Knowledge (XXG)

Gödel numbering for sequences

Source 📝

6027:
configuration-like things (of Turing-machines), and specifically if we want to encode the significant part of the tape of a running Turing machine, then we have to represent sequences together with their length. We can mimic dynamically stretching sequences by representing sequence concatenation (or at least, augmenting a sequence with one more element) with a totally recursive function.
6810: 22: 167:
Any such representation of sequences should contain all the information as in the original sequence—most importantly, each individual member must be retrievable. However, the length does not have to match directly; even if we want to handle sequences of different length, we can store length data as a
6026:
To illustrate both cases: if we form the Gödel numbering of a Turing machine, then the each row in the matrix of the “program” can be represented with tuples, sequences of fixed length (thus, without storing the length), because the number of the columns is fixed. But if we want to reason about
6586: 5486:
plays a role here of a more general notion (“special function”). The importance of this notion is that it enables us to split off the (sub)class of (total) recursive functions from the (super)class of partial recursive functions. In brief, the specification says that a function
2589: 1153: 5626: 2724: 3937: 2442: 2224: 1426:
function, we shall use several lemmas. These have their own assumptions. Now we try to find out these assumptions, calibrating and tuning their strength carefully: they should not be said in an either superfluously sharp, or unsatisfactorily weak form.
986: 5773: 4997: 1365: 4589: 6255: 5481: 5254: 3130: 2089: 1553: 5990: 93:
is surely possible, the emphasis is on the effectiveness of the functions manipulating such representations of sequences: the operations on sequences (accessing individual members, concatenation) can be "implemented" using
6805:{\displaystyle f\left(a_{0},\dots ,a_{n-1},s\right)={\begin{cases}0&\mathrm {if} \;\forall i<n\;\left(\beta (s,i)=a_{i}\right)\\1&\mathrm {if} \;\exists i<n\;\left(\beta (s,i)\neq a_{i}\right)\end{cases}}} 3345: 4181: 5098: 3240: 2458: 5335: 4873: 4784: 4660: 1616: 1918: 6580: 711: 652: 4266: 4225: 3611: 477: 240: 6074: 5847: 1672: 4470: 4096: 3709: 3187: 1025: 3806: 4004: 3435: 2783: 1978: 1798: 5497: 2604: 6311: 3822: 2931: 2324: 2109: 3049: 873: 825: 775: 2313: 1250: 5645: 4377: 1477: 175:
We expect that there is an effective way for this information retrieval process in form of an appropriate total recursive function. We want to find a totally recursive function
2986: 2832: 529: 4298: 1840: 286: 6008:
If we use the above scheme for encoding sequences only in contexts where the length of the sequences is fixed, then no problem arises. In other words, we can use them in an
4707: 2256: 1193: 159:
into natural numbers and thereby prove that the expressive power of recursive function theory is no less than that of the former machine-like formalizations of algorithms.
5259:
is met. Although proving this was most important for establishing an encoding scheme for sequences, we have to fill in some gaps yet. These are related notions similar to
1739: 334: 4890: 3511: 1258: 50: 3383: 3272: 4025: 3749: 3543: 3464: 5801: 5371: 5144: 5020: 1710: 1424: 1009: 865: 407: 383: 339:
There are effective functions which can retrieve each member of the original sequence from a Gödel number of the sequence. Moreover, we can define some of them in a
4404: 4379:
are pairwise comprime as proven in the previous sections, so we can refer to the solution ensured by the Chinese remainder theorem. Thus, from now on we can regard
4328: 3645: 2867: 2005: 1396: 4486: 575: 6080: 5379: 5152: 3066: 2025: 1489: 545:
Our specific solution will depend on a pairing function—there are several ways to implement the pairing function, so one method must be selected. Now, we can
6316:
to the system of simultaneous congruences (provided that the surplus member index is chosen to be 0). Also, the assumptions have to be modified accordingly.
5853: 2452:
We know what “coprime” relation means (in a lucky way, its negation can be formulated in a concise form); thus, let us substitute in the appropriate way:
43: 3292: 4107: 1692:
The second assumption does not concern the Chinese remainder theorem in any way. It will have importance in proving that the specification for
7025: 6990: 6968: 6866: 5353:, and the totality of the resulting function is ensured by everything we have proven till now (i.e. the correctness of the definition of 5025: 2584:{\displaystyle \exists i<n,j<n\;\left(i\neq j\land \exists p\in \mathrm {Prime} \;\left(p\mid m_{i}\land p\mid m_{j}\right)\right)} 3192: 5278: 6942: 68: 109:” in arithmetic-based formalizations of some fundamental notions of mathematics. It is a specific case of the more general idea of 89:
provides an effective way to represent each finite sequence of natural numbers as a single natural number. While a set theoretical
4804: 4715: 6899: 6443: 4602: 1559: 1851: 151:
with the sequences), we can use it to encode whole “architectures” of sophisticated “machines”. For example, we can encode
7044: 6536: 658: 599: 4230: 4189: 3555: 427: 190: 143:
Besides using Gödel numbering to encode unique sequences of symbols into unique natural numbers (i.e. place numbers into
6036: 5809: 5267:(although on uniqueness, “at most one” should be meant here, and the conjunction of both is delayed as a final result). 1627: 1148:{\displaystyle \beta \left(\pi \left(x_{0},m\right),i\right)=\mathrm {rem} \left(x_{0},\left(i+1\right)\cdot m+1\right)} 554: 410: 99: 37: 6499: 4412: 4033: 3653: 3142: 356: 5621:{\displaystyle f\left(a_{0},\dots ,a_{n-1},s\right)=0\leftrightarrow \forall i<n\;\left(\beta (s,i)=a_{i}\right)} 6483: 5260: 3768: 2719:{\displaystyle \exists i<n,j<n,p\in \mathrm {Prime} \;\left(i\neq j\land p\mid m_{i}\land p\mid m_{j}\right)} 3953: 3396: 2736: 1931: 1747: 6015:
But sometimes we need dynamically stretching sequences, or we need to deal with sequences whose length cannot be
5264: 3932:{\displaystyle \forall i<n,j<n\;\left(i\neq j\rightarrow \mathrm {coprime} \left(m_{i},m_{j}\right)\right)} 2437:{\displaystyle \exists i<n,j<n\;\left(i\neq j\land \lnot \mathrm {coprime} \left(m_{i},m_{j}\right)\right)} 2219:{\displaystyle \forall i<n,j<n\;\left(i\neq j\rightarrow \mathrm {coprime} \left(m_{i},m_{j}\right)\right)} 844: 385:(using simple number-theoretical functions, all of which can be defined in a total recursive way) fulfilling the 362: 148: 4227:". To achieve a more ergonomic treatment, from now on all statements should be read as being in the scope of an 6479: 1159: 586: 95: 6267: 2872: 981:{\displaystyle \beta (s,i)=\mathrm {rem} \left(K\left(s\right),\left(i+1\right)\cdot L\left(s\right)+1\right)} 3136:
The assumption was chosen carefully to be as weak as possible, but strong enough to enable us to use it now.
7013: 6854: 6463: 5768:{\displaystyle \forall a_{0},\dots ,a_{n-1}\;\exists s\;\left(f\left(a_{0},\dots ,a_{n-1},s\right)=0\right)} 5337:? The specification declares only an existential quantification, not yet a functional connection. We want a 3139:
The assumed negation of the original statement contains an appropriate existential statement using indices
3010: 781: 731: 5108: 4795: 3762: 3719: 3283: 2934: 2261: 1198: 6016: 4333: 1433: 2947: 344: 114: 2791: 486: 4271: 1807: 253: 122: 6652: 4992:{\displaystyle \beta \left(\pi \left(x_{0},m\right),i\right)=\mathrm {rem} \left(x_{0},m_{i}\right)} 4672: 2232: 1360:{\displaystyle \beta \left(\pi \left(x_{0},m\right),i\right)=\mathrm {rem} \left(x_{0},m_{i}\right)} 1169: 32: 5631:
is a special function; that is, for each fixed combination of all-but-last arguments, the function
5104: 4791: 3715: 3386: 3001: 2938: 1715: 291: 5636: 5338: 4477: 3483: 2595: 1682: 340: 144: 90: 138: 110: 3356: 3245: 7021: 6986: 6964: 6938: 6862: 1012: 4584:{\displaystyle \mathrm {rem} \left(x_{0},m_{i}\right)=\mathrm {rem} \left(a_{i},m_{i}\right)} 4010: 3728: 3522: 3443: 6978: 6952: 6911: 6877: 6250:{\displaystyle \left\langle a_{0},\dots ,a_{n-1},a_{n}\right\rangle \longmapsto \mu a.\left} 6020: 5786: 5356: 5129: 5005: 1695: 1677:
It is needed to meet an assumption of the Chinese remainder theorem (that of being pairwise
1409: 1016: 994: 850: 540: 392: 368: 169: 152: 126: 5783:
Thus, let us choose the minimal possible number that fits well in the specification of the
4382: 4306: 3623: 2845: 1983: 1374: 6447: 5476:{\displaystyle \forall a_{0},\dots ,a_{n-1}\;\exists s\;\forall i<n\;\beta (s,i)=a_{i}} 5249:{\displaystyle \forall a_{0},\dots ,a_{n-1}\;\exists s\;\forall i<n\;\beta (s,i)=a_{i}} 3125:{\displaystyle \forall i\in {\overline {n}}\setminus \left\{0\right\}\left(i\mid m\right)} 2084:{\displaystyle \forall i\in {\overline {n}}\setminus \left\{0\right\}\left(i\mid m\right)} 1548:{\displaystyle \forall i\in {\overline {n}}\setminus \left\{0\right\}\left(i\mid m\right)} 560: 3816:
By reaching contradiction with its negation, we have just proven the original statement:
6957: 1681:). In the literature, sometimes this requirement is replaced with a stronger one, e.g. 550: 409:
function using the Chinese remainder theorem in his article written in 1931. This is a
156: 6921: 6440: 5985:{\displaystyle \left\langle a_{0},\dots ,a_{n-1}\right\rangle \longmapsto \mu a.\left} 4330:
for the system of simultaneous congruences. At least one solution must exist, because
7038: 6931: 5341:
and algorithmic connection: a (total) recursive function that performs the encoding.
2997: 590: 386: 6261:
The corresponding modification of the proof is straightforward, by adding a surplus
42:
the article should be edited for tone, length, and to meet the other conventions of
6507: 6503: 6937:. Graduate Texts in Mathematics. New York • Heidelberg • Berlin: Springer-Verlag. 6495: 6019:
in a static way. In other words, we may encode sequences in an analogous way to
5350: 5275:
Our ultimate question is: what number should stand for the encoding of sequence
830:
It can be proven that this function can be implemented as a recursive function.
546: 82: 4662:”, and remember that we are now in the scope of an implicit quantification for 3617: 2839: 2318:
The proof is by contradiction; assume the negation of the original statement:
1163: 6916: 3437:. Thus (as equality axioms postulate identity to be a congruence relation ) 3340:{\displaystyle \left(A\land \left(A\rightarrow B\right)\right)\rightarrow B} 1686: 722: 118: 106: 6881: 6838: 6400: 6353: 4176:{\displaystyle \forall i<n\;\left(x\equiv a_{i}{\pmod {m_{i}}}\right)} 1980:
automatically satisfies the second assumption (if we define the notation
2011:
Proof that (coprimality) assumption for Chinese remainder theorem is met
6888:(postscript + gzip) (in Hungarian). Budapest: Eötvös Loránd University. 6009: 3390: 2730: 2092: 1678: 2091:. What we want to prove is that we can produce a sequence of pairwise 129:
by encoding a sequence of natural numbers in a single natural number.
168:
surplus member, or as the other member of an ordered pair by using a
5996:
It can be proven (using the notions of the previous section ) that
5345:
Totality, because minimalization is restricted to special functions
5093:{\displaystyle \beta \left(\pi \left(x_{0},m\right),i\right)=a_{i}} 1689:
function, but the stronger premise is not required for this proof.
5779:
The Gödel numbering function g can be chosen to be total recursive
3278:
Using an (object) theorem of the propositional calculus as a lemma
6891: 3235:{\displaystyle i-j\in {\overline {n}}\setminus \left\{0\right\}} 5330:{\displaystyle \left\langle a_{0},\dots ,a_{n-1}\right\rangle } 5002:
is good for achieving what we declared in the specification of
2598:(but note allowing a constraint-like notation in quantifiers): 5349:
This gap can be filled in a straightforward way: we shall use
721:
We shall use another auxiliary function that will compute the
15: 1166:(as these notions are used in computer science): by defining 246:, called the Gödel number of the sequence, such that for all 4868:{\displaystyle \mathrm {rem} \left(x_{0},m_{i}\right)=a_{i}} 4779:{\displaystyle \mathrm {rem} \left(a_{i},m_{i}\right)=a_{i}} 4666:, so we don't repeat its quantification for each statement. 6798: 4655:{\displaystyle \forall i<n\;\left(a_{i}<m_{i}\right)} 1406:
For proving the correctness of the above definition of the
5373:
by meeting its specification). In fact, the specification
3808:. This establishes the contradiction we wanted to reach. 365:, we can constructively define such a recursive function 5126:
We have just proven the correctness of the definition of
2095:
numbers in a way that will turn out to correspond to the
1611:{\displaystyle \forall i<n\left(a_{i}<m_{i}\right)} 4186:
Many statements will be said below, all beginning with "
1913:{\displaystyle a_{i}=\mathrm {rem} ({\tilde {x}},m_{i})} 6494:
either proof theoretic (algebraic steps); or semantic (
117:
can be regarded as a formalization of the notion of an
6589: 6539: 6270: 6083: 6039: 5856: 5812: 5789: 5648: 5500: 5382: 5359: 5281: 5155: 5132: 5028: 5008: 4893: 4807: 4718: 4675: 4605: 4489: 4415: 4385: 4336: 4309: 4274: 4233: 4192: 4110: 4036: 4013: 3956: 3825: 3771: 3731: 3656: 3626: 3558: 3525: 3486: 3446: 3399: 3359: 3295: 3248: 3195: 3145: 3069: 3013: 2950: 2875: 2848: 2794: 2739: 2607: 2461: 2327: 2264: 2235: 2112: 2096: 2028: 1986: 1934: 1854: 1810: 1750: 1718: 1698: 1630: 1562: 1492: 1436: 1412: 1377: 1261: 1201: 1172: 1028: 997: 876: 853: 784: 734: 661: 602: 563: 489: 430: 395: 371: 294: 256: 193: 6575:{\displaystyle f:\mathbb {N} ^{n+1}\to \mathbb {N} } 6478:
see also related notions, e.g. “equals for equals” (
991:
will work, according to the specification we expect
706:{\displaystyle L\left(\pi \left(x,y\right)\right)=y} 647:{\displaystyle K\left(\pi \left(x,y\right)\right)=x} 553:
of the pairing function. We need only to know its “
483:, called the Gödel number of the sequence such that 4884:Our original goal was to prove that the definition 4261:{\displaystyle \forall i<n\;\left(\dots \right)} 4220:{\displaystyle \forall i<n\;\left(\dots \right)} 3757:However, in the negation of the original statement 3606:{\displaystyle p\mid m_{i}-\left(i+1\right)\cdot m} 3242:, thus the mentioned assumption can be applied, so 472:{\displaystyle \langle a_{0},\dots a_{n-1}\rangle } 235:{\displaystyle \langle a_{0},\dots a_{n-1}\rangle } 6956: 6930: 6804: 6574: 6345: 6343: 6305: 6249: 6069:{\displaystyle g:\mathbb {N} ^{*}\to \mathbb {N} } 6068: 5984: 5842:{\displaystyle g:\mathbb {N} ^{n}\to \mathbb {N} } 5841: 5795: 5767: 5620: 5475: 5365: 5329: 5271:Uniqueness of encoding, achieved by minimalization 5248: 5138: 5092: 5014: 4991: 4867: 4778: 4701: 4654: 4583: 4464: 4398: 4371: 4322: 4292: 4260: 4219: 4175: 4090: 4019: 3998: 3931: 3800: 3743: 3703: 3639: 3605: 3537: 3505: 3458: 3429: 3377: 3339: 3266: 3234: 3181: 3124: 3043: 2980: 2925: 2861: 2826: 2777: 2718: 2583: 2436: 2307: 2250: 2218: 2083: 1999: 1972: 1912: 1834: 1792: 1733: 1704: 1667:{\displaystyle 1\mid m\land \dots \land n-1\mid m} 1666: 1610: 1547: 1471: 1418: 1390: 1359: 1244: 1187: 1147: 1003: 980: 859: 819: 769: 705: 646: 569: 523: 471: 401: 377: 328: 280: 234: 6330: 6328: 6030:Length can be stored simply as a surplus member: 3714:Thus, summarizing the above three statements, by 1011:to satisfy. We can use a more concise form by an 4465:{\displaystyle x_{0}\equiv a_{i}{\pmod {m_{i}}}} 4091:{\displaystyle x\equiv a_{n-1}{\pmod {m_{n-1}}}} 3704:{\displaystyle m_{i}-\left(i+1\right)\cdot m=1} 3182:{\displaystyle i<n\land j<n\land i\neq j} 1741:solution of the simultaneous congruence system 6482:), and another related notion Leibniz's law / 3947:We build a system of simultaneous congruences 4595:Resorting to the second hand-tuned assumption 3801:{\displaystyle \exists p\in \mathrm {Prime} } 3616:should also hold. But after substituting the 3477:The negation of original statement contained 1158:Let us achieve even more readability by more 479:, there exists an appropriate natural number 242:, there exists an appropriate natural number 8: 3999:{\displaystyle x\equiv a_{0}{\pmod {m_{0}}}} 3430:{\displaystyle p\mid i-j\rightarrow p\mid m} 3056:Resorting to the first hand-tuned assumption 2778:{\displaystyle p\mid m_{i}\land p\mid m_{j}} 1973:{\displaystyle \forall i<n\;(a_{i}<m)} 1793:{\displaystyle x\equiv a_{i}{\pmod {m_{i}}}} 466: 431: 229: 194: 2016: 44:Knowledge (XXG):Manual of Style/Mathematics 7018:Logic for Mathematics and Computer Science 6859:Logic for Mathematics and Computer Science 6753: 6740: 6681: 6668: 6190: 5931: 5694: 5687: 5576: 5441: 5428: 5421: 5214: 5201: 5194: 4618: 4246: 4205: 4123: 3850: 2658: 2530: 2486: 2352: 2137: 1947: 6915: 6890:Each chapter is downloadable verbatim on 6784: 6732: 6712: 6660: 6647: 6621: 6602: 6588: 6568: 6567: 6552: 6548: 6547: 6538: 6474: 6472: 6293: 6280: 6269: 6231: 6163: 6131: 6112: 6093: 6082: 6062: 6061: 6052: 6048: 6047: 6038: 5966: 5885: 5866: 5855: 5835: 5834: 5825: 5821: 5820: 5811: 5788: 5731: 5712: 5675: 5656: 5647: 5607: 5532: 5513: 5499: 5467: 5409: 5390: 5381: 5358: 5310: 5291: 5280: 5240: 5182: 5163: 5154: 5131: 5084: 5049: 5027: 5007: 4978: 4965: 4945: 4914: 4892: 4859: 4841: 4828: 4808: 4806: 4770: 4752: 4739: 4719: 4717: 4693: 4680: 4674: 4641: 4628: 4604: 4570: 4557: 4537: 4523: 4510: 4490: 4488: 4452: 4439: 4433: 4420: 4414: 4390: 4384: 4357: 4341: 4335: 4314: 4308: 4273: 4232: 4191: 4158: 4145: 4139: 4109: 4072: 4059: 4047: 4035: 4012: 3986: 3973: 3967: 3955: 3913: 3900: 3868: 3824: 3781: 3770: 3730: 3661: 3655: 3631: 3625: 3569: 3557: 3524: 3497: 3485: 3445: 3398: 3358: 3294: 3247: 3208: 3194: 3144: 3079: 3068: 3012: 2949: 2893: 2880: 2874: 2853: 2847: 2818: 2805: 2793: 2769: 2750: 2738: 2705: 2686: 2641: 2606: 2565: 2546: 2513: 2460: 2418: 2405: 2373: 2326: 2269: 2263: 2234: 2200: 2187: 2155: 2111: 2038: 2027: 1991: 1985: 1955: 1933: 1901: 1883: 1882: 1868: 1859: 1853: 1809: 1780: 1767: 1761: 1749: 1720: 1719: 1717: 1697: 1629: 1597: 1584: 1561: 1502: 1491: 1457: 1441: 1435: 1411: 1382: 1376: 1346: 1333: 1313: 1282: 1260: 1206: 1200: 1171: 1100: 1080: 1049: 1027: 996: 898: 875: 852: 785: 783: 735: 733: 660: 601: 562: 515: 488: 454: 438: 429: 394: 370: 320: 293: 255: 217: 201: 192: 69:Learn how and when to remove this message 6306:{\displaystyle x\equiv n{\pmod {m_{0}}}} 5111:, looking at the above three equations. 3282:We can prove by several means known in 2926:{\displaystyle m_{i}-m_{j}=(i-j)\cdot m} 585:denote the pairing function and its two 105:It is usually used to build sequential “ 6324: 6012:way as arrays are used in programming. 4101:We can write it in a more concise way: 3218: 3089: 2048: 1712:is met eventually. It ensures that an 1512: 3943:The system of simultaneous congruences 1479:be a sequence of natural numbers. Let 6392: 6390: 6388: 6386: 3060:Now we must resort to our assumption 3044:{\displaystyle p\mid i-j\lor p\mid m} 820:{\displaystyle \mathrm {rem} (7,2)=1} 770:{\displaystyle \mathrm {rem} (5,3)=2} 7: 6900:"Why Functional Programming Matters" 6837:: 101 (=Thm 10.7, Conseq 10.8), see 2308:{\displaystyle m_{i}=(i+1)\cdot m+1} 1245:{\displaystyle m_{i}=(i+1)\cdot m+1} 589:functions, respectively, satisfying 424:-length sequence of natural numbers 187:-length sequence of natural numbers 6985:(in Hungarian). Budapest: Typotex. 6288: 4447: 4372:{\displaystyle m_{0},\dots m_{n-1}} 4153: 4067: 3981: 2937:axioms postulate identity to be a 1775: 1472:{\displaystyle a_{0},\dots a_{n-1}} 834:Using the Chinese remainder theorem 343:way, so we can go well beyond mere 7014:"Supplementary Text, Arithmetic I" 6855:"Supplementary Text, Arithmetic I" 6741: 6736: 6733: 6669: 6664: 6661: 6178: 5919: 5688: 5649: 5564: 5429: 5422: 5383: 5202: 5195: 5156: 4952: 4949: 4946: 4815: 4812: 4809: 4726: 4723: 4720: 4606: 4544: 4541: 4538: 4497: 4494: 4491: 4275: 4234: 4193: 4111: 3887: 3884: 3881: 3878: 3875: 3872: 3869: 3826: 3794: 3791: 3788: 3785: 3782: 3772: 3070: 2981:{\displaystyle p\mid (i-j)\cdot m} 2654: 2651: 2648: 2645: 2642: 2608: 2526: 2523: 2520: 2517: 2514: 2504: 2462: 2392: 2389: 2386: 2383: 2380: 2377: 2374: 2370: 2328: 2236: 2174: 2171: 2168: 2165: 2162: 2159: 2156: 2113: 2029: 1935: 1875: 1872: 1869: 1563: 1493: 1320: 1317: 1314: 1173: 1087: 1084: 1081: 905: 902: 899: 792: 789: 786: 742: 739: 736: 14: 2827:{\displaystyle p\mid m_{i}-m_{j}} 1621:The first assumption is meant as 847:, we can prove that implementing 524:{\displaystyle \beta (a,i)=a_{i}} 4599:Recall the second assumption, “ 2097:Implementation of the β function 839:Implementation of the β function 350: 20: 6959:Gödel's Incompleteness Theorems 6281: 4440: 4293:{\displaystyle \forall i<n(} 4146: 4060: 3974: 1835:{\displaystyle 0\leq i\leq n-1} 1768: 389:given above. Gödel defined the 281:{\displaystyle 0\leq i\leq n-1} 179:with the property that for all 6774: 6762: 6702: 6690: 6564: 6299: 6282: 6142: 6058: 5902: 5831: 5597: 5585: 5561: 5457: 5445: 5230: 5218: 5146:: its specification requiring 4702:{\displaystyle a_{i}<m_{i}} 4476:which means (by definition of 4458: 4441: 4287: 4164: 4147: 4084: 4061: 3992: 3975: 3865: 3415: 3331: 3315: 2969: 2957: 2914: 2902: 2290: 2278: 2251:{\displaystyle \forall i<n} 2152: 1967: 1948: 1907: 1888: 1879: 1786: 1769: 1725: 1227: 1215: 1188:{\displaystyle \forall i<n} 892: 880: 808: 796: 758: 746: 505: 493: 310: 298: 1: 6508:Veitch diagram / Karnaugh map 6415:: 56 (= Chpt IV, § 5, note 1) 5491:satisfying the specification 723:remainder for natural numbers 717:Remainder for natural numbers 100:primitive recursive functions 87:Gödel numbering for sequences 3213: 3084: 2043: 1734:{\displaystyle {\tilde {x}}} 1507: 411:primitive recursive function 329:{\displaystyle f(a,i)=a_{i}} 7012:Burris, Stanley N. (1998). 6983:Gödel nemteljességi tételei 6963:. Oxford University Press. 6853:Burris, Stanley N. (1998). 6834: 6825:: 53 (= Def 3.20, Lem 3.21) 6500:method of analytic tableaux 6436: 6396: 6349: 3812:End of reductio ad absurdum 3506:{\displaystyle p\mid m_{i}} 2869:-sequence notation, we get 361:By an ingenious use of the 121:, and can be regarded as a 40:. The specific problem is: 7061: 6998: 6822: 6519: 6484:identity of indiscernibles 6459: 6424: 6412: 6377: 6365: 6334: 3473:Reaching the contradiction 3004:property is used), we get 1924:A stronger assumption for 538: 354: 136: 36:to meet Knowledge (XXG)'s 6979:Smullyan, Raymond Merrill 6953:Smullyan, Raymond Merrill 3765:and restricted to primes 3378:{\displaystyle i-j\mid m} 3267:{\displaystyle i-j\mid m} 845:Chinese remainder theorem 363:Chinese remainder theorem 149:one-to-one correspondence 115:recursive function theory 96:total recursive functions 6929:Monk, J. Donald (1976). 6480:referential transparency 5122:Existence and uniqueness 5103:This can be seen now by 4303:Let us chose a solution 3763:existentially quantified 3516:and we have just proved 2729:Because of a theorem on 1015:(constituting a sort of 549:from the details of the 535:Using a pairing function 351:Gödel's β-function lemma 4020:{\displaystyle \vdots } 3744:{\displaystyle p\mid 1} 3538:{\displaystyle p\mid m} 3459:{\displaystyle p\mid m} 1398:notation in the proof. 6917:10.1093/comjnl/32.2.98 6806: 6576: 6462:: Supplementary Text, 6307: 6251: 6070: 6000:is (total) recursive. 5986: 5843: 5797: 5796:{\displaystyle \beta } 5769: 5639:in its last argument: 5622: 5477: 5367: 5366:{\displaystyle \beta } 5331: 5250: 5140: 5139:{\displaystyle \beta } 5094: 5016: 5015:{\displaystyle \beta } 4993: 4869: 4780: 4703: 4669:The second assumption 4656: 4585: 4466: 4400: 4373: 4324: 4294: 4268:quantification. Thus, 4262: 4221: 4177: 4092: 4021: 4000: 3933: 3802: 3745: 3705: 3641: 3607: 3539: 3507: 3460: 3431: 3379: 3341: 3284:propositional calculus 3268: 3236: 3183: 3126: 3045: 2982: 2927: 2863: 2828: 2785:allows us to also say 2779: 2720: 2585: 2438: 2309: 2252: 2220: 2085: 2017:Hand-tuned assumptions 2001: 1974: 1914: 1836: 1794: 1735: 1706: 1705:{\displaystyle \beta } 1668: 1612: 1549: 1473: 1420: 1419:{\displaystyle \beta } 1402:Hand-tuned assumptions 1392: 1361: 1246: 1189: 1149: 1005: 1004:{\displaystyle \beta } 982: 861: 860:{\displaystyle \beta } 821: 771: 707: 648: 571: 525: 473: 403: 402:{\displaystyle \beta } 379: 378:{\displaystyle \beta } 330: 282: 236: 6898:Hughes, John (1989). 6882:"Rekurzív függvények" 6807: 6577: 6308: 6252: 6071: 5987: 5844: 5798: 5770: 5623: 5478: 5368: 5332: 5251: 5141: 5095: 5017: 4994: 4870: 4781: 4704: 4657: 4586: 4467: 4401: 4399:{\displaystyle x_{0}} 4374: 4325: 4323:{\displaystyle x_{0}} 4295: 4263: 4222: 4178: 4093: 4022: 4001: 3934: 3803: 3746: 3706: 3642: 3640:{\displaystyle m_{i}} 3608: 3540: 3508: 3461: 3432: 3380: 3342: 3269: 3237: 3184: 3127: 3046: 2983: 2928: 2864: 2862:{\displaystyle m_{k}} 2829: 2780: 2721: 2586: 2439: 2310: 2253: 2221: 2086: 2002: 2000:{\displaystyle m_{i}} 1975: 1915: 1837: 1795: 1736: 1707: 1669: 1613: 1550: 1483:be chosen to satisfy 1474: 1421: 1393: 1391:{\displaystyle m_{i}} 1362: 1247: 1190: 1150: 1006: 983: 862: 822: 772: 708: 649: 572: 526: 474: 404: 380: 331: 283: 237: 7045:Computability theory 6924:on December 8, 2006. 6587: 6537: 6268: 6081: 6037: 5854: 5810: 5787: 5646: 5498: 5380: 5357: 5279: 5153: 5130: 5114:(The large scope of 5026: 5006: 4891: 4805: 4716: 4673: 4603: 4487: 4413: 4383: 4334: 4307: 4272: 4231: 4190: 4108: 4034: 4011: 3954: 3823: 3769: 3729: 3654: 3624: 3556: 3523: 3484: 3444: 3397: 3357: 3293: 3246: 3193: 3143: 3067: 3011: 2948: 2873: 2846: 2792: 2737: 2605: 2459: 2325: 2262: 2233: 2110: 2026: 1984: 1932: 1852: 1808: 1748: 1716: 1696: 1628: 1560: 1490: 1434: 1410: 1375: 1259: 1199: 1170: 1026: 995: 874: 851: 782: 732: 659: 600: 570:{\displaystyle \pi } 561: 487: 428: 393: 369: 292: 254: 191: 123:programming language 51:improve this article 3002:irreducible element 2939:congruence relation 2019:, we required that 345:proofs of existence 6933:Mathematical Logic 6886:Matematikai logika 6802: 6797: 6572: 6446:2006-12-08 at the 6303: 6247: 6066: 5982: 5839: 5793: 5765: 5618: 5473: 5363: 5327: 5246: 5136: 5090: 5012: 4989: 4865: 4776: 4699: 4652: 4581: 4478:modular arithmetic 4462: 4396: 4369: 4320: 4290: 4258: 4217: 4173: 4088: 4017: 3996: 3929: 3798: 3754:should also hold. 3741: 3701: 3637: 3603: 3535: 3503: 3456: 3427: 3375: 3337: 3264: 3232: 3179: 3122: 3041: 2978: 2923: 2859: 2824: 2775: 2716: 2596:prenex normal form 2581: 2434: 2305: 2248: 2216: 2081: 1997: 1970: 1910: 1832: 1790: 1731: 1702: 1664: 1608: 1545: 1469: 1416: 1388: 1371:We shall use this 1357: 1242: 1185: 1145: 1001: 978: 857: 817: 767: 703: 644: 567: 521: 469: 399: 375: 357:Gödel's β function 326: 278: 232: 145:mutually exclusive 7027:978-0-13-285974-5 7020:. Prentice Hall. 6992:978-963-9326-99-6 6970:978-0-19-504672-4 6876:Csirmaz, László; 6868:978-0-13-285974-5 6861:. Prentice Hall. 6522:: 45 (= Def 3.1.) 6427:: 58 (= Thm 3.46) 3216: 3087: 2838:Substituting the 2229:remembering that 2046: 1891: 1728: 1510: 1013:abuse of notation 163:Accessing members 153:Markov algorithms 98:, and in fact by 79: 78: 71: 38:quality standards 29:This article may 7052: 7031: 6996: 6974: 6962: 6948: 6936: 6925: 6920:. Archived from 6919: 6904:Computer Journal 6889: 6872: 6841: 6832: 6826: 6820: 6814: 6811: 6809: 6808: 6803: 6801: 6800: 6794: 6790: 6789: 6788: 6739: 6722: 6718: 6717: 6716: 6667: 6643: 6639: 6632: 6631: 6607: 6606: 6581: 6579: 6578: 6573: 6571: 6563: 6562: 6551: 6531:E.g. defined by 6529: 6523: 6517: 6511: 6492: 6486: 6476: 6467: 6457: 6451: 6434: 6428: 6422: 6416: 6410: 6404: 6394: 6381: 6375: 6369: 6363: 6357: 6347: 6338: 6332: 6312: 6310: 6309: 6304: 6302: 6298: 6297: 6256: 6254: 6253: 6248: 6246: 6242: 6241: 6237: 6236: 6235: 6223: 6219: 6168: 6167: 6141: 6137: 6136: 6135: 6123: 6122: 6098: 6097: 6075: 6073: 6072: 6067: 6065: 6057: 6056: 6051: 6023:in programming. 6004:Access of length 5991: 5989: 5988: 5983: 5981: 5977: 5976: 5972: 5971: 5970: 5958: 5954: 5901: 5897: 5896: 5895: 5871: 5870: 5848: 5846: 5845: 5840: 5838: 5830: 5829: 5824: 5802: 5800: 5799: 5794: 5774: 5772: 5771: 5766: 5764: 5760: 5753: 5749: 5742: 5741: 5717: 5716: 5686: 5685: 5661: 5660: 5627: 5625: 5624: 5619: 5617: 5613: 5612: 5611: 5554: 5550: 5543: 5542: 5518: 5517: 5482: 5480: 5479: 5474: 5472: 5471: 5420: 5419: 5395: 5394: 5372: 5370: 5369: 5364: 5336: 5334: 5333: 5328: 5326: 5322: 5321: 5320: 5296: 5295: 5255: 5253: 5252: 5247: 5245: 5244: 5193: 5192: 5168: 5167: 5145: 5143: 5142: 5137: 5099: 5097: 5096: 5091: 5089: 5088: 5076: 5072: 5065: 5061: 5054: 5053: 5021: 5019: 5018: 5013: 4998: 4996: 4995: 4990: 4988: 4984: 4983: 4982: 4970: 4969: 4955: 4941: 4937: 4930: 4926: 4919: 4918: 4874: 4872: 4871: 4866: 4864: 4863: 4851: 4847: 4846: 4845: 4833: 4832: 4818: 4785: 4783: 4782: 4777: 4775: 4774: 4762: 4758: 4757: 4756: 4744: 4743: 4729: 4708: 4706: 4705: 4700: 4698: 4697: 4685: 4684: 4661: 4659: 4658: 4653: 4651: 4647: 4646: 4645: 4633: 4632: 4590: 4588: 4587: 4582: 4580: 4576: 4575: 4574: 4562: 4561: 4547: 4533: 4529: 4528: 4527: 4515: 4514: 4500: 4471: 4469: 4468: 4463: 4461: 4457: 4456: 4438: 4437: 4425: 4424: 4405: 4403: 4402: 4397: 4395: 4394: 4378: 4376: 4375: 4370: 4368: 4367: 4346: 4345: 4329: 4327: 4326: 4321: 4319: 4318: 4299: 4297: 4296: 4291: 4267: 4265: 4264: 4259: 4257: 4226: 4224: 4223: 4218: 4216: 4182: 4180: 4179: 4174: 4172: 4168: 4167: 4163: 4162: 4144: 4143: 4097: 4095: 4094: 4089: 4087: 4083: 4082: 4058: 4057: 4026: 4024: 4023: 4018: 4005: 4003: 4002: 3997: 3995: 3991: 3990: 3972: 3971: 3938: 3936: 3935: 3930: 3928: 3924: 3923: 3919: 3918: 3917: 3905: 3904: 3890: 3807: 3805: 3804: 3799: 3797: 3750: 3748: 3747: 3742: 3710: 3708: 3707: 3702: 3688: 3684: 3666: 3665: 3646: 3644: 3643: 3638: 3636: 3635: 3612: 3610: 3609: 3604: 3596: 3592: 3574: 3573: 3544: 3542: 3541: 3536: 3512: 3510: 3509: 3504: 3502: 3501: 3465: 3463: 3462: 3457: 3436: 3434: 3433: 3428: 3389:property of the 3384: 3382: 3381: 3376: 3346: 3344: 3343: 3338: 3330: 3326: 3325: 3321: 3273: 3271: 3270: 3265: 3241: 3239: 3238: 3233: 3231: 3217: 3209: 3188: 3186: 3185: 3180: 3131: 3129: 3128: 3123: 3121: 3117: 3102: 3088: 3080: 3050: 3048: 3047: 3042: 2987: 2985: 2984: 2979: 2932: 2930: 2929: 2924: 2898: 2897: 2885: 2884: 2868: 2866: 2865: 2860: 2858: 2857: 2833: 2831: 2830: 2825: 2823: 2822: 2810: 2809: 2784: 2782: 2781: 2776: 2774: 2773: 2755: 2754: 2725: 2723: 2722: 2717: 2715: 2711: 2710: 2709: 2691: 2690: 2657: 2590: 2588: 2587: 2582: 2580: 2576: 2575: 2571: 2570: 2569: 2551: 2550: 2529: 2443: 2441: 2440: 2435: 2433: 2429: 2428: 2424: 2423: 2422: 2410: 2409: 2395: 2314: 2312: 2311: 2306: 2274: 2273: 2257: 2255: 2254: 2249: 2225: 2223: 2222: 2217: 2215: 2211: 2210: 2206: 2205: 2204: 2192: 2191: 2177: 2090: 2088: 2087: 2082: 2080: 2076: 2061: 2047: 2039: 2006: 2004: 2003: 1998: 1996: 1995: 1979: 1977: 1976: 1971: 1960: 1959: 1919: 1917: 1916: 1911: 1906: 1905: 1893: 1892: 1884: 1878: 1864: 1863: 1841: 1839: 1838: 1833: 1799: 1797: 1796: 1791: 1789: 1785: 1784: 1766: 1765: 1740: 1738: 1737: 1732: 1730: 1729: 1721: 1711: 1709: 1708: 1703: 1673: 1671: 1670: 1665: 1617: 1615: 1614: 1609: 1607: 1603: 1602: 1601: 1589: 1588: 1554: 1552: 1551: 1546: 1544: 1540: 1525: 1511: 1503: 1478: 1476: 1475: 1470: 1468: 1467: 1446: 1445: 1425: 1423: 1422: 1417: 1397: 1395: 1394: 1389: 1387: 1386: 1366: 1364: 1363: 1358: 1356: 1352: 1351: 1350: 1338: 1337: 1323: 1309: 1305: 1298: 1294: 1287: 1286: 1251: 1249: 1248: 1243: 1211: 1210: 1194: 1192: 1191: 1186: 1154: 1152: 1151: 1146: 1144: 1140: 1127: 1123: 1105: 1104: 1090: 1076: 1072: 1065: 1061: 1054: 1053: 1017:pattern matching 1010: 1008: 1007: 1002: 987: 985: 984: 979: 977: 973: 966: 949: 945: 927: 908: 866: 864: 863: 858: 826: 824: 823: 818: 795: 776: 774: 773: 768: 745: 712: 710: 709: 704: 696: 692: 691: 687: 653: 651: 650: 645: 637: 633: 632: 628: 576: 574: 573: 568: 541:Pairing function 530: 528: 527: 522: 520: 519: 478: 476: 475: 470: 465: 464: 443: 442: 408: 406: 405: 400: 384: 382: 381: 376: 335: 333: 332: 327: 325: 324: 287: 285: 284: 279: 241: 239: 238: 233: 228: 227: 206: 205: 170:pairing function 74: 67: 63: 60: 54: 24: 23: 16: 7060: 7059: 7055: 7054: 7053: 7051: 7050: 7049: 7035: 7034: 7028: 7011: 7008: 6997:Translation of 6993: 6977: 6971: 6951: 6945: 6928: 6897: 6875: 6869: 6852: 6849: 6844: 6833: 6829: 6821: 6817: 6796: 6795: 6780: 6758: 6754: 6730: 6724: 6723: 6708: 6686: 6682: 6658: 6648: 6617: 6598: 6597: 6593: 6585: 6584: 6546: 6535: 6534: 6530: 6526: 6518: 6514: 6493: 6489: 6477: 6470: 6458: 6454: 6448:Wayback Machine 6435: 6431: 6423: 6419: 6411: 6407: 6395: 6384: 6376: 6372: 6364: 6360: 6348: 6341: 6333: 6326: 6322: 6289: 6266: 6265: 6227: 6203: 6199: 6195: 6191: 6159: 6158: 6154: 6127: 6108: 6089: 6088: 6084: 6079: 6078: 6046: 6035: 6034: 6006: 5962: 5944: 5940: 5936: 5932: 5918: 5914: 5881: 5862: 5861: 5857: 5852: 5851: 5819: 5808: 5807: 5785: 5784: 5781: 5727: 5708: 5707: 5703: 5699: 5695: 5671: 5652: 5644: 5643: 5603: 5581: 5577: 5528: 5509: 5508: 5504: 5496: 5495: 5463: 5405: 5386: 5378: 5377: 5355: 5354: 5347: 5306: 5287: 5286: 5282: 5277: 5276: 5273: 5236: 5178: 5159: 5151: 5150: 5128: 5127: 5124: 5080: 5045: 5044: 5040: 5036: 5032: 5024: 5023: 5004: 5003: 4974: 4961: 4960: 4956: 4910: 4909: 4905: 4901: 4897: 4889: 4888: 4882: 4855: 4837: 4824: 4823: 4819: 4803: 4802: 4766: 4748: 4735: 4734: 4730: 4714: 4713: 4689: 4676: 4671: 4670: 4637: 4624: 4623: 4619: 4601: 4600: 4597: 4566: 4553: 4552: 4548: 4519: 4506: 4505: 4501: 4485: 4484: 4448: 4429: 4416: 4411: 4410: 4386: 4381: 4380: 4353: 4337: 4332: 4331: 4310: 4305: 4304: 4270: 4269: 4247: 4229: 4228: 4206: 4188: 4187: 4154: 4135: 4128: 4124: 4106: 4105: 4068: 4043: 4032: 4031: 4009: 4008: 3982: 3963: 3952: 3951: 3945: 3909: 3896: 3895: 3891: 3855: 3851: 3821: 3820: 3814: 3767: 3766: 3727: 3726: 3674: 3670: 3657: 3652: 3651: 3627: 3622: 3621: 3582: 3578: 3565: 3554: 3553: 3521: 3520: 3493: 3482: 3481: 3475: 3469:can be proven. 3442: 3441: 3395: 3394: 3355: 3354: 3311: 3307: 3300: 3296: 3291: 3290: 3280: 3244: 3243: 3221: 3191: 3190: 3189:; this entails 3141: 3140: 3107: 3103: 3092: 3065: 3064: 3058: 3009: 3008: 3000:(note that the 2946: 2945: 2889: 2876: 2871: 2870: 2849: 2844: 2843: 2814: 2801: 2790: 2789: 2765: 2746: 2735: 2734: 2701: 2682: 2663: 2659: 2603: 2602: 2594:Using a “more” 2561: 2542: 2535: 2531: 2491: 2487: 2457: 2456: 2450: 2414: 2401: 2400: 2396: 2357: 2353: 2323: 2322: 2265: 2260: 2259: 2231: 2230: 2196: 2183: 2182: 2178: 2142: 2138: 2108: 2107: 2066: 2062: 2051: 2024: 2023: 2015:In the section 2013: 1987: 1982: 1981: 1951: 1930: 1929: 1897: 1855: 1850: 1849: 1845:also satisfies 1806: 1805: 1776: 1757: 1746: 1745: 1714: 1713: 1694: 1693: 1685:built with the 1626: 1625: 1593: 1580: 1579: 1575: 1558: 1557: 1530: 1526: 1515: 1488: 1487: 1453: 1437: 1432: 1431: 1408: 1407: 1404: 1378: 1373: 1372: 1342: 1329: 1328: 1324: 1278: 1277: 1273: 1269: 1265: 1257: 1256: 1252:, we can write 1202: 1197: 1196: 1168: 1167: 1113: 1109: 1096: 1095: 1091: 1045: 1044: 1040: 1036: 1032: 1024: 1023: 993: 992: 956: 935: 931: 917: 913: 909: 872: 871: 849: 848: 841: 836: 780: 779: 730: 729: 719: 677: 673: 669: 665: 657: 656: 618: 614: 610: 606: 598: 597: 559: 558: 543: 537: 511: 485: 484: 450: 434: 426: 425: 391: 390: 367: 366: 359: 353: 316: 290: 289: 252: 251: 213: 197: 189: 188: 165: 157:Turing machines 141: 139:Gödel numbering 135: 133:Gödel numbering 113:. For example, 111:Gödel numbering 75: 64: 58: 55: 48: 25: 21: 12: 11: 5: 7058: 7056: 7048: 7047: 7037: 7036: 7033: 7032: 7026: 7007: 7006:External links 7004: 7003: 7002: 6991: 6975: 6969: 6949: 6943: 6926: 6895: 6878:Hajnal, András 6873: 6867: 6848: 6845: 6843: 6842: 6827: 6815: 6813: 6812: 6799: 6793: 6787: 6783: 6779: 6776: 6773: 6770: 6767: 6764: 6761: 6757: 6752: 6749: 6746: 6743: 6738: 6735: 6731: 6729: 6726: 6725: 6721: 6715: 6711: 6707: 6704: 6701: 6698: 6695: 6692: 6689: 6685: 6680: 6677: 6674: 6671: 6666: 6663: 6659: 6657: 6654: 6653: 6651: 6646: 6642: 6638: 6635: 6630: 6627: 6624: 6620: 6616: 6613: 6610: 6605: 6601: 6596: 6592: 6582: 6570: 6566: 6561: 6558: 6555: 6550: 6545: 6542: 6524: 6512: 6487: 6468: 6452: 6429: 6417: 6405: 6382: 6370: 6358: 6352:: 99–100 (see 6339: 6323: 6321: 6318: 6314: 6313: 6301: 6296: 6292: 6287: 6284: 6279: 6276: 6273: 6259: 6258: 6245: 6240: 6234: 6230: 6226: 6222: 6218: 6215: 6212: 6209: 6206: 6202: 6198: 6194: 6189: 6186: 6183: 6180: 6177: 6174: 6171: 6166: 6162: 6157: 6153: 6150: 6147: 6144: 6140: 6134: 6130: 6126: 6121: 6118: 6115: 6111: 6107: 6104: 6101: 6096: 6092: 6087: 6076: 6064: 6060: 6055: 6050: 6045: 6042: 6005: 6002: 5994: 5993: 5980: 5975: 5969: 5965: 5961: 5957: 5953: 5950: 5947: 5943: 5939: 5935: 5930: 5927: 5924: 5921: 5917: 5913: 5910: 5907: 5904: 5900: 5894: 5891: 5888: 5884: 5880: 5877: 5874: 5869: 5865: 5860: 5849: 5837: 5833: 5828: 5823: 5818: 5815: 5792: 5780: 5777: 5776: 5775: 5763: 5759: 5756: 5752: 5748: 5745: 5740: 5737: 5734: 5730: 5726: 5723: 5720: 5715: 5711: 5706: 5702: 5698: 5693: 5690: 5684: 5681: 5678: 5674: 5670: 5667: 5664: 5659: 5655: 5651: 5629: 5628: 5616: 5610: 5606: 5602: 5599: 5596: 5593: 5590: 5587: 5584: 5580: 5575: 5572: 5569: 5566: 5563: 5560: 5557: 5553: 5549: 5546: 5541: 5538: 5535: 5531: 5527: 5524: 5521: 5516: 5512: 5507: 5503: 5484: 5483: 5470: 5466: 5462: 5459: 5456: 5453: 5450: 5447: 5444: 5440: 5437: 5434: 5431: 5427: 5424: 5418: 5415: 5412: 5408: 5404: 5401: 5398: 5393: 5389: 5385: 5362: 5351:minimalization 5346: 5343: 5325: 5319: 5316: 5313: 5309: 5305: 5302: 5299: 5294: 5290: 5285: 5272: 5269: 5257: 5256: 5243: 5239: 5235: 5232: 5229: 5226: 5223: 5220: 5217: 5213: 5210: 5207: 5204: 5200: 5197: 5191: 5188: 5185: 5181: 5177: 5174: 5171: 5166: 5162: 5158: 5135: 5123: 5120: 5087: 5083: 5079: 5075: 5071: 5068: 5064: 5060: 5057: 5052: 5048: 5043: 5039: 5035: 5031: 5011: 5000: 4999: 4987: 4981: 4977: 4973: 4968: 4964: 4959: 4954: 4951: 4948: 4944: 4940: 4936: 4933: 4929: 4925: 4922: 4917: 4913: 4908: 4904: 4900: 4896: 4881: 4878: 4877: 4876: 4862: 4858: 4854: 4850: 4844: 4840: 4836: 4831: 4827: 4822: 4817: 4814: 4811: 4788: 4787: 4773: 4769: 4765: 4761: 4755: 4751: 4747: 4742: 4738: 4733: 4728: 4725: 4722: 4696: 4692: 4688: 4683: 4679: 4650: 4644: 4640: 4636: 4631: 4627: 4622: 4617: 4614: 4611: 4608: 4596: 4593: 4592: 4591: 4579: 4573: 4569: 4565: 4560: 4556: 4551: 4546: 4543: 4540: 4536: 4532: 4526: 4522: 4518: 4513: 4509: 4504: 4499: 4496: 4493: 4474: 4473: 4460: 4455: 4451: 4446: 4443: 4436: 4432: 4428: 4423: 4419: 4406:as satisfying 4393: 4389: 4366: 4363: 4360: 4356: 4352: 4349: 4344: 4340: 4317: 4313: 4289: 4286: 4283: 4280: 4277: 4256: 4253: 4250: 4245: 4242: 4239: 4236: 4215: 4212: 4209: 4204: 4201: 4198: 4195: 4184: 4183: 4171: 4166: 4161: 4157: 4152: 4149: 4142: 4138: 4134: 4131: 4127: 4122: 4119: 4116: 4113: 4099: 4098: 4086: 4081: 4078: 4075: 4071: 4066: 4063: 4056: 4053: 4050: 4046: 4042: 4039: 4029: 4028: 4027: 4016: 3994: 3989: 3985: 3980: 3977: 3970: 3966: 3962: 3959: 3944: 3941: 3940: 3939: 3927: 3922: 3916: 3912: 3908: 3903: 3899: 3894: 3889: 3886: 3883: 3880: 3877: 3874: 3871: 3867: 3864: 3861: 3858: 3854: 3849: 3846: 3843: 3840: 3837: 3834: 3831: 3828: 3813: 3810: 3796: 3793: 3790: 3787: 3784: 3780: 3777: 3774: 3752: 3751: 3740: 3737: 3734: 3712: 3711: 3700: 3697: 3694: 3691: 3687: 3683: 3680: 3677: 3673: 3669: 3664: 3660: 3634: 3630: 3614: 3613: 3602: 3599: 3595: 3591: 3588: 3585: 3581: 3577: 3572: 3568: 3564: 3561: 3547: 3546: 3534: 3531: 3528: 3514: 3513: 3500: 3496: 3492: 3489: 3474: 3471: 3467: 3466: 3455: 3452: 3449: 3426: 3423: 3420: 3417: 3414: 3411: 3408: 3405: 3402: 3374: 3371: 3368: 3365: 3362: 3348: 3347: 3336: 3333: 3329: 3324: 3320: 3317: 3314: 3310: 3306: 3303: 3299: 3279: 3276: 3263: 3260: 3257: 3254: 3251: 3230: 3227: 3224: 3220: 3215: 3212: 3207: 3204: 3201: 3198: 3178: 3175: 