Knowledge (XXG)

Guanine nucleotide exchange factor

Source 📝

93:
place, as the cytosolic ratio of GTP is much higher than GDP at 10:1. The binding of GTP to the GTPase results in the release of the GEF, which can then activate a new GTPase. Thus, GEFs both destabilize the GTPase interaction with GDP and stabilize the nucleotide-free GTPase until a GTP molecule binds to it. GAPs (GTPase-activating protein) act antagonistically to inactivate GTPases by increasing their intrinsic rate of GTP hydrolysis. GDP remains bound to the inactive GTPase until a GEF binds and stimulates its release.
20: 69: 122:
phosphate-binding region, while the base-binding region remains accessible. When the GEF binds the GTPase, the phosphate groups are released first and the GEF is displaced upon binding of the entering GTP molecule. Though this general scheme is common among GEFs, the specific interactions between the regions of the GTPase and GEF vary among individual proteins.
166:. The human genome encodes 71 members, distributed into 20 subfamilies. All 71 members were already present in early Vertebrates, and most of the 20 subfamilies were already present in early Metazoans. Many of the mammalian Dbl family proteins are tissue-specific and their number in Metazoa varies in proportion of cell signaling complexity. 203:. DOCK family members are involved in cell migration, morphogenesis and phagocytosis. The DHR2 domain is approximately 400 amino acids. These proteins also contain a second conserved domain, DHR1, which is approximately 250 amino acids. The DHR1 domain been shown to be involved in the membrane localization of some GEFs. 104:, is present in the nucleus while the Ran GAP is present in the cytosol, modulating nuclear import and export of proteins. RCC1 converts RanGDP to RanGTP in the nucleus, activating Ran for the export of proteins. When the Ran GAP catalyzes conversion of RanGTP to RanGDP in the cytosol, the protein cargo is released. 130:
Some GEFs are specific to a single GTPase while others have multiple GTPase substrates. While different subfamilies of Ras superfamily GTPases have a conserved GTP binding domain, this is not the case for GEFs. Different families of GEFs correspond to different Ras subfamilies. The functional domains
178:
in 64 of the 71 Dbl family members. The PH domain is located immediately adjacent to the C terminus of the DH domain. Together, these two domains constitute the minimum structural unit necessary for the activity of most Dbl family proteins. The PH domain is involved in intracellular targeting of the
112:
The mechanism of GTPase activation varies among different GEFs. However, there are some similarities in how different GEFs alter the conformation of the G protein nucleotide-binding site. GTPases contain two loops called switch 1 and switch 2 that are situated on either side of the bound nucleotide.
92:
GDP dissociates from inactive GTPases very slowