word and conjugacy problems of a right-angled Artin–Tits group are decidable, the former in linear time, the group is torsion-free, and there is an explicit cellular finite
400: 1970: 3001: 3470: 1442: 1337: 593: 3312: 4224: 4162: 4064: 464: 432: 5305: 4443: 3573: 3371: 2308: 1603: 2779: 3933: 3823: 3732: 3663: 3431: 3254: 3176: 2242: 2148: 1279: 1182: 1066: 3208: 3082: 2941: 2914: 2887: 2860: 2833: 2806: 2743: 2716: 2689: 2493: 2222: 2195: 2108: 5084: 4952: 3908: 3519: 2381: 1629: 1468: 341: 284: 238: 3843: 3411: 3391: 3332: 3274: 3156: 3122: 3102: 3055: 3031: 2661: 2513: 2401: 2168: 2128: 1879: 1564: 1403: 1299: 1246: 1222: 1202: 1149: 1129: 762: 742: 722: 702: 554: 534: 361: 315: 258: 162: 142: 3582:
cube complex, its "Salvetti complex". As an application, one can use right-angled Artin groups and their Salvetti complexes to construct groups with given
3993:
gives a unique expression by an irreducible multifraction directly extending the expression by an irreducible fraction in the spherical case (Dehornoy).
4580:
Crisp, John; Paris, Luis (2001), "The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group",
3533:. A right-angled Artin group is a special case of this product, with every vertex/operand of the graph-product being a free group of rank one (the 2270:– determining the center — which is conjectured to be trivial or monogenic in the case when the group is not a direct product ("irreducible case"), 3737:
Artin–Tits groups of extra-large type are eligible for small cancellation theory. As an application, Artin–Tits groups of extra-large type are
5401: 5044: 2248:
Very few results are known for general Artin–Tits groups. In particular, the following basic questions remain open in the general case:
1025:{\displaystyle \langle s,t\rangle ^{m_{s,t}}=\langle t,s\rangle ^{m_{t,s}},{\text{ where }}m_{s,t}=m_{t,s}\in \{2,3,\ldots ,\infty \}.} 4636: 4455: 1475: 3583: 3938: 2318:
Partial results involving particular subfamilies are gathered below. Among the few known general results, one can mention:
4466: 3234: 1350: 1281:
are removed, the extension thus obtained is an Artin–Tits group. For instance, the Coxeter group associated with the
4867:
Crisp, John; Godelle, Eddy; Wiest, Bert (2009), "The conjugacy problem in subgroups of right-angled Artin groups",
1975: 1884: 260:, where both sides have equal lengths, and there exists at most one relation for each pair of distinct generators 815: 767: 5218: 5000: 4908: 4786: 4735: 4582: 4471: 3526: 4682:
Dyer, Matthew; Hohlweg, Christophe (2016), "Small roots, low elements, and the weak order in Coxeter groups",
3767: 3760:
Many other families of Artin–Tits groups have been identified and investigated. Here we mention two of them.
2585: 2553: 2521: 2328: 1082: 648: 598: 469: 167: 95: 5452:; Koberda, Thomas (2019). "Algorithmic problems in right-angled Artin groups: complexity and applications". 4684: 2253: 90: 51: 2627:
Several important classes of Artin groups can be defined in terms of the properties of the Coxeter matrix.
2406: 4373: 4337: 4301: 4265: 4229: 4167: 4105: 4069: 4007: 2971: 2028: 3848: 5502: 4833: 4496: 3672: 3603: 3534: 366: 1937: 2977: 5237: 5009: 4917: 4795: 4744: 4601: 4001: 3751:
Artin groups of large type are shortlex automatic with regular geodesics (Derek Holt and Sarah Rees).
3436: 1408: 1304: 559: 5135: 4869: 3279: 47: 4203: 4141: 4043: 5463: 5454: 5379: 5345: 5310: 5227: 5181: 5093: 4961: 4693: 4645: 4591: 4544: 4521: 4513: 3480: 437: 405: 63: 4445:
conjecture was announced for all affine Artin–Tits groups (Mario Salvetti and Giovanni Paolini).
17: 5275: 4413: 3543: 3337: 2278: 1569: 5449: 5397: 3738: 3007: 2967: 2748: 2311: 2257: 3711: 3642: 3416: 3239: 3161: 2227: 2133: 1251: 1154: 1038: 5473: 5427: 5389: 5355: 5245: 5191: 5169: 5144: 5103: 5053: 5017: 4971: 4925: 4878: 4842: 4803: 4777: 4752: 4703: 4655: 4609: 4553: 4505: 2956: 2948: 1069: 5485: 5441: 5411: 5367: 5257: 5203: 5156: 5115: 5065: 5029: 4985: 4937: 4890: 4854: 4815: 4764: 4717: 4669: 4621: 4567: 3181: 3060: 2919: 2892: 2865: 2838: 2811: 2784: 2721: 2694: 2667: 2466: 2200: 2173: 2086: 5481: 5437: 5407: 5363: 5253: 5199: 5152: 5111: 5061: 5025: 4981: 4933: 4903: 4886: 4850: 4811: 4760: 4713: 4665: 4617: 4563: 3530: 3034: 2073: 3887: 3498: 2360: 1608: 1447: 320: 263: 217: 5241: 5013: 4921: 4799: 4748: 4605: 3913: 3803: 3578:
Every right-angled Artin–Tits group acts freely and cocompactly on a finite-dimensional
4998:
Appel, Kenneth I.; Schupp, Paul E. (1983), "Artin Groups and Infinite Coxeter Groups",
4730: 4460: 3828: 3484: 3396: 3376: 3317: 3259: 3233:
For this class of Artin–Tits groups, a different labeling scheme is commonly used. Any
3141: 3107: 3087: 3040: 3016: 2952: 2646: 2498: 2386: 2153: 2113: 1864: 1549: 1388: 1284: 1231: 1207: 1187: 1134: 1114: 1073: 747: 727: 707: 687: 539: 519: 346: 300: 243: 147: 127: 5172:(2017), "Multifraction reduction I: The 3-Ore case and Artin–Tits groups of type FC", 286:. An Artin–Tits group is a group that admits an Artin–Tits presentation. Likewise, an 5496: 5057: 4558: 3742: 3492: 2641: 2076:
based on the investigation of their divisibility relations, and are well understood:
1225: 55: 5082:(2012). "Artin groups of large type are shortlex automatic with regular geodesics". 4525: 5477: 5333: 5130: 4828: 4539: 3522: 3479:
of finite rank, corresponding to a graph with no edges, and the finitely-generated
3104:
a unique normal form that consists of a finite sequence of (copies of) elements of
78: 31: 5393: 4781: 4004:. They correspond to the extended Dynkin diagrams of the four infinite families 2960: 67: 2224:
admits a distinguished decomposition as a sequence of elements in the image of
5359: 5249: 5148: 5079: 4708: 4660: 4491: 3476: 74: 59: 297:
Alternatively, an Artin–Tits group can be specified by the set of generators
4882: 5107: 5042:
Peifer, David (1996), "Artin groups of extra-large type are biautomatic",
4929: 4906:; Brady, Noel (1997), "Morse theory and finiteness properties of groups", 4613: 5216:
McCammond, Jon; Sulway, Robert (2017), "Artin groups of Euclidean type",
81:
who developed the theory of a more general class of groups in the 1960s.
5195: 3529:
as the extreme cases. A generalization of this construction is called a
5021: 4976: 4846: 4807: 4756: 4517: 5350: 4650: 4596: 3748:
Artin–Tits groups of extra-large type are biautomatic (David Peifer).
3579: 291: 5432: 4509: 2130:
is the associated Coxeter group, there is a (set-theoretic) section
5468: 5315: 5186: 4966: 4698: 77:, due to his early work on braid groups in the 1920s to 1940s, and 5418:
McCammond, Jon (2017), "The mysterious geometry of Artin groups",
5384: 5232: 5098: 4542:(1966), "Normalisateurs de tores. I. Groupes de Coxeter étendus", 1301:-strand braid group is the symmetric group of all permutations of 5133:(2000), "A geometric rational form for Artin groups of FC type", 2966:
A pure Artin–Tits group of spherical type can be realized as the
5378:, CRM Series, vol. 14, Ed. Norm., Pisa, pp. 299–311, 164:
is a set of Artin–Tits relations, namely relations of the form
1539:{\displaystyle G=\langle S\mid \{st=ts\mid s,t\in S\}\rangle } 1248:
is a Coxeter group presented by reflections and the relations
4733:(1972), "Les immeubles des groupes de tresses généralisés", 4634:
Paris, Luis (2002), "Artin monoids inject in their groups",
3596:
An Artin–Tits group (and a Coxeter group) is said to be of
2357:, the only relation connecting the squares of the elements 2265:– determining torsion — which is conjectured to be trivial, 4950:
Leary, Ian (2018), "Uncountably many groups of type FP",
3475:
The class of right-angled Artin–Tits groups includes the
2275:– determining the cohomology — in particular solving the 5336:(2007), "An introduction to right-angled Artin groups", 3586:(Mladen Bestvina and Noel Brady ) see also (Ian Leary ). 4831:(1992), "Artin groups of finite type are biautomatic", 3138:
if all coefficients of the Coxeter matrix are either
294:
that, as a monoid, admits an Artin–Tits presentation.
5278: 4416: 4376: 4340: 4304: 4268: 4232: 4206: 4170: 4144: 4108: 4072: 4046: 4010: 3985:{\displaystyle \langle S'\mid R\cap S'{}^{2}\rangle } 3941: 3916: 3890: 3851: 3831: 3806: 3770: 3714: 3675: 3645: 3606: 3546: 3501: 3439: 3419: 3399: 3379: 3340: 3320: 3282: 3262: 3242: 3184: 3164: 3144: 3110: 3090: 3063: 3043: 3019: 2980: 2922: 2895: 2868: 2841: 2814: 2787: 2751: 2724: 2697: 2670: 2649: 2588: 2556: 2524: 2501: 2469: 2409: 2389: 2363: 2331: 2281: 2230: 2203: 2176: 2156: 2136: 2116: 2089: 2031: 1978: 1940: 1887: 1867: 1639: 1611: 1572: 1552: 1478: 1450: 1411: 1391: 1353: 1307: 1287: 1254: 1234: 1210: 1190: 1157: 1137: 1117: 1111:
is an Artin–Tits presentation of an Artin–Tits group
1085: 1041: 872: 818: 770: 750: 730: 710: 690: 651: 601: 562: 542: 522: 472: 440: 408: 369: 349: 323: 303: 266: 246: 220: 170: 150: 130: 98: 70:, and right-angled Artin–Tits groups, among others. 3124:
and their inverses ("symmetric greedy normal form")
2310:conjecture, i.e., finding an acyclic complex whose 5299: 4437: 4398: 4362: 4326: 4290: 4254: 4218: 4192: 4156: 4130: 4094: 4058: 4032: 3984: 3927: 3902: 3876: 3837: 3817: 3788: 3726: 3700: 3657: 3631: 3567: 3513: 3464: 3425: 3405: 3385: 3365: 3326: 3306: 3268: 3248: 3202: 3170: 3150: 3116: 3096: 3076: 3057:is a group of fractions for the associated monoid 3049: 3025: 2995: 2935: 2908: 2881: 2854: 2827: 2800: 2773: 2737: 2710: 2683: 2655: 2606: 2574: 2542: 2507: 2487: 2455: 2395: 2375: 2349: 2302: 2236: 2216: 2189: 2162: 2142: 2122: 2102: 2055: 2017: 1964: 1926: 1873: 1853: 1623: 1597: 1558: 1538: 1462: 1436: 1397: 1378:{\displaystyle G=\langle S\mid \emptyset \rangle } 1377: 1331: 1293: 1273: 1240: 1216: 1196: 1176: 1143: 1123: 1103: 1060: 1024: 855: 804: 756: 736: 716: 696: 676: 637: 587: 548: 528: 508: 458: 426: 394: 355: 335: 309: 278: 252: 232: 206: 156: 136: 116: 3178:, i.e., all relations are commutation relations 863:, etc. — the Artin–Tits relations take the form 5085:Proceedings of the London Mathematical Society 4953:Proceedings of the London Mathematical Society 4784:(1972), "Artin-Gruppen und Coxeter-Gruppen", 2018:{\displaystyle m_{\sigma _{i},\sigma _{j}}=2} 1927:{\displaystyle m_{\sigma _{i},\sigma _{j}}=3} 8: 3979: 3942: 3783: 3771: 2601: 2589: 2582:embeds in the Artin–Tits group presented by 2569: 2557: 2537: 2525: 2344: 2332: 2044: 2032: 1953: 1941: 1848: 1839: 1827: 1767: 1755: 1646: 1533: 1530: 1494: 1485: 1372: 1360: 1326: 1308: 1098: 1086: 1016: 992: 924: 911: 886: 873: 832: 819: 784: 771: 665: 652: 144:is a (usually finite) set of generators and 111: 99: 5270:Paolini, Giovanni; Salvetti, Mario (2019), 3741:-free and have solvable conjugacy problem ( 3575:(John Crisp, Eddy Godelle, and Bert Wiest). 3013:In modern terminology, an Artin–Tits group 2947:monogenic in the irreducible case, and the 856:{\displaystyle \langle s,t\rangle ^{3}=sts} 805:{\displaystyle \langle s,t\rangle ^{2}=st} 5467: 5431: 5383: 5349: 5314: 5277: 5231: 5185: 5097: 4975: 4965: 4707: 4697: 4659: 4649: 4595: 4557: 4415: 4390: 4379: 4378: 4375: 4354: 4343: 4342: 4339: 4318: 4307: 4306: 4303: 4282: 4271: 4270: 4267: 4246: 4235: 4234: 4231: 4205: 4184: 4173: 4172: 4169: 4143: 4122: 4111: 4110: 4107: 4086: 4075: 4074: 4071: 4045: 4024: 4013: 4012: 4009: 3973: 3971: 3940: 3915: 3889: 3856: 3850: 3830: 3805: 3769: 3713: 3680: 3674: 3644: 3611: 3605: 3545: 3500: 3487:. Every right-angled Artin group of rank 3444: 3438: 3418: 3398: 3378: 3345: 3339: 3319: 3281: 3261: 3241: 3183: 3163: 3143: 3109: 3089: 3068: 3062: 3042: 3018: 2987: 2983: 2982: 2979: 2927: 2921: 2900: 2894: 2873: 2867: 2846: 2840: 2819: 2813: 2792: 2786: 2756: 2750: 2729: 2723: 2702: 2696: 2675: 2669: 2648: 2587: 2555: 2523: 2500: 2468: 2447: 2437: 2424: 2414: 2408: 2388: 2362: 2330: 2322:Artin–Tits groups are infinite countable. 2280: 2229: 2208: 2202: 2181: 2175: 2155: 2135: 2115: 2094: 2088: 2030: 2001: 1988: 1983: 1977: 1939: 1910: 1897: 1892: 1886: 1866: 1822: 1816: 1806: 1793: 1783: 1750: 1744: 1734: 1724: 1711: 1701: 1691: 1672: 1653: 1638: 1610: 1577: 1571: 1551: 1477: 1449: 1416: 1410: 1390: 1352: 1306: 1286: 1259: 1253: 1233: 1209: 1189: 1162: 1156: 1136: 1116: 1084: 1046: 1040: 977: 958: 949: 932: 927: 894: 889: 871: 835: 817: 787: 769: 749: 729: 709: 689: 668: 650: 600: 567: 561: 541: 521: 471: 439: 407: 374: 368: 348: 322: 302: 265: 245: 219: 169: 149: 129: 97: 5426:(Winter Braids VII (Caen, 2017)): 1–30, 3006:Artin–Tits groups of spherical type are 2260:— which are conjectured to be decidable, 4483: 3800:("flag complex") if, for every subset 3789:{\displaystyle \langle S\mid R\rangle } 2623:Particular classes of Artin–Tits groups 2607:{\displaystyle \langle S\mid R\rangle } 2575:{\displaystyle \langle S\mid R\rangle } 2543:{\displaystyle \langle S\mid R\rangle } 2350:{\displaystyle \langle S\mid R\rangle } 1104:{\displaystyle \langle S\mid R\rangle } 677:{\displaystyle \langle s,t\rangle ^{m}} 638:{\displaystyle stst\ldots =tsts\ldots } 509:{\displaystyle stst\ldots =tsts\ldots } 207:{\displaystyle stst\ldots =tsts\ldots } 117:{\displaystyle \langle S\mid R\rangle } 3495:of a right-angled Artin group of rank 89:An Artin–Tits presentation is a group 3084:and there exists for each element of 2636:An Artin–Tits group is said to be of 2550:, the Artin–Tits monoid presented by 2456:{\displaystyle s^{2}t^{2}=t^{2}s^{2}} 7: 5376:Basic questions on Artin–Tits groups 4399:{\displaystyle {\widetilde {G}}_{2}} 4363:{\displaystyle {\widetilde {F}}_{4}} 4327:{\displaystyle {\widetilde {E}}_{8}} 4291:{\displaystyle {\widetilde {E}}_{7}} 4255:{\displaystyle {\widetilde {E}}_{6}} 4193:{\displaystyle {\widetilde {D}}_{n}} 4131:{\displaystyle {\widetilde {C}}_{n}} 