3172: 3169: 3166: 3163: 3160: 3157: 3154: 3151: 3148: 3134: 3133: 3120: 3116: 3113: 3110: 3106: 3101: 3098: 3095: 3091: 3086: 3083: 3078: 3075: 3072: 3057: 3054: 3053: 3052: 3040: 3037: 3034: 3031: 3028: 3025: 3022: 3019: 3016: 2990: 2989: 2977: 2974: 2971: 2968: 2965: 2962: 2959: 2956: 2953: 2922: 2919: 2916: 2913: 2910: 2907: 2904: 2901: 2896: 2892: 2888: 2883: 2879: 2856: 2852: 2836: 2835: 2821: 2817: 2813: 2808: 2804: 2800: 2797: 2772: 2768: 2764: 2761: 2758: 2753: 2749: 2745: 2742: 2727: 2726: 2714: 2708: 2704: 2700: 2697: 2694: 2689: 2685: 2681: 2678: 2675: 2672: 2669: 2666: 2662: 2656: 2653: 2650: 2647: 2644: 2640: 2637: 2634: 2631: 2628: 2625: 2622: 2619: 2616: 2613: 2610: 2592: 2591: 2579: 2574: 2568: 2564: 2560: 2557: 2554: 2549: 2545: 2541: 2538: 2534: 2528: 2525: 2522: 2519: 2516: 2512: 2509: 2506: 2503: 2500: 2497: 2494: 2490: 2485: 2482: 2479: 2476: 2473: 2470: 2467: 2464: 2449: 2446: 2445: 2444: 2432: 2427: 2421: 2417: 2413: 2408: 2404: 2399: 2394: 2391: 2388: 2385: 2382: 2379: 2376: 2372: 2369: 2366: 2363: 2360: 2356: 2351: 2348: 2345: 2342: 2339: 2336: 2333: 2330: 2304: 2301: 2298: 2295: 2292: 2289: 2286: 2283: 2280: 2277: 2272: 2268: 2247: 2244: 2241: 2238: 2227: 2226: 2214: 2209: 2203: 2199: 2195: 2190: 2186: 2181: 2176: 2173: 2170: 2167: 2164: 2161: 2158: 2154: 2151: 2148: 2145: 2141: 2136: 2133: 2130: 2127: 2124: 2121: 2118: 2115: 2101: 2100: 2079: 2075: 2072: 2069: 2065: 2060: 2057: 2054: 2050: 2045: 2042: 2037: 2034: 2031: 2012: 2009: 1994: 1990: 1969: 1966: 1963: 1958: 1954: 1950: 1946: 1943: 1940: 1937: 1922: 1921: 1909: 1904: 1900: 1896: 1890: 1887: 1881: 1877: 1874: 1871: 1867: 1862: 1858: 1843: 1842: 1831: 1828: 1825: 1822: 1819: 1816: 1813: 1788: 1783: 1779: 1774: 1771: 1764: 1760: 1756: 1753: 1727: 1724: 1701: 1683:constructively 1675: 1674: 1663: 1660: 1657: 1654: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1619: 1618: 1606: 1600: 1596: 1592: 1587: 1583: 1578: 1574: 1571: 1568: 1565: 1555: 1543: 1539: 1536: 1533: 1529: 1524: 1521: 1518: 1514: 1509: 1506: 1501: 1498: 1495: 1466: 1463: 1460: 1456: 1452: 1449: 1444: 1440: 1415: 1403: 1400: 1385: 1381: 1369: 1368: 1355: 1349: 1345: 1341: 1336: 1332: 1327: 1322: 1319: 1316: 1312: 1308: 1304: 1301: 1297: 1293: 1290: 1285: 1281: 1276: 1272: 1268: 1264: 1241: 1238: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1209: 1205: 1184: 1181: 1178: 1175: 1156: 1155: 1143: 1139: 1136: 1133: 1130: 1126: 1122: 1119: 1116: 1112: 1108: 1103: 1099: 1094: 1089: 1086: 1083: 1079: 1075: 1071: 1068: 1064: 1060: 1057: 1052: 1048: 1043: 1039: 1035: 1031: 1000: 989: 988: 976: 972: 969: 965: 962: 959: 955: 952: 948: 944: 941: 938: 934: 930: 926: 923: 920: 916: 912: 907: 904: 901: 897: 894: 891: 888: 885: 882: 879: 856: 840: 837: 835: 832: 828: 827: 816: 813: 810: 807: 804: 801: 798: 794: 791: 788: 777: 766: 763: 760: 757: 754: 751: 748: 744: 741: 738: 718: 715: 714: 713: 702: 699: 695: 690: 686: 683: 680: 676: 672: 668: 664: 654: 643: 640: 636: 631: 627: 624: 621: 617: 613: 609: 605: 566: 551:implementation 539:Main article: 536: 533: 518: 514: 510: 507: 504: 501: 498: 495: 492: 468: 463: 460: 457: 453: 449: 446: 441: 437: 433: 416:Thus, for all 398: 387:specifications 374: 352: 349: 323: 319: 315: 312: 309: 306: 303: 300: 297: 277: 274: 271: 268: 265: 262: 259: 231: 226: 223: 220: 216: 212: 209: 204: 200: 196: 164: 161: 137:Main article: 134: 131: 77: 76: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 7057: 7046: 7043: 7042: 7040: 7029: 7023: 7019: 7015: 7010: 7009: 7005: 7000: 6999:Smullyan 1992 6994: 6988: 6984: 6980: 6976: 6972: 6966: 6961: 6960: 6954: 6950: 6946: 6944:9780387901701 6940: 6935: 6934: 6927: 6923: 6918: 6913: 6910:(2): 98–107. 6909: 6905: 6901: 6896: 6893: 6892:author's page 6887: 6883: 6879: 6874: 6870: 6864: 6860: 6856: 6851: 6850: 6846: 6840: 6836: 6831: 6828: 6824: 6819: 6816: 6791: 6785: 6781: 6777: 6771: 6768: 6765: 6759: 6755: 6750: 6747: 6744: 6727: 6719: 6713: 6709: 6705: 6699: 6696: 6693: 6687: 6683: 6678: 6675: 6672: 6655: 6649: 6644: 6640: 6636: 6633: 6628: 6625: 6622: 6618: 6614: 6611: 6608: 6603: 6599: 6594: 6590: 6583: 6559: 6556: 6553: 6543: 6540: 6533: 6532: 6528: 6525: 6521: 6516: 6513: 6509: 6505: 6501: 6497: 6491: 6488: 6485: 6481: 6475: 6473: 6469: 6465: 6461: 6456: 6453: 6449: 6445: 6442: 6438: 6433: 6430: 6426: 6421: 6418: 6414: 6413:Smullyan 2003 6409: 6406: 6402: 6398: 6393: 6391: 6389: 6387: 6383: 6379: 6374: 6371: 6367: 6362: 6359: 6355: 6351: 6346: 6344: 6340: 6336: 6331: 6329: 6325: 6319: 6317: 6294: 6290: 6285: 6277: 6274: 6271: 6264: 6263: 6262: 6243: 6238: 6232: 6228: 6224: 6220: 6216: 6213: 6210: 6207: 6204: 6200: 6196: 6192: 6187: 6184: 6181: 6175: 6172: 6169: 6164: 6160: 6155: 6151: 6148: 6145: 6138: 6132: 6128: 6124: 6119: 6116: 6113: 6109: 6105: 6102: 6099: 6094: 6090: 6085: 6077: 6053: 6043: 6040: 6033: 6032: 6031: 6028: 6024: 6022: 6018: 6013: 6011: 6003: 6001: 5999: 5978: 5973: 5967: 5963: 5959: 5955: 5951: 5948: 5945: 5941: 5937: 5933: 5928: 5925: 5922: 5915: 5911: 5908: 5905: 5898: 5892: 5889: 5886: 5882: 5878: 5875: 5872: 5867: 5863: 5858: 5850: 5826: 5816: 5813: 5806: 5805: 5804: 5790: 5778: 5761: 5757: 5754: 5750: 5746: 5743: 5738: 5735: 5732: 5728: 5724: 5721: 5718: 5713: 5709: 5704: 5700: 5696: 5691: 5682: 5679: 5676: 5672: 5668: 5665: 5662: 5657: 5653: 5642: 5641: 5640: 5638: 5634: 5614: 5608: 5604: 5600: 5594: 5591: 5588: 5582: 5578: 5573: 5570: 5567: 5558: 5555: 5551: 5547: 5544: 5539: 5536: 5533: 5529: 5525: 5522: 5519: 5514: 5510: 5505: 5501: 5494: 5493: 5492: 5490: 5468: 5464: 5460: 5454: 5451: 5448: 5442: 5438: 5435: 5432: 5425: 5416: 5413: 5410: 5406: 5402: 5399: 5396: 5391: 5387: 5376: 5375: 5374: 5360: 5352: 5344: 5342: 5340: 5323: 5317: 5314: 5311: 5307: 5303: 5300: 5297: 5292: 5288: 5283: 5270: 5268: 5266: 5262: 5241: 5237: 5233: 5227: 5224: 5221: 5215: 5211: 5208: 5205: 5198: 5189: 5186: 5183: 5179: 5175: 5172: 5169: 5164: 5160: 5149: 5148: 5147: 5133: 5121: 5119: 5117: 5112: 5110: 5106: 5101: 5085: 5081: 5077: 5073: 5069: 5066: 5062: 5058: 5055: 5050: 5046: 5041: 5037: 5033: 5029: 5009: 4985: 4979: 4975: 4971: 4966: 4962: 4957: 4942: 4938: 4934: 4931: 4927: 4923: 4920: 4915: 4911: 4906: 4902: 4898: 4894: 4887: 4886: 4885: 4879: 4860: 4856: 4852: 4848: 4842: 4838: 4834: 4829: 4825: 4820: 4801: 4800: 4799: 4797: 4793: 4771: 4767: 4763: 4759: 4753: 4749: 4745: 4740: 4736: 4731: 4712: 4711: 4710: 4709:implies that 4694: 4690: 4686: 4681: 4677: 4667: 4665: 4648: 4642: 4638: 4634: 4629: 4625: 4620: 4615: 4612: 4609: 4594: 4577: 4571: 4567: 4563: 4558: 4554: 4549: 4534: 4530: 4524: 4520: 4516: 4511: 4507: 4502: 4483: 4482: 4481: 4479: 4453: 4449: 4444: 4434: 4430: 4426: 4421: 4417: 4409: 4408: 4407: 4391: 4387: 4364: 4361: 4358: 4354: 4350: 4347: 4342: 4338: 4315: 4311: 4301: 4300:begins here. 4284: 4281: 4278: 4254: 4251: 4248: 4243: 4240: 4237: 4213: 4210: 4207: 4202: 4199: 4196: 4169: 4159: 4155: 4150: 4140: 4136: 4132: 4129: 4125: 4120: 4117: 4114: 4104: 4103: 4102: 4079: 4076: 4073: 4069: 4064: 4054: 4051: 4048: 4044: 4040: 4037: 4030: 4014: 4007: 4006: 3987: 3983: 3978: 3968: 3964: 3960: 3957: 3950: 3949: 3948: 3942: 3925: 3920: 3914: 3910: 3906: 3901: 3897: 3892: 3862: 3859: 3856: 3852: 3847: 3844: 3841: 3838: 3835: 3832: 3829: 3819: 3818: 3817: 3811: 3809: 3778: 3775: 3764: 3760: 3755: 3738: 3735: 3732: 3725: 3724: 3723: 3721: 3717: 3698: 3695: 3692: 3689: 3685: 3681: 3678: 3675: 3671: 3667: 3662: 3658: 3650: 3649: 3648: 3632: 3628: 3619: 3600: 3597: 3593: 3589: 3586: 3583: 3579: 3575: 3570: 3566: 3562: 3559: 3552: 3551: 3550: 3532: 3529: 3526: 3519: 3518: 3517: 3498: 3494: 3490: 3487: 3480: 3479: 3478: 3472: 3470: 3453: 3450: 3447: 3440: 3439: 3438: 3424: 3421: 3418: 3412: 3409: 3406: 3403: 3400: 3392: 3388: 3372: 3369: 3366: 3363: 3360: 3351: 3334: 3327: 3322: 3318: 3312: 3308: 3304: 3301: 3297: 3289: 3288: 3287: 3285: 3277: 3275: 3261: 3258: 3255: 3252: 3249: 3228: 3225: 3222: 3210: 3205: 3202: 3199: 3196: 3176: 3173: 3170: 3167: 3164: 3161: 3158: 3155: 3152: 3149: 3146: 3137: 3118: 3114: 3111: 3108: 3104: 3099: 3096: 3093: 3081: 3076: 3073: 3063: 3062: 3061: 3055: 3038: 3035: 3032: 3029: 3026: 3023: 3020: 3017: 3014: 3007: 3006: 3005: 3003: 2999: 2998:prime element 2995: 2975: 2972: 2966: 2963: 2960: 2954: 2951: 2944: 2943: 2942: 2940: 2936: 2920: 2917: 2911: 2908: 2905: 2899: 2894: 2890: 2886: 2881: 2877: 2854: 2850: 2841: 2819: 2815: 2811: 2806: 2802: 2798: 2795: 2788: 2787: 2786: 2770: 2766: 2762: 2759: 2756: 2751: 2747: 2743: 2740: 2732: 2712: 2706: 2702: 2698: 2695: 2692: 2687: 2683: 2679: 2676: 2673: 2670: 2667: 2664: 2660: 2638: 2635: 2632: 2629: 2626: 2623: 2620: 2617: 2614: 2611: 2601: 2600: 2599: 2597: 2577: 2572: 2566: 2562: 2558: 2555: 2552: 2547: 2543: 2539: 2536: 2532: 2510: 2507: 2501: 2498: 2495: 2492: 2488: 2483: 2480: 2477: 2474: 2471: 2468: 2465: 2455: 2454: 2453: 2447: 2430: 2425: 2419: 2415: 2411: 2406: 2402: 2397: 2367: 2364: 2361: 2358: 2354: 2349: 2346: 2343: 2340: 2337: 2334: 2331: 2321: 2320: 2319: 2316: 2302: 2299: 2296: 2293: 2287: 2284: 2281: 2275: 2270: 2266: 2245: 2242: 2239: 2212: 2207: 2201: 2197: 2193: 2188: 2184: 2179: 2149: 2146: 2143: 2139: 2134: 2131: 2128: 2125: 2122: 2119: 2116: 2106: 2105: 2104: 2098: 2094: 2077: 2073: 2070: 2067: 2063: 2058: 2055: 2052: 2040: 2035: 2032: 2022: 2021: 2020: 2018: 2010: 2008: 1992: 1988: 1964: 1961: 1956: 1952: 1944: 1941: 1938: 1927: 1902: 1898: 1894: 1885: 1865: 1860: 1856: 1848: 1847: 1846: 1829: 1826: 1823: 1820: 1817: 1814: 1811: 1803: 1781: 1777: 1772: 1762: 1758: 1754: 1751: 1744: 1743: 1742: 1722: 1699: 1690: 1688: 1684: 1680: 1661: 1658: 1655: 1652: 1649: 1646: 1643: 1640: 1637: 1634: 1631: 1624: 1623: 1622: 1604: 1598: 1594: 1590: 1585: 1581: 1576: 1572: 1569: 1566: 1556: 1541: 1537: 1534: 1531: 1527: 1522: 1519: 1516: 1504: 1499: 1496: 1486: 1485: 1484: 1482: 1464: 1461: 1458: 1454: 1450: 1447: 1442: 1438: 1428: 1413: 1401: 1399: 1383: 1379: 1353: 1347: 1343: 1339: 1334: 1330: 1325: 1310: 1306: 1302: 1299: 1295: 1291: 1288: 1283: 1279: 1274: 1270: 1266: 1262: 1255: 1254: 1253: 1239: 1236: 1233: 1230: 1224: 1221: 1218: 1212: 1207: 1203: 1195:the sequence 1182: 1179: 1176: 1165: 1161: 1141: 1137: 1134: 1131: 1128: 1124: 1120: 1117: 1114: 1110: 1106: 1101: 1097: 1092: 1077: 1073: 1069: 1066: 1062: 1058: 1055: 1050: 1046: 1041: 1037: 1033: 1029: 1022: 1021: 1020: 1018: 1014: 998: 974: 970: 967: 963: 960: 957: 953: 950: 946: 942: 939: 936: 932: 928: 924: 921: 918: 914: 910: 895: 889: 886: 883: 877: 870: 869: 868: 854: 846: 838: 833: 831: 814: 811: 805: 802: 799: 778: 764: 761: 755: 752: 749: 728: 727: 726: 724: 716: 700: 697: 693: 688: 684: 681: 678: 674: 670: 666: 662: 655: 641: 638: 634: 629: 625: 622: 619: 615: 611: 607: 603: 596: 595: 594: 592: 591:specification 588: 584: 580: 564: 556: 552: 548: 542: 534: 532: 516: 512: 508: 502: 499: 496: 490: 482: 461: 458: 455: 451: 447: 444: 439: 435: 423: 419: 414: 412: 396: 388: 372: 364: 358: 348: 346: 342: 337: 321: 317: 313: 307: 304: 301: 295: 275: 272: 269: 266: 263: 260: 257: 249: 245: 224: 221: 218: 214: 210: 207: 202: 198: 186: 182: 178: 173: 171: 162: 160: 158: 154: 150: 146: 140: 132: 130: 128: 124: 120: 116: 112: 108: 103: 101: 97: 92: 88: 84: 73: 70: 62: 52: 47: 45: 39: 35: 34: 27: 18: 17: 7017: 6982: 6958: 6932: 6922:the original 6907: 6903: 6885: 6858: 6835:Csirmaz 1994 6830: 6818: 6527: 6515: 6504:Venn diagram 6490: 6464:Arithmetic I 6455: 6432: 6420: 6408: 6397:Csirmaz 1994 6373: 6361: 6350:Csirmaz 1994 6315: 6260: 6029: 6025: 6014: 6007: 5997: 5995: 5782: 5632: 5630: 5488: 5485: 5348: 5339:constructive 5274: 5258: 5125: 5118:ends here.) 5115: 5113: 5105:transitivity 5102: 5001: 4883: 4792:transitivity 4789: 4668: 4663: 4598: 4475: 4302: 4185: 4100: 3946: 3815: 3758: 3756: 3753: 3716:transitivity 3713: 3615: 3548: 3515: 3476: 3468: 3391:divisibility 3387:transitivity 3352: 3349: 3281: 3138: 3135: 3059: 2993: 2991: 2837: 2731:divisibility 2728: 2593: 2451: 2317: 2228: 2102: 2014: 1925: 1923: 1844: 1801: 1691: 1676: 1620: 1480: 1429: 1405: 1370: 1157: 990: 842: 829: 725:. Examples: 720: 582: 578: 544: 480: 421: 420:and for any 417: 415: 360: 341:constructive 338: 247: 243: 184: 183:and for any 180: 176: 174: 166: 142: 104: 86: 80: 65: 59:January 2017 56: 49:Please help 41: 30: 6496:truth table 6460:Burris 1998 6437:Hughes 1989 6399:: 100 (see 2933:, thus (as 2840:definitions 2448:First steps 2258:we defined 2103:In detail: 2007:as above). 83:mathematics 53:if you can. 6847:References 5803:function: 5265:uniqueness 5022:: we want 3618:definition 3393:relation, 1928:requiring 1160:modularity 843:Using the 587:projection 355:See also: 107:data types 6823:Monk 1976 6778:≠ 6760:β 6742:∃ 6688:β 6670:∀ 6626:− 6612:… 6565:→ 6520:Monk 1976 6466:, Lemma 4 6425:Monk 1976 6378:Monk 1976 6366:Monk 1976 6335:Monk 1976 6275:≡ 6197:β 6179:∀ 6176:∧ 6146:μ 6143:⟼ 6117:− 6103:… 6059:→ 6054:∗ 6010:analogous 5938:β 5920:∀ 5906:μ 5903:⟼ 5890:− 5876:… 5832:→ 5791:β 5736:− 5722:… 5689:∃ 5680:− 5666:… 5650:∀ 5583:β 5565:∀ 5562:↔ 5537:− 5523:… 5443:β 5430:∀ 5423:∃ 5414:− 5400:… 5384:∀ 5361:β 5315:− 5301:… 5261:existence 5216:β 5203:∀ 5196:∃ 5187:− 5173:… 5157:∀ 5134:β 5100:to hold. 5038:π 5030:β 5010:β 4903:π 4895:β 4607:∀ 4427:≡ 4362:− 4351:… 4276:∀ 4252:… 4235:∀ 4211:… 4194:∀ 4133:≡ 4112:∀ 4077:− 4052:− 4041:≡ 4015:⋮ 3961:≡ 3866:→ 3860:≠ 3827:∀ 3779:∈ 3773:∃ 3736:∣ 3690:⋅ 3668:− 3598:⋅ 3576:− 3563:∣ 3530:∣ 3491:∣ 3451:∣ 3422:∣ 3416:→ 3410:− 3404:∣ 3385:, by the 3370:∣ 3364:− 3332:→ 3316:→ 3305:∧ 3259:∣ 3253:− 3219:∖ 3214:¯ 3206:∈ 3200:− 3174:≠ 3168:∧ 3156:∧ 3112:∣ 3090:∖ 3085:¯ 3077:∈ 3071:∀ 3036:∣ 3030:∨ 3024:− 3018:∣ 2973:⋅ 2964:− 2955:∣ 2941:) we get 2918:⋅ 2909:− 2887:− 2812:− 2799:∣ 2763:∣ 2757:∧ 2744:∣ 2699:∣ 2693:∧ 2680:∣ 2674:∧ 2668:≠ 2639:∈ 2609:∃ 2559:∣ 2553:∧ 2540:∣ 2511:∈ 2505:∃ 2502:∧ 2496:≠ 2463:∃ 2371:¬ 2368:∧ 2362:≠ 2329:∃ 2294:⋅ 2237:∀ 2153:→ 2147:≠ 2114:∀ 2071:∣ 2049:∖ 2044:¯ 2036:∈ 2030:∀ 1936:∀ 1889:~ 1827:− 1821:≤ 1815:≤ 1800:for each 1755:≡ 1726:~ 1700:β 1687:factorial 1659:∣ 1653:− 1647:∧ 1644:⋯ 1641:∧ 1635:∣ 1564:∀ 1535:∣ 1513:∖ 1508:¯ 1500:∈ 1494:∀ 1462:− 1451:… 1414:β 1271:π 1263:β 1231:⋅ 1174:∀ 1129:⋅ 1038:π 1030:β 999:β 951:⋅ 878:β 855:β 671:π 612:π 565:π 555:interface 491:β 467:⟩ 459:− 448:… 432:⟨ 397:β 373:β 273:− 267:≤ 261:≤ 230:⟩ 222:− 211:… 195:⟨ 125:to mimic 119:algorithm 91:embedding 7039:Category 6981:(2003). 6955:(1992). 6880:(1994). 6444:Archived 6139:⟩ 6086:⟨ 5899:⟩ 5859:⟨ 5324:⟩ 5284:⟨ 5109:equality 4796:equality 3720:equality 2935:equality 547:abstract 31:require 6380:: 52–55 6368:: 72–74 6337:: 56–58 4798:we get 4790:Now by 4480:) that 3718:of the 3350:holds. 3274:holds. 