4095:{\displaystyle {\widetilde {B}}_{n}} 4033:{\displaystyle {\widetilde {A}}_{n}} 2072:Artin–Tits monoids are eligible for 2056:{\displaystyle \vert i-j\vert >1} 684:to denote an alternating product of 46:, are a family of infinite discrete 5374:Godelle, Eddy; Paris, Luis (2012), 5045:Journal of Pure and Applied Algebra 4000:if the associated Coxeter group is 3877:{\displaystyle m_{s,t}\neq \infty } 2631:Artin–Tits groups of spherical type 1546:is the free abelian group based on 5307:conjecture for affine Artin groups 3996:An Artin–Tits group is said to be 3871: 3701:{\displaystyle m_{s,t}\geqslant 4} 3632:{\displaystyle m_{s,t}\geqslant 3} 3459: 3420: 3243: 3212:(free) partially commutative group 3165: 3134:An Artin–Tits group is said to be 2518:For every Artin–Tits presentation 1431: 1369: 1013: 582: 556:, if any. By convention, one puts 395:{\displaystyle m_{s,t}\geqslant 2} 27:Family of infinite discrete groups 25: 4637:Commentarii Mathematici Helvetici 4456:Free partially commutative monoid 4226:, and of the five sporadic types 1965:{\displaystyle \vert i-j\vert =1} 5174:Journal of Combinatorial Algebra 2996:{\displaystyle \mathbb {C} ^{n}} 2110:is an Artin–Tits monoid, and if 1151:obtained by adding the relation 402:that is the length of the words 54:. They are closely related with 18:Free partially commutative group 4406:. Affine Artin–Tits groups are 3591:Artin–Tits groups of large type 3465:{\displaystyle m_{s,t}=\infty } 1437:{\displaystyle m_{s,t}=\infty } 1332:{\displaystyle \{1,\ldots ,n\}} 588:{\displaystyle m_{s,t}=\infty } 5478:10.1016/j.jalgebra.2018.10.023 5294: 5282: 4432: 4420: 3562: 3550: 2970:of the complement of a finite 2768: 2762: 2297: 2285: 1: 3307:{\displaystyle 1,2,\ldots ,n} 2963:, by combinatorial methods ). 2515:(John Crisp and Luis Paris ). 5394:10.1007/978-88-7642-431-1_13 5058:10.1016/0022-4049(95)00094-1 4559:10.1016/0021-8693(66)90053-6 4494:(1947). "Theory of Braids". 4467:Non-commutative cryptography 4219:{\displaystyle n\geqslant 3} 4157:{\displaystyle n\geqslant 2} 4059:{\displaystyle n\geqslant 1} 3413:are connected by an edge in 30:In the mathematical area of 5420:Winter Braids Lecture Notes 2781:and six exceptional groups 1385:is the free group based on 516:is the relation connecting 459:{\displaystyle tsts\ldots } 427:{\displaystyle stst\ldots } 73:The groups are named after 5519: 2955:, by geometrical methods, 595:when there is no relation 5360:10.1007/s10711-007-9148-6 5300:{\displaystyle K(\pi ,1)} 5250:10.1007/s00222-017-0728-2 4709:10.1016/j.aim.2016.06.022 4661:10.1007/s00014-002-8353-z 4438:{\displaystyle K(\pi ,1)} 3568:{\displaystyle K(\pi ,1)} 3366:{\displaystyle m_{s,t}=2} 3129:Right-angled Artin groups 2303:{\displaystyle K(\pi ,1)} 1598:{\displaystyle m_{s,t}=2} 645:. Formally, if we define 5219:Inventiones Mathematicae 5001:Inventiones Mathematicae 4909:Inventiones Mathematicae 4787:Inventiones Mathematicae 4736:Inventiones Mathematicae 4583:Inventiones Mathematicae 4472:Elementary abelian group 2774:{\displaystyle I_{2}(n)} 2314:is the considered group. 1068:can be organized into a 44:generalized braid groups 5149:10.1023/A:1005216814166 4685:Advances in Mathematics 3727:{\displaystyle s\neq t} 3658:{\displaystyle s\neq t} 3531:graph product of groups 3426:{\displaystyle \Gamma } 3249:{\displaystyle \Gamma } 3171:{\displaystyle \infty } 2325:In an Artin–Tits group 2244:("greedy normal form"). 2237:{\displaystyle \sigma } 2197:, and every element of 2143:{\displaystyle \sigma } 1274:{\displaystyle s^{2}=1} 1177:{\displaystyle s^{2}=1} 1061:{\displaystyle m_{s,t}} 5301: 4439: 4400: 4364: 4328: 4292: 4256: 4220: 4194: 4158: 4132: 4096: 4060: 4034: 3986: 3929: 3904: 3878: 3839: 3819: 3790: 3728: 3702: 3665:; it is said to be of 3659: 3633: 3569: 3515: 3491:can be constructed as 3466: 3427: 3407: 3387: 3367: 3328: 3308: 3270: 3250: 3204: 3172: 3152: 3118: 3098: 3078: 3051: 3027: 2997: 2972:hyperplane arrangement 2937: 2910: 2883: 2856: 2829: 2802: 2775: 2739: 2712: 2685: 2657: 2608: 2576: 2544: 2509: 2489: 2457: 2397: 2377: 2351: 2304: 2238: 2218: 2191: 2164: 2144: 2124: 2104: 2057: 2019: 1966: 1928: 1875: 1861:is the braid group on 1855: 1625: 1599: 1560: 1540: 1464: 1438: 1399: 1379: 1333: 1295: 1275: 1242: 1218: 1198: 1178: 1145: 1125: 1105: 1062: 1026: 857: 806: 758: 738: 718: 698: 678: 639: 589: 550: 530: 510: 460: 428: 396: 357: 337: 311: 280: 254: 234: 208: 158: 138: 118: 5302: 4930:10.1007/s002220050168 4883:10.1112/jtopol/jtp018 4834:Mathematische Annalen 4614:10.1007/s002220100138 4497:Annals of Mathematics 4463:(an unrelated notion) 4440: 4401: 4365: 4329: 4293: 4257: 4221: 4195: 4159: 4133: 4097: 4061: 4035: 3987: 3930: 3905: 3879: 3840: 3820: 3791: 3729: 3703: 3660: 3634: 3584:finiteness properties 3570: 3535:infinite cyclic group 3516: 3483:, corresponding to a 3467: 3428: 3408: 3388: 3368: 3329: 3309: 3271: 3251: 3205: 3203:{\displaystyle st=ts} 3173: 3153: 3119: 3099: 3079: 3077:{\displaystyle A^{+}} 3052: 3028: 2998: 2938: 2936:{\displaystyle H_{4}} 2911: 2909:{\displaystyle H_{3}} 2884: 2882:{\displaystyle F_{4}} 2857: 2855:{\displaystyle E_{8}} 2830: 2828:{\displaystyle E_{7}} 2803: 2801:{\displaystyle E_{6}} 2776: 2740: 2738:{\displaystyle D_{n}} 2713: 2711:{\displaystyle B_{n}} 2686: 2684:{\displaystyle A_{n}} 2658: 2609: 2577: 2545: 2510: 2490: 2488:{\displaystyle st=ts} 2458: 2398: 2378: 2352: 2305: 2239: 2219: 2217:{\displaystyle A^{+}} 2192: 2190:{\displaystyle A^{+}} 2165: 2145: 2125: 2105: 2103:{\displaystyle A^{+}} 2058: 2020: 1967: 1929: 1876: 1856: 1626: 1600: 1561: 1541: 1465: 1439: 1400: 1380: 1334: 1296: 1276: 1243: 1219: 1199: 1179: 1146: 1126: 1106: 1063: 1027: 858: 807: 759: 739: 719: 699: 679: 640: 590: 551: 531: 511: 461: 429: 397: 363:, the natural number 358: 338: 312: 281: 255: 235: 209: 159: 139: 119: 5276: 4414: 4374: 4338: 4302: 4266: 4230: 4204: 4168: 4142: 4106: 4070: 4044: 4008: 3939: 3914: 3888: 3849: 3829: 3804: 3768: 3764:An Artin–Tits group 3712: 3673: 3643: 3604: 3544: 3499: 3437: 3417: 3397: 3377: 3338: 3318: 3280: 3260: 3240: 3182: 3162: 3142: 3108: 3088: 3061: 3041: 3017: 2978: 2920: 2893: 2866: 2839: 2812: 2785: 2749: 2722: 2695: 2668: 2647: 2586: 2554: 2522: 2499: 2467: 2407: 2387: 2361: 2329: 2279: 2228: 2201: 2174: 2154: 2134: 2114: 2087: 2029: 1976: 1938: 1885: 1865: 1637: 1609: 1570: 1550: 1476: 1448: 1409: 1389: 1351: 1305: 1285: 1252: 1232: 1208: 1188: 1155: 1135: 1115: 1083: 1039: 870: 816: 768: 748: 728: 708: 688: 649: 599: 560: 540: 520: 470: 438: 406: 367: 347: 321: 301: 264: 244: 218: 168: 148: 128: 96: 5338:Geometriae Dedicata 5242:2017InMat.210..231M 5136:Geometriae Dedicata 5108:10.1112/plms/pdr035 5014:1983InMat..72..201A 4922:1997InMat.129..445B 4870:Journal of Topology 4800:1972InMat..17..245B 4749:1972InMat..17..273D 4606:2001InMat.145...19C 3903:{\displaystyle s,t} 3708:for all generators 3639:for all generators 3514:{\displaystyle r-1} 3481:free abelian groups 2376:{\displaystyle s,t} 1624:{\displaystyle s,t} 1463:{\displaystyle s,t} 336:{\displaystyle s,t} 279:{\displaystyle s,t} 233:{\displaystyle s,t} 64:free abelian groups 5455:Journal of Algebra 5450:Kahrobaei, Delaram 5297: 5022:10.1007/BF01389320 4977:10.1112/plms.12135 4847:10.1007/BF01444642 4808:10.1007/BF01406235 4757:10.1007/BF01406236 4545:Journal of Algebra 4435: 4396: 4360: 4324: 4288: 4252: 4216: 4190: 4154: 4128: 4092: 4056: 4030: 3982: 3928:{\displaystyle S'} 3925: 3900: 3874: 3835: 3818:{\displaystyle S'} 3815: 3786: 3745:and Paul Schupp). 3724: 3698: 3655: 3629: 3565: 3511: 3462: 3423: 3403: 3383: 3363: 3324: 3304: 3266: 3246: 3228:locally free group 3200: 3168: 3148: 3114: 3094: 3074: 3047: 3023: 3008:biautomatic groups 2993: 2933: 2906: 2879: 2852: 2825: 2798: 2771: 2735: 2708: 2681: 2653: 2640:if the associated 2604: 2572: 2540: 2505: 2485: 2453: 2393: 2373: 2347: 2300: 2258:conjugacy problems 2234: 2214: 2187: 2160: 2140: 2120: 2100: 2068:General properties 2053: 2015: 1962: 1924: 1871: 1851: 1621: 1595: 1556: 1536: 1460: 1434: 1395: 1375: 1329: 1291: 1271: 1238: 1214: 1194: 1174: 1141: 1131:, the quotient of 1121: 1101: 1058: 1022: 853: 802: 754: 734: 714: 694: 674: 635: 585: 546: 526: 506: 456: 424: 392: 353: 333: 307: 276: 250: 230: 204: 154: 134: 114: 50:defined by simple 5403:978-88-7642-430-4 5196:10.4171/JCA/1-2-3 5170:Dehornoy, Patrick 4778:Brieskorn, Egbert 4408:of Euclidean type 4387: 4351: 4315: 4279: 4243: 4181: 4119: 4083: 4021: 3838:{\displaystyle S} 3406:{\displaystyle t} 3386:{\displaystyle s} 3327:{\displaystyle M} 3314:defines a matrix 3276:vertices labeled 3269:{\displaystyle n} 3151:{\displaystyle 2} 3117:{\displaystyle W} 3097:{\displaystyle A} 3050:{\displaystyle A} 3026:{\displaystyle A} 2968:fundamental group 2656:{\displaystyle W} 2508:{\displaystyle R} 2396:{\displaystyle S} 2312:fundamental group 2163:{\displaystyle W} 2123:{\displaystyle W} 1874:{\displaystyle n} 1825: 1753: 1559:{\displaystyle S} 1398:{\displaystyle S} 1294:{\displaystyle n} 1241:{\displaystyle W} 1228:. Conversely, if 1217:{\displaystyle R} 1197:{\displaystyle s} 1144:{\displaystyle A} 1124:{\displaystyle A} 952: 951: where  757:{\displaystyle s} 744:, beginning with 737:{\displaystyle m} 717:{\displaystyle t} 697:{\displaystyle s} 549:{\displaystyle t} 529:{\displaystyle s} 356:{\displaystyle S} 310:{\displaystyle S} 288:Artin–Tits monoid 253:{\displaystyle S} 157:{\displaystyle R} 137:{\displaystyle S} 40:Artin–Tits groups 16:(Redirected from 5510: 5489: 5471: 5444: 5435: 5414: 5387: 5370: 5353: 5320: 5319: 5318: 5306: 5304: 5303: 5298: 5267: 5261: 5260: 5235: 5213: 5207: 5206: 5189: 5166: 5160: 5159: 5129:Altobelli, Joe; 5126: 5120: 5119: 5101: 5075: 5069: 5068: 5039: 5033: 5032: 4995: 4989: 4988: 4979: 4969: 4947: 4941: 4940: 4904:Bestvina, Mladen 4900: 4894: 4893: 4864: 4858: 4857: 4825: 4819: 4818: 4774: 4768: 4767: 4727: 4721: 4720: 4711: 4701: 4679: 4673: 4672: 4663: 4653: 4631: 4625: 4624: 4599: 4577: 4571: 4570: 4561: 4536: 4530: 4529: 4488: 4444: 4442: 4441: 4436: 4405: 4403: 4402: 4397: 4395: 4394: 4389: 4388: 4380: 4369: 4367: 4366: 4361: 4359: 4358: 4353: 4352: 4344: 4333: 4331: 4330: 4325: 4323: 4322: 4317: 4316: 4308: 4297: 4295: 4294: 4289: 4287: 4286: 4281: 4280: 4272: 4261: 4259: 4258: 4253: 4251: 4250: 4245: 4244: 4236: 4225: 4223: 4222: 4217: 4199: 4197: 4196: 4191: 4189: 4188: 4183: 4182: 4174: 4163: 4161: 4160: 4155: 4137: 4135: 4134: 4129: 4127: 4126: 4121: 4120: 4112: 4101: 4099: 4098: 4093: 4091: 4090: 4085: 4084: 4076: 4065: 4063: 4062: 4057: 4039: 4037: 4036: 4031: 4029: 4028: 4023: 4022: 4014: 3991: 3989: 3988: 3983: 3978: 3977: 3972: 3969: 3952: 3934: 3932: 3931: 3926: 3924: 3909: 3907: 3906: 3901: 3883: 3881: 3880: 3875: 3867: 3866: 3844: 3842: 3841: 3836: 3824: 3822: 3821: 3816: 3814: 3795: 3793: 3792: 3787: 3733: 3731: 3730: 3725: 3707: 3705: 3704: 3699: 3691: 3690: 3667:extra-large type 3664: 3662: 3661: 3656: 3638: 3636: 3635: 3630: 3622: 3621: 3574: 3572: 3571: 3566: 3520: 3518: 3517: 3512: 3471: 3469: 3468: 3463: 3455: 3454: 3432: 3430: 3429: 3424: 3412: 3410: 3409: 3404: 3392: 3390: 3389: 3384: 3373:if the vertices 3372: 3370: 3369: 3364: 3356: 3355: 3333: 3331: 3330: 3325: 3313: 3311: 3310: 3305: 3275: 3273: 3272: 3267: 3255: 3253: 3252: 3247: 3230:are also common. 