2093:coprime 1679:coprime 557:”: let 33:cleanup 7024:  6989:  6967:  6941:  6865:  6839:online 6441:online 6401:online 6354:online 3549:Thus, 3353:Since 2992:Since 1804:where 581:, and 250:where 6439:(see 6320:Notes 6021:lists 6017:typed 3286:that 2996:is a 1164:reuse 155:, or 127:lists 7022:ISBN 6987:ISBN 6965:ISBN 6939:ISBN 6863:ISBN 6748:< 6676:< 6185:< 5926:< 5637:root 5635:has 5571:< 5436:< 5263:and 5209:< 4687:< 4635:< 4613:< 4282:< 4241:< 4200:< 4118:< 3845:< 3833:< 3162:< 3150:< 2627:< 2615:< 2481:< 2469:< 2347:< 2335:< 2243:< 2132:< 2120:< 1962:< 1942:< 1591:< 1570:< 1430:Let 1180:< 1162:and 85:, a 6912:doi 6286:mod 5107:of 4880:QED 4794:of 4445:mod 4151:mod 4065:mod 3979:mod 3761:is 3620:of 2842:of 1773:mod 1019:): 867:as 147:or 81:In 7041:: 7016:. 6908:32 6906:. 6902:. 6884:. 6857:. 6506:, 6502:, 6498:, 6471:^ 6385:^ 6342:^ 6327:^ 3722:, 3647:, 2733:, 2315:. 593:: 577:, 531:. 413:. 347:. 336:. 288:, 172:. 102:. 7030:. 7001:. 6995:. 6973:. 6947:. 6914:: 6894:. 6871:. 6792:) 6786:i 6782:a 6775:) 6772:i 6769:, 6766:s 6763:( 6756:( 6751:n 6745:i 6737:f 6734:i 6728:1 6720:) 6714:i 6710:a 6706:= 6703:) 6700:i 6697:, 6694:s 6691:( 6684:( 6679:n 6673:i 6665:f 6662:i 6656:0 6650:{ 6645:= 6641:) 6637:s 6634:, 6629:1 6623:n 6619:a 6615:, 6609:, 6604:0 6600:a 6595:( 6591:f 6569:N 6560:1 6557:+ 6554:n 6549:N 6544:: 6541:f 6510:) 6450:) 6403:) 6356:) 6300:) 6295:0 6291:m 6283:( 6278:n 6272:x 6257:. 6244:] 6239:) 6233:i 6229:a 6225:= 6221:) 6217:1 6214:+ 6211:i 6208:, 6205:a 6201:( 6193:( 6188:n 6182:i 6173:n 6170:= 6165:0 6161:a 6156:[ 6152:. 6149:a 6133:n 6129:a 6125:, 6120:1 6114:n 6110:a 6106:, 6100:, 6095:0 6091:a 6063:N 6049:N 6044:: 6041:g 5998:g 5992:. 5979:] 5974:) 5968:i 5964:a 5960:= 5956:) 5952:i 5949:, 5946:a 5942:( 5934:( 5929:n 5923:i 5916:[ 5912:. 5909:a 5893:1 5887:n 5883:a 5879:, 5873:, 5868:0 5864:a 5836:N 5827:n 5822:N 5817:: 5814:g 5762:) 5758:0 5755:= 5751:) 5747:s 5744:, 5739:1 5733:n 5729:a 5725:, 5719:, 5714:0 5710:a 5705:( 5701:f 5697:( 5692:s 5683:1 5677:n 5673:a 5669:, 5663:, 5658:0 5654:a 5633:f 5615:) 5609:i 5605:a 5601:= 5598:) 5595:i 5592:, 5589:s 5586:( 5579:( 5574:n 5568:i 5559:0 5556:= 5552:) 5548:s 5545:, 5540:1 5534:n 5530:a 5526:, 5520:, 5515:0 5511:a 5506:( 5502:f 5489:f 5469:i 5465:a 5461:= 5458:) 5455:i 5452:, 5449:s 5446:( 5439:n 5433:i 5426:s 5417:1 5411:n 5407:a 5403:, 5397:, 5392:0 5388:a 5318:1 5312:n 5308:a 5304:, 5298:, 5293:0 5289:a 5242:i 5238:a 5234:= 5231:) 5228:i 5225:, 5222:s 5219:( 5212:n 5206:i 5199:s 5190:1 5184:n 5180:a 5176:, 5170:, 5165:0 5161:a 5116:i 5086:i 5082:a 5078:= 5074:) 5070:i 5067:, 5063:) 5059:m 5056:, 5051:0 5047:x 5042:( 5034:( 4986:) 4980:i 4976:m 4972:, 4967:0 4963:x 4958:( 4953:m 4950:e 4947:r 4943:= 4939:) 4935:i 4932:, 4928:) 4924:m 4921:, 4916:0 4912:x 4907:( 4899:( 4875:. 4861:i 4857:a 4853:= 4849:) 4843:i 4839:m 4835:, 4830:0 4826:x 4821:( 4816:m 4813:e 4810:r 4786:. 4772:i 4768:a 4764:= 4760:) 4754:i 4750:m 4746:, 4741:i 4737:a 4732:( 4727:m 4724:e 4721:r 4695:i 4691:m 4682:i 4678:a 4664:i 4649:) 4643:i 4639:m 4630:i 4626:a 4621:( 4616:n 4610:i 4578:) 4572:i 4568:m 4564:, 4559:i 4555:a 4550:( 4545:m 4542:e 4539:r 4535:= 4531:) 4525:i 4521:m 4517:, 4512:0 4508:x 4503:( 4498:m 4495:e 4492:r 4472:, 4459:) 4454:i 4450:m 4442:( 4435:i 4431:a 4422:0 4418:x 4392:0 4388:x 4365:1 4359:n 4355:m 4348:, 4343:0 4339:m 4316:0 4312:x 4288:( 4285:n 4279:i 4255:) 4249:( 4244:n 4238:i 4214:) 4208:( 4203:n 4197:i 4170:) 4165:) 4160:i 4156:m 4148:( 4141:i 4137:a 4130:x 4126:( 4121:n 4115:i 4085:) 4080:1 4074:n 4070:m 4062:( 4055:1 4049:n 4045:a 4038:x 3993:) 3988:0 3984:m 3976:( 3969:0 3965:a 3958:x 3926:) 3921:) 3915:j 3911:m 3907:, 3902:i 3898:m 3893:( 3888:e 3885:m 3882:i 3879:r 3876:p 3873:o 3870:c 3863:j 3857:i 3853:( 3848:n 3842:j 3839:, 3836:n 3830:i 3795:e 3792:m 3789:i 3786:r 3783:P 3776:p 3759:p 3739:1 3733:p 3699:1 3696:= 3693:m 3686:) 3682:1 3679:+ 3676:i 3672:( 3663:i 3659:m 3633:i 3629:m 3601:m 3594:) 3590:1 3587:+ 3584:i 3580:( 3571:i 3567:m 3560:p 3545:. 3533:m 3527:p 3499:i 3495:m 3488:p 3454:m 3448:p 3425:m 3419:p 3413:j 3407:i 3401:p 3373:m 3367:j 3361:i 3335:B 3328:) 3323:) 3319:B 3313:A 3309:( 3302:A 3298:( 3262:m 3256:j 3250:i 3229:} 3226:0 3223:{ 3211:n 3203:j 3197:i 3177:j 3171:i 3165:n 3159:j 3153:n 3147:i 3132:. 3119:) 3115:m 3109:i 3105:( 3100:} 3097:0 3094:{ 3082:n 3074:i 3051:. 3039:m 3033:p 3027:j 3021:i 3015:p 2994:p 2988:. 2976:m 2970:) 2967:j 2961:i 2958:( 2952:p 2921:m 2915:) 2912:j 2906:i 2903:( 2900:= 2895:j 2891:m 2882:i 2878:m 2855:k 2851:m 2834:. 2820:j 2816:m 2807:i 2803:m 2796:p 2771:j 2767:m 2760:p 2752:i 2748:m 2741:p 2713:) 2707:j 2703:m 2696:p 2688:i 2684:m 2677:p 2671:j 2665:i 2661:( 2655:e 2652:m 2649:i 2646:r 2643:P 2636:p 2633:, 2630:n 2624:j 2621:, 2618:n 2612:i 2578:) 2573:) 2567:j 2563:m 2556:p 2548:i 2544:m 2537:p 2533:( 2527:e 2524:m 2521:i 2518:r 2515:P 2508:p 2499:j 2493:i 2489:( 2484:n 2478:j 2475:, 2472:n 2466:i 2431:) 2426:) 2420:j 2416:m 2412:, 2407:i 2403:m 2398:( 2393:e 2390:m 2387:i 2384:r 2381:p 2378:o 2375:c 2365:j 2359:i 2355:( 2350:n 2344:j 2341:, 2338:n 2332:i 2303:1 2300:+ 2297:m 2291:) 2288:1 2285:+ 2282:i 2279:( 2276:= 2271:i 2267:m 2246:n 2240:i 2213:) 2208:) 2202:j 2198:m 2194:, 2189:i 2185:m 2180:( 2175:e 2172:m 2169:i 2166:r 2163:p 2160:o 2157:c 2150:j 2144:i 2140:( 2135:n 2129:j 2126:, 2123:n 2117:i 2099:. 2078:) 2074:m 2068:i 2064:( 2059:} 2056:0 2053:{ 2041:n 2033:i 1993:i 1989:m 1968:) 1965:m 1957:i 1953:a 1949:( 1945:n 1939:i 1926:m 1920:. 1908:) 1903:i 1899:m 1895:, 1886:x 1880:( 1876:m 1873:e 1870:r 1866:= 1861:i 1857:a 1830:1 1824:n 1818:i 1812:0 1802:i 1787:) 1782:i 1778:m 1770:( 1763:i 1759:a 1752:x 1723:x 1662:m 1656:1 1650:n 1638:m 1632:1 1605:) 1599:i 1595:m 1586:i 1582:a 1577:( 1573:n 1567:i 1542:) 1538:m 1532:i 1528:( 1523:} 1520:0 1517:{ 1505:n 1497:i 1481:m 1465:1 1459:n 1455:a 1448:, 1443:0 1439:a 1384:i 1380:m 1367:. 1354:) 1348:i 1344:m 1340:, 1335:0 1331:x 1326:( 1321:m 1318:e 1315:r 1311:= 1307:) 1303:i 1300:, 1296:) 1292:m 1289:, 1284:0 1280:x 1275:( 1267:( 1240:1 1237:+ 1234:m 1228:) 1225:1 1222:+ 1219:i 1216:( 1213:= 1208:i 1204:m 1183:n 1177:i 1142:) 1138:1 1135:+ 1132:m 1125:) 1121:1 1118:+ 1115:i 1111:( 1107:, 1102:0 1098:x 1093:( 1088:m 1085:e 1082:r 1078:= 1074:) 1070:i 1067:, 1063:) 1059:m 1056:, 1051:0 1047:x 1042:( 1034:( 975:) 971:1 968:+ 964:) 961:s 958:( 954:L 947:) 943:1 940:+ 937:i 933:( 929:, 925:) 922:s 919:( 915:K 911:( 906:m 903:e 900:r 896:= 893:) 890:i 887:, 884:s 881:( 815:1 812:= 809:) 806:2 803:, 800:7 797:( 793:m 790:e 787:r 765:2 762:= 759:) 756:3 753:, 750:5 747:( 743:m 740:e 737:r 701:y 698:= 694:) 689:) 685:y 682:, 679:x 675:( 667:( 663:L 642:x 639:= 635:) 630:) 626:y 623:, 620:x 616:( 608:( 604:K 583:L 579:K 517:i 513:a 509:= 506:) 503:i 500:, 497:a 494:( 481:a 462:1 456:n 452:a 445:, 440:0 436:a 422:n 418:n 322:i 318:a 314:= 311:) 308:i 305:, 302:a 299:( 296:f 276:1 270:n 264:i 258:0 248:i 244:a 225:1 219:n 215:a 208:, 203:0 199:a 185:n 181:n 177:f 72:) 66:( 61:) 57:( 46:.

Index

cleanup
quality standards
Knowledge (XXG):Manual of Style/Mathematics
improve this article
Learn how and when to remove this message
mathematics
embedding
total recursive functions
primitive recursive functions
data types
Gödel numbering
recursive function theory
algorithm
programming language
lists
Gödel numbering
mutually exclusive
one-to-one correspondence
Markov algorithms
Turing machines
pairing function
constructive
proofs of existence
Gödel's β function
Chinese remainder theorem
specifications
primitive recursive function
Pairing function
abstract
implementation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.