3209: 3207: 3206: 3201: 3177: 3175: 3174: 3169: 3157: 3155: 3154: 3149: 3123: 3121: 3120: 3115: 3103: 3101: 3100: 3095: 3083: 3081: 3080: 3075: 3073: 3072: 3056: 3054: 3053: 3048: 3032: 3030: 3029: 3024: 3002: 3000: 2999: 2994: 2992: 2991: 2986: 2957:Egbert Brieskorn 2942: 2940: 2939: 2934: 2932: 2931: 2915: 2913: 2912: 2907: 2905: 2904: 2888: 2886: 2885: 2880: 2878: 2877: 2861: 2859: 2858: 2853: 2851: 2850: 2834: 2832: 2831: 2826: 2824: 2823: 2807: 2805: 2804: 2799: 2797: 2796: 2780: 2778: 2777: 2772: 2761: 2760: 2744: 2742: 2741: 2736: 2734: 2733: 2717: 2715: 2714: 2709: 2707: 2706: 2690: 2688: 2687: 2682: 2680: 2679: 2662: 2660: 2659: 2654: 2613: 2611: 2610: 2605: 2581: 2579: 2578: 2573: 2549: 2547: 2546: 2541: 2514: 2512: 2511: 2506: 2494: 2492: 2491: 2486: 2462: 2460: 2459: 2454: 2452: 2451: 2442: 2441: 2429: 2428: 2419: 2418: 2402: 2400: 2399: 2394: 2382: 2380: 2379: 2374: 2356: 2354: 2353: 2348: 2309: 2307: 2306: 2301: 2243: 2241: 2240: 2235: 2223: 2221: 2220: 2215: 2213: 2212: 2196: 2194: 2193: 2188: 2186: 2185: 2169: 2167: 2166: 2161: 2149: 2147: 2146: 2141: 2129: 2127: 2126: 2121: 2109: 2107: 2106: 2101: 2099: 2098: 2062: 2060: 2059: 2054: 2024: 2022: 2021: 2016: 2008: 2007: 2006: 2005: 1993: 1992: 1971: 1969: 1968: 1963: 1933: 1931: 1930: 1925: 1917: 1916: 1915: 1914: 1902: 1901: 1880: 1878: 1877: 1872: 1860: 1858: 1857: 1852: 1826: 1823: 1821: 1820: 1811: 1810: 1798: 1797: 1788: 1787: 1754: 1751: 1749: 1748: 1739: 1738: 1729: 1728: 1716: 1715: 1706: 1705: 1696: 1695: 1683: 1682: 1658: 1657: 1630: 1628: 1627: 1622: 1604: 1602: 1601: 1596: 1588: 1587: 1565: 1563: 1562: 1557: 1545: 1543: 1542: 1537: 1469: 1467: 1466: 1461: 1443: 1441: 1440: 1435: 1427: 1426: 1404: 1402: 1401: 1396: 1384: 1382: 1381: 1376: 1338: 1336: 1335: 1330: 1300: 1298: 1297: 1292: 1280: 1278: 1277: 1272: 1264: 1263: 1247: 1245: 1244: 1239: 1223: 1221: 1220: 1215: 1203: 1201: 1200: 1195: 1183: 1181: 1180: 1175: 1167: 1166: 1150: 1148: 1147: 1142: 1130: 1128: 1127: 1122: 1110: 1108: 1107: 1102: 1070:symmetric matrix 1067: 1065: 1064: 1059: 1057: 1056: 1031: 1029: 1028: 1023: 988: 987: 969: 968: 953: 950: 945: 944: 943: 942: 907: 906: 905: 904: 862: 860: 859: 854: 840: 839: 811: 809: 808: 803: 792: 791: 763: 761: 760: 755: 743: 741: 740: 735: 723: 721: 720: 715: 703: 701: 700: 695: 683: 681: 680: 675: 673: 672: 644: 642: 641: 636: 594: 592: 591: 586: 578: 577: 555: 553: 552: 547: 535: 533: 532: 527: 515: 513: 512: 507: 465: 463: 462: 457: 433: 431: 430: 425: 401: 399: 398: 393: 385: 384: 362: 360: 359: 354: 342: 340: 339: 334: 316: 314: 313: 308: 285: 283: 282: 277: 259: 257: 256: 251: 239: 237: 236: 231: 213: 211: 210: 205: 163: 161: 160: 155: 143: 141: 140: 135: 123: 121: 120: 115: 38:, also known as 21: 5518: 5517: 5513: 5512: 5511: 5509: 5508: 5507: 5493: 5492: 5448:Flores, Ramon; 5447: 5433:10.5802/wbln.17 5417: 5404: 5373: 5332: 5329: 5327:Further reading 5324: 5323: 5274: 5273: 5269: 5268: 5264: 5215: 5214: 5210: 5168: 5167: 5163: 5128: 5127: 5123: 5077: 5076: 5072: 5041: 5040: 5036: 4997: 4996: 4992: 4949: 4948: 4944: 4902: 4901: 4897: 4866: 4865: 4861: 4827: 4826: 4822: 4776: 4775: 4771: 4731:Deligne, Pierre 4729: 4728: 4724: 4681: 4680: 4676: 4633: 4632: 4628: 4579: 4578: 4574: 4538: 4537: 4533: 4510:10.2307/1969218 4490: 4489: 4485: 4480: 4452: 4412: 4411: 4377: 4372: 4371: 4341: 4336: 4335: 4305: 4300: 4299: 4269: 4264: 4263: 4233: 4228: 4227: 4202: 4201: 4171: 4166: 4165: 4140: 4139: 4109: 4104: 4103: 4073: 4068: 4067: 4042: 4041: 4011: 4006: 4005: 3970: 3962: 3945: 3937: 3936: 3917: 3912: 3911: 3886: 3885: 3852: 3847: 3846: 3827: 3826: 3807: 3802: 3801: 3766: 3765: 3758: 3710: 3709: 3676: 3671: 3670: 3641: 3640: 3607: 3602: 3601: 3593: 3542: 3541: 3497: 3496: 3440: 3435: 3434: 3415: 3414: 3395: 3394: 3375: 3374: 3341: 3336: 3335: 3316: 3315: 3278: 3277: 3258: 3257: 3238: 3237: 3180: 3179: 3160: 3159: 3140: 3139: 3131: 3106: 3105: 3086: 3085: 3064: 3059: 3058: 3039: 3038: 3037:, meaning that 3015: 3014: 3010:(Ruth Charney). 2981: 2976: 2975: 2951:is determined ( 2923: 2918: 2917: 2896: 2891: 2890: 2869: 2864: 2863: 2842: 2837: 2836: 2815: 2810: 2809: 2788: 2783: 2782: 2752: 2747: 2746: 2725: 2720: 2719: 2698: 2693: 2692: 2671: 2666: 2665: 2645: 2644: 2633: 2625: 2584: 2583: 2552: 2551: 2520: 2519: 2497: 2496: 2465: 2464: 2443: 2433: 2420: 2410: 2405: 2404: 2385: 2384: 2359: 2358: 2327: 2326: 2277: 2276: 2226: 2225: 2204: 2199: 2198: 2177: 2172: 2171: 2152: 2151: 2132: 2131: 2112: 2111: 2090: 2085: 2084: 2074:Garside methods 2070: 2027: 2026: 1997: 1984: 1979: 1974: 1973: 1936: 1935: 1906: 1893: 1888: 1883: 1882: 1863: 1862: 1824: for  1812: 1802: 1789: 1779: 1752: for  1740: 1730: 1720: 1707: 1697: 1687: 1668: 1649: 1635: 1634: 1607: 1606: 1573: 1568: 1567: 1548: 1547: 1474: 1473: 1446: 1445: 1412: 1407: 1406: 1387: 1386: 1349: 1348: 1345: 1303: 1302: 1283: 1282: 1255: 1250: 1249: 1230: 1229: 1206: 1205: 1186: 1185: 1158: 1153: 1152: 1133: 1132: 1113: 1112: 1081: 1080: 1072:, known as the 1042: 1037: 1036: 973: 954: 928: 923: 890: 885: 868: 867: 831: 814: 813: 783: 766: 765: 746: 745: 726: 725: 706: 705: 686: 685: 664: 647: 646: 597: 596: 563: 558: 557: 538: 537: 518: 517: 468: 467: 436: 435: 404: 403: 370: 365: 364: 345: 344: 319: 318: 317:and, for every 299: 298: 262: 261: 242: 241: 216: 215: 166: 165: 146: 145: 126: 125: 94: 93: 87: 58:. Examples are 28: 23: 22: 15: 12: 11: 5: 5516: 5514: 5506: 5505: 5495: 5494: 5491: 5490: 5445: 5415: 5402: 5371: 5344:(1): 141–158, 5328: 5325: 5322: 5321: 5296: 5293: 5290: 5287: 5284: 5281: 5262: 5226:(1): 231–282, 5208: 5180:(2): 185–228, 5161: 5143:(3): 277–289, 5121: 5092:(3): 486–512. 5070: 5034: 5008:(2): 201–220, 4990: 4960:(2): 246–276, 4942: 4916:(3): 445–470, 4895: 4877:(3): 442–460, 4859: 4841:(4): 671–683, 4820: 4794:(4): 245–271, 4769: 4722: 4674: 4644:(3): 609–637, 4626: 4572: 4531: 4504:(1): 101–126. 4482: 4481: 4479: 4476: 4475: 4474: 4469: 4464: 4461:Artinian group 4458: 4451: 4448: 4447: 4446: 4434: 4431: 4428: 4425: 4422: 4419: 4393: 4386: 4383: 4357: 4350: 4347: 4321: 4314: 4311: 4285: 4278: 4275: 4249: 4242: 4239: 4215: 4212: 4209: 4187: 4180: 4177: 4153: 4150: 4147: 4125: 4118: 4115: 4089: 4082: 4079: 4055: 4052: 4049: 4027: 4020: 4017: 3998:of affine type 3994: 3981: 3976: 3968: 3965: 3961: 3958: 3955: 3951: 3948: 3944: 3923: 3920: 3899: 3896: 3893: 3873: 3870: 3865: 3862: 3859: 3855: 3834: 3813: 3810: 3796:is said to be 3785: 3782: 3779: 3776: 3773: 3757: 3754: 3753: 3752: 3749: 3746: 3735: 3723: 3720: 3717: 3697: 3694: 3689: 3686: 3683: 3679: 3654: 3651: 3648: 3628: 3625: 3620: 3617: 3614: 3610: 3592: 3589: 3588: 3587: 3576: 3564: 3561: 3558: 3555: 3552: 3549: 3538: 3527:direct product 3510: 3507: 3504: 3485:complete graph 3473: 3461: 3458: 3453: 3450: 3447: 3443: 3422: 3402: 3382: 3362: 3359: 3354: 3351: 3348: 3344: 3323: 3303: 3300: 3297: 3294: 3291: 3288: 3285: 3265: 3245: 3231: 3224:semifree group 3199: 3196: 3193: 3190: 3187: 3167: 3147: 3130: 3127: 3126: 3125: 3113: 3093: 3071: 3067: 3046: 3022: 3011: 3004: 2990: 2985: 2964: 2953:Pierre Deligne 2944: 2930: 2926: 2903: 2899: 2876: 2872: 2849: 2845: 2822: 2818: 2795: 2791: 2770: 2767: 2764: 2759: 2755: 2732: 2728: 2705: 2701: 2678: 2674: 2652: 2638:spherical type 2632: 2629: 2624: 2621: 2620: 2619: 2615: 2603: 2600: 2597: 2594: 2591: 2571: 2568: 2565: 2562: 2559: 2539: 2536: 2533: 2530: 2527: 2516: 2504: 2484: 2481: 2478: 2475: 2472: 2450: 2446: 2440: 2436: 2432: 2427: 2423: 2417: 2413: 2392: 2372: 2369: 2366: 2346: 2343: 2340: 2337: 2334: 2323: 2316: 2315: 2299: 2296: 2293: 2290: 2287: 2284: 2272: 2271: 2267: 2266: 2262: 2261: 2252:– solving the 2246: 2245: 2233: 2211: 2207: 2184: 2180: 2159: 2139: 2119: 2097: 2093: 2081: 2069: 2066: 2065: 2064: 2052: 2049: 2046: 2043: 2040: 2037: 2034: 2014: 2011: 2004: 2000: 1996: 1991: 1987: 1982: 1961: 1958: 1955: 1952: 1949: 1946: 1943: 1923: 1920: 1913: 1909: 1905: 1900: 1896: 1891: 1881:strands; here 1870: 1850: 1847: 1844: 1841: 1838: 1835: 1832: 1829: 1819: 1815: 1809: 1805: 1801: 1796: 1792: 1786: 1782: 1778: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1747: 1743: 1737: 1733: 1727: 1723: 1719: 1714: 1710: 1704: 1700: 1694: 1690: 1686: 1681: 1678: 1675: 1671: 1667: 1664: 1661: 1656: 1652: 1648: 1645: 1642: 1632: 1620: 1617: 1614: 1594: 1591: 1586: 1583: 1580: 1576: 1555: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1493: 1490: 1487: 1484: 1481: 1471: 1459: 1456: 1453: 1433: 1430: 1425: 1422: 1419: 1415: 1394: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1344: 1341: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1290: 1270: 1267: 1262: 1258: 1237: 1213: 1193: 1173: 1170: 1165: 1161: 1140: 1120: 1100: 1097: 1094: 1091: 1088: 1076:of the group. 1074:Coxeter matrix 1055: 1052: 1049: 1045: 1033: 1032: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 997: 994: 991: 986: 983: 980: 976: 972: 967: 964: 961: 957: 948: 941: 938: 935: 931: 926: 922: 919: 916: 913: 910: 903: 900: 897: 893: 888: 884: 881: 878: 875: 852: 849: 846: 843: 838: 834: 830: 827: 824: 821: 801: 798: 795: 790: 786: 782: 779: 776: 773: 753: 733: 713: 693: 671: 667: 663: 660: 657: 654: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 584: 581: 576: 573: 570: 566: 545: 525: 505: 502: 499: 496: 493: 490: 487: 484: 481: 478: 475: 455: 452: 449: 446: 443: 423: 420: 417: 414: 411: 391: 388: 383: 380: 377: 373: 352: 332: 329: 326: 306: 275: 272: 269: 249: 229: 226: 223: 203: 200: 197: 194: 191: 188: 185: 182: 179: 176: 173: 153: 133: 113: 110: 107: 104: 101: 86: 83: 56:Coxeter groups 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5515: 5504: 5501: 5500: 5498: 5487: 5483: 5479: 5475: 5470: 5465: 5461: 5457: 5456: 5451: 5446: 5443: 5439: 5434: 5429: 5425: 5421: 5416: 5413: 5409: 5405: 5399: 5395: 5391: 5386: 5381: 5377: 5372: 5369: 5365: 5361: 5357: 5352: 5347: 5343: 5339: 5335: 5334:Charney, Ruth 5331: 5330: 5326: 5317: 5312: 5308: 5291: 5288: 5285: 5279: 5272:Proof of the 5266: 5263: 5259: 5255: 5251: 5247: 5243: 5239: 5234: 5229: 5225: 5221: 5220: 5212: 5209: 5205: 5201: 5197: 5193: 5188: 5183: 5179: 5175: 5171: 5165: 5162: 5158: 5154: 5150: 5146: 5142: 5138: 5137: 5132: 5131:Charney, Ruth 5125: 5122: 5117: 5113: 5109: 5105: 5100: 5095: 5091: 5087: 5086: 5081: 5078:Holt, Derek; 5074: 5071: 5067: 5063: 5059: 5055: 5051: 5047: 5046: 5038: 5035: 5031: 5027: 5023: 5019: 5015: 5011: 5007: 5003: 5002: 4994: 4991: 4987: 4983: 4978: 4973: 4968: 4963: 4959: 4955: 4954: 4946: 4943: 4939: 4935: 4931: 4927: 4923: 4919: 4915: 4911: 4910: 4905: 4899: 4896: 4892: 4888: 4884: 4880: 4876: 4872: 4871: 4863: 4860: 4856: 4852: 4848: 4844: 4840: 4836: 4835: 4830: 4829:Charney, Ruth 4824: 4821: 4817: 4813: 4809: 4805: 4801: 4797: 4793: 4789: 4788: 4783: 4779: 4773: 4770: 4766: 4762: 4758: 4754: 4750: 4746: 4742: 4738: 4737: 4732: 4726: 4723: 4719: 4715: 4710: 4705: 4700: 4695: 4691: 4687: 4686: 4678: 4675: 4671: 4667: 4662: 4657: 4652: 4647: 4643: 4639: 4638: 4630: 4627: 4623: 4619: 4615: 4611: 4607: 4603: 4598: 4593: 4589: 4585: 4584: 4576: 4573: 4569: 4565: 4560: 4555: 4551: 4547: 4546: 4541: 4540:Tits, Jacques 4535: 4532: 4527: 4523: 4519: 4515: 4511: 4507: 4503: 4499: 4498: 4493: 4487: 4484: 4477: 4473: 4470: 4468: 4465: 4462: 4459: 4457: 4454: 4453: 4449: 4429: 4426: 4423: 4417: 4409: 4391: 4384: 4381: 4355: 4348: 4345: 4319: 4312: 4309: 4283: 4276: 4273: 4247: 4240: 4237: 4213: 4210: 4207: 4185: 4178: 4175: 4151: 4148: 4145: 4123: 4116: 4113: 4087: 4080: 4077: 4053: 4050: 4047: 4025: 4018: 4015: 4003: 3999: 3995: 3974: 3966: 3963: 3959: 3956: 3953: 3949: 3946: 3921: 3918: 3897: 3894: 3891: 3868: 3863: 3860: 3857: 3853: 3832: 3811: 3808: 3799: 3780: 3777: 3774: 3763: 3762: 3761: 3755: 3750: 3747: 3744: 3743:Kenneth Appel 3740: 3736: 3721: 3718: 3715: 3695: 3692: 3687: 3684: 3681: 3677: 3668: 3652: 3649: 3646: 3626: 3623: 3618: 3615: 3612: 3608: 3599: 3595: 3594: 3590: 3585: 3581: 3577: 3559: 3556: 3553: 3547: 3539: 3536: 3532: 3528: 3524: 3508: 3505: 3502: 3494: 3493:HNN extension 3490: 3486: 3482: 3478: 3474: 3456: 3451: 3448: 3445: 3441: 3400: 3380: 3360: 3357: 3352: 3349: 3346: 3342: 3321: 3301: 3298: 3295: 3292: 3289: 3286: 3283: 3263: 3236: 3232: 3229: 3225: 3221: 3217: 3213: 3197: 3194: 3191: 3188: 3185: 3145: 3137: 3133: 3132: 3128: 3111: 3091: 3069: 3065: 3044: 3036: 3035:Garside group 3020: 3012: 3009: 3005: 2988: 2973: 2969: 2965: 2962: 2958: 2954: 2950: 2945: 2928: 2924: 2901: 2897: 2874: 2870: 2847: 2843: 2820: 2816: 2793: 2789: 2765: 2757: 2753: 2730: 2726: 2703: 2699: 2676: 2672: 2650: 2643: 2642:Coxeter group 2639: 2635: 2634: 2630: 2628: 2622: 2616: 2598: 2595: 2592: 2566: 2563: 2560: 2534: 2531: 2528: 2517: 2502: 2482: 2479: 2476: 2473: 2470: 2448: 2444: 2438: 2434: 2430: 2425: 2421: 2415: 2411: 2390: 2370: 2367: 2364: 2341: 2338: 2335: 2324: 2321: 2320: 2319: 2313: 2294: 2291: 2288: 2282: 2274: 2273: 2269: 2268: 2264: 2263: 2259: 2255: 2251: 2250: 2249: 2231: 2209: 2205: 2182: 2178: 2157: 2137: 2117: 2095: 2091: 2082: 2079: 2078: 2077: 2075: 2067: 2050: 2047: 2041: 2038: 2035: 2012: 2009: 2002: 1998: 1994: 1989: 1985: 1980: 1959: 1956: 1950: 1947: 1944: 1921: 1918: 1911: 1907: 1903: 1898: 1894: 1889: 1868: 1845: 1842: 1836: 1833: 1830: 1817: 1813: 1807: 1803: 1799: 1794: 1790: 1784: 1780: 1776: 1773: 1770: 1764: 1761: 1758: 1745: 1741: 1735: 1731: 1725: 1721: 1717: 1712: 1708: 1702: 1698: 1692: 1688: 1684: 1679: 1676: 1673: 1669: 1665: 1662: 1659: 1654: 1650: 1643: 1640: 1633: 1618: 1615: 1612: 1592: 1589: 1584: 1581: 1578: 1574: 1553: 1527: 1524: 1521: 1518: 1515: 1512: 1509: 1506: 1503: 1500: 1497: 1491: 1488: 1482: 1479: 1472: 1457: 1454: 1451: 1428: 1423: 1420: 1417: 1413: 1392: 1366: 1363: 1357: 1354: 1347: 1346: 1342: 1340: 1323: 1320: 1317: 1314: 1311: 1288: 1268: 1265: 1260: 1256: 1235: 1227: 1226:Coxeter group 1211: 1191: 1171: 1168: 1163: 1159: 1138: 1118: 1095: 1092: 1089: 1077: 1075: 1071: 1053: 1050: 1047: 1043: 1035:The integers 1019: 1010: 1007: 1004: 1001: 998: 995: 989: 984: 981: 978: 974: 970: 965: 962: 959: 955: 946: 939: 936: 933: 929: 920: 917: 914: 908: 901: 898: 895: 891: 882: 879: 876: 866: 865: 864: 850: 847: 844: 841: 836: 828: 825: 822: 799: 796: 793: 788: 780: 777: 774: 751: 731: 711: 691: 669: 661: 658: 655: 632: 629: 626: 623: 620: 617: 614: 611: 608: 605: 602: 579: 574: 571: 568: 564: 543: 523: 503: 500: 497: 494: 491: 488: 485: 482: 479: 476: 473: 453: 450: 447: 444: 441: 421: 418: 415: 412: 409: 389: 386: 381: 378: 375: 371: 350: 330: 327: 324: 304: 295: 293: 289: 273: 270: 267: 247: 227: 224: 221: 214:for distinct 201: 198: 195: 192: 189: 186: 183: 180: 177: 174: 171: 151: 131: 108: 105: 102: 92: 84: 82: 80: 76: 71: 69: 65: 61: 57: 53: 52:presentations 49: 45: 41: 37: 33: 19: 5503:Braid groups 5459: 5453: 5423: 5419: 5375: 5351:math/0610668 5341: 5337: 5271: 5265: 5223: 5217: 5211: 5177: 5173: 5164: 5140: 5134: 5124: 5089: 5083: 5073: 5052:(1): 15–56, 5049: 5043: 5037: 5005: 4999: 4993: 4957: 4951: 4945: 4913: 4907: 4898: 4874: 4868: 4862: 4838: 4832: 4823: 4791: 4785: 4782:Saito, Kyoji 4772: 4740: 4734: 4725: 4689: 4683: 4677: 4651:math/0102002 4641: 4635: 4629: 4597:math/0003133 4590:(1): 19–36, 4587: 4581: 4575: 4549: 4543: 4534: 4501: 4495: 4486: 4407: 3997: 3935:, the group 3797: 3759: 3666: 3597: 3523:free product 3488: 3334:, for which 3227: 3223: 3219: 3215: 3211: 3210:. The names 3136:right-angled 3135: 2637: 2626: 2317: 2247: 2071: 1078: 1034: 296: 287: 91:presentation 88: 79:Jacques Tits 72: 68:braid groups 43: 39: 36:Artin groups 35: 32:group theory 29: 5462:: 111–129. 5080:Rees, Sarah 4743:: 273–302, 4692:: 739–784, 4492:Artin, Emil 3756:Other types 3521:, with the 3477:free groups 3220:trace group 3216:graph group 2961:Kyoji Saito 60:free groups 5469:1802.04870 5316:1907.11795 5187:1606.08991 4967:1512.06609 4699:1505.02058 4552:: 96–116, 4478:References 3845:such that 3798:of FC type 3598:large type 3472:otherwise. 2949:cohomology 2618:effective. 764:— so that 724:of length 466:such that 85:Definition 75:Emil Artin 5385:1105.1048 5286:π 5233:1312.7770 5099:1003.6007 4424:π 4385:~ 4349:~ 4313:~ 4277:~ 4241:~ 4211:⩾ 4179:~ 4149:⩾ 4117:~ 4081:~ 4051:⩾ 4019:~ 3980:⟩ 3960:∩ 3954:∣ 3943:⟨ 3872:∞ 3869:≠ 3784:⟩ 3778:∣ 3772:⟨ 3719:≠ 3693:⩾ 3650:≠ 3624:⩾ 3554:π 3506:− 3460:∞ 3421:Γ 3296:… 3244:Γ 3166:∞ 2602:⟩ 2596:∣ 2590:⟨ 2570:⟩ 2564:∣ 2558:⟨ 2538:⟩ 2532:∣ 2526:⟨ 2345:⟩ 2339:∣ 2333:⟨ 2289:π 2232:σ 2138:σ 2039:− 1999:σ 1986:σ 1948:− 1908:σ 1895:σ 1849:⟩ 1843:⩾ 1834:− 1814:σ 1804:σ 1791:σ 1781:σ 1762:− 1742:σ 1732:σ 1722:σ 1709:σ 1699:σ 1689:σ 1685:∣ 1677:− 1670:σ 1663:… 1651:σ 1647:⟨ 1534:⟩ 1525:∈ 1513:∣ 1492:∣ 1486:⟨ 1432:∞ 1373:⟩ 1370:∅ 1367:∣ 1361:⟨ 1318:… 1184:for each 1099:⟩ 1093:∣ 1087:⟨ 1014:∞ 1008:… 990:∈ 925:⟩ 912:⟨ 887:⟩ 874:⟨ 833:⟩ 820:⟨ 785:⟩ 772:⟨ 666:⟩ 653:⟨ 633:… 615:… 583:∞ 504:… 486:… 454:… 422:… 387:⩾ 202:… 184:… 112:⟩ 106:∣ 100:⟨ 5497:Category 4526:30514042 4450:See also 3967:′ 3950:′ 3922:′ 3884:for all 3812:′ 3226:or even 2614:(Paris). 1605:for all 1444:for all 1343:Examples 5486:3874519 5442:3922033 5412:3203644 5368:2322545 5258:3698343 5238:Bibcode 5204:3634782 5157:1755729 5116:2900234 5066:1390670 5030:0700768 5010:Bibcode 4986:3851323 4938:1465330 4918:Bibcode 4891:2546582 4855:1157320 4816:0323910 4796:Bibcode 4765:0422673 4745:Bibcode 4718:1839284 4670:1933791 4622:1839284 4602:Bibcode 4568:0206117 4518:1969218 3739:torsion 1566:; here 1405:; here 5484:  5440:  5410:  5400:  5366:  5256:  5202:  5155:  5114:  5064:  5028:  4984:  4936:  4889:  4853:  4814:  4763:  4716:  4668:  4620:  4566:  4524:  4516:  4370:, and 4164:, and 4002:affine 3580:CAT(0) 3433:, and 2916:, and 2495:is in 1972:, and 292:monoid 124:where 48:groups 5464:arXiv 5380:arXiv 5346:arXiv 5311:arXiv 5228:arXiv 5182:arXiv 5094:arXiv 4962:arXiv 4694:arXiv 4646:arXiv 4592:arXiv 4522:S2CID 4514:JSTOR 3235:graph 3033:is a 2170:into 1224:is a 290:is a 5398:ISBN 4200:for 4138:for 4040:for 3525:and 3393:and 2959:and 2256:and 2254:word 2048:> 2025:for 1934:for 704:and 536:and 434:and 5474:doi 5460:519 5428:doi 5390:doi 5356:doi 5342:125 5246:doi 5224:210 5192:doi 5145:doi 5104:doi 5090:104 5054:doi 5050:110 5018:doi 4972:doi 4958:117 4926:doi 4914:129 4879:doi 4843:doi 4839:292 4804:doi 4753:doi 4704:doi 4690:301 4656:doi 4610:doi 4588:145 4554:doi 4506:doi 3910:in 3825:of 3669:if 3600:if 3256:on 3158:or 2974:in 2463:if 2403:is 2383:of 2150:of 2083:If 1204:of 1079:If 343:in 240:in 42:or 5499:: 5482:MR 5480:. 5472:. 5458:. 5438:MR 5436:, 5422:, 5408:MR 5406:, 5396:, 5388:, 5364:MR 5362:, 5354:, 5340:, 5309:, 5254:MR 5252:, 5244:, 5236:, 5222:, 5200:MR 5198:, 5190:, 5176:, 5153:MR 5151:, 5141:79 5139:, 5112:MR 5110:. 5102:. 5088:. 5062:MR 5060:, 5048:, 5026:MR 5024:, 5016:, 5006:72 5004:, 4982:MR 4980:, 4970:, 4956:, 4934:MR 4932:, 4924:, 4912:, 4887:MR 4885:, 4873:, 4851:MR 4849:, 4837:, 4812:MR 4810:, 4802:, 4792:17 4790:, 4780:; 4761:MR 4759:, 4751:, 4741:17 4739:, 4714:MR 4712:, 4702:, 4688:, 4666:MR 4664:, 4654:, 4642:77 4640:, 4618:MR 4616:, 4608:, 4600:, 4586:, 4564:MR 4562:, 4548:, 4520:. 4512:. 4502:48 4500:. 4334:, 4298:, 4262:, 4102:, 4066:, 3537:). 3222:, 3218:, 3214:, 2889:, 2862:, 2835:, 2808:, 2745:, 2718:, 2691:, 1339:. 812:, 66:, 62:, 34:, 5488:. 5476:: 5466:: 5430:: 5424:4 5392:: 5382:: 5358:: 5348:: 5313:: 5295:) 5292:1 5289:, 5283:( 5280:K 5248:: 5240:: 5230:: 5194:: 5184:: 5178:1 5147:: 5118:. 5106:: 5096:: 5056:: 5020:: 5012:: 4974:: 4964:: 4928:: 4920:: 4881:: 4875:2 4845:: 4806:: 4798:: 4755:: 4747:: 4706:: 4696:: 4658:: 4648:: 4612:: 4604:: 4594:: 4556:: 4550:4 4528:. 4508:: 4433:) 4430:1 4427:, 4421:( 4418:K 4392:2 4382:G 4356:4 4346:F 4320:8 4310:E 4284:7 4274:E 4248:6 4238:E 4214:3 4208:n 4186:n 4176:D 4152:2 4146:n 4124:n 4114:C 4088:n 4078:B 4054:1 4048:n 4026:n 4016:A 3975:2 3964:S 3957:R 3947:S 3919:S 3898:t 3895:, 3892:s 3864:t 3861:, 3858:s 3854:m 3833:S 3809:S 3781:R 3775:S 3734:. 3722:t 3716:s 3696:4 3688:t 3685:, 3682:s 3678:m 3653:t 3647:s 3627:3 3619:t 3616:, 3613:s 3609:m 3563:) 3560:1 3557:, 3551:( 3548:K 3509:1 3503:r 3489:r 3457:= 3452:t 3449:, 3446:s 3442:m 3401:t 3381:s 3361:2 3358:= 3353:t 3350:, 3347:s 3343:m 3322:M 3302:n 3299:, 3293:, 3290:2 3287:, 3284:1 3264:n 3198:s 3195:t 3192:= 3189:t 3186:s 3146:2 3112:W 3092:A 3070:+ 3066:A 3045:A 3021:A 3003:. 2989:n 2984:C 2943:. 2929:4 2925:H 2902:3 2898:H 2875:4 2871:F 2848:8 2844:E 2821:7 2817:E 2794:6 2790:E 2769:) 2766:n 2763:( 2758:2 2754:I 2731:n 2727:D 2704:n 2700:B 2677:n 2673:A 2651:W 2599:R 2593:S 2567:R 2561:S 2535:R 2529:S 2503:R 2483:s 2480:t 2477:= 2474:t 2471:s 2449:2 2445:s 2439:2 2435:t 2431:= 2426:2 2422:t 2416:2 2412:s 2391:S 2371:t 2368:, 2365:s 2342:R 2336:S 2298:) 2295:1 2292:, 2286:( 2283:K 2210:+ 2206:A 2183:+ 2179:A 2158:W 2118:W 2096:+ 2092:A 2063:. 2051:1 2045:| 2042:j 2036:i 2033:| 2013:2 2010:= 2003:j 1995:, 1990:i 1981:m 1960:1 1957:= 1954:| 1951:j 1945:i 1942:| 1922:3 1919:= 1912:j 1904:, 1899:i 1890:m 1869:n 1846:2 1840:| 1837:j 1831:i 1828:| 1818:i 1808:j 1800:= 1795:j 1785:i 1777:, 1774:1 1771:= 1768:| 1765:j 1759:i 1756:| 1746:j 1736:i 1726:j 1718:= 1713:i 1703:j 1693:i 1680:1 1674:n 1666:, 1660:, 1655:1 1644:= 1641:G 1631:. 1619:t 1616:, 1613:s 1593:2 1590:= 1585:t 1582:, 1579:s 1575:m 1554:S 1531:} 1528:S 1522:t 1519:, 1516:s 1510:s 1507:t 1504:= 1501:t 1498:s 1495:{ 1489:S 1483:= 1480:G 1470:. 1458:t 1455:, 1452:s 1429:= 1424:t 1421:, 1418:s 1414:m 1393:S 1364:S 1358:= 1355:G 1327:} 1324:n 1321:, 1315:, 1312:1 1309:{ 1289:n 1269:1 1266:= 1261:2 1257:s 1236:W 1212:R 1192:s 1172:1 1169:= 1164:2 1160:s 1139:A 1119:A 1096:R 1090:S 1054:t 1051:, 1048:s 1044:m 1020:. 1017:} 1011:, 1005:, 1002:3 999:, 996:2 993:{ 985:s 982:, 979:t 975:m 971:= 966:t 963:, 960:s 956:m 947:, 940:s 937:, 934:t 930:m 921:s 918:, 915:t 909:= 902:t 899:, 896:s 892:m 883:t 880:, 877:s 851:s 848:t 845:s 842:= 837:3 829:t 826:, 823:s 800:t 797:s 794:= 789:2 781:t 778:, 775:s 752:s 732:m 712:t 692:s 670:m 662:t 659:, 656:s 630:s 627:t 624:s 621:t 618:= 612:t 609:s 606:t 603:s 580:= 575:t 572:, 569:s 565:m 544:t 524:s 501:s 498:t 495:s 492:t 489:= 483:t 480:s 477:t 474:s 451:s 448:t 445:s 442:t 419:t 416:s 413:t 410:s 390:2 382:t 379:, 376:s 372:m 351:S 331:t 328:, 325:s 305:S 274:t 271:, 268:s 248:S 228:t 225:, 222:s 199:s 196:t 193:s 190:t 187:= 181:t 178:s 175:t 172:s 152:R 132:S 109:R 103:S 20:)

Index

Free partially commutative group
group theory
groups
presentations
Coxeter groups
free groups
free abelian groups
braid groups
Emil Artin
Jacques Tits
presentation
monoid
symmetric matrix
Coxeter matrix
Coxeter group
Garside methods
word
conjugacy problems
fundamental group
Coxeter group
cohomology
Pierre Deligne
Egbert Brieskorn
Kyoji Saito
fundamental group
hyperplane arrangement
biautomatic groups
Garside group
graph
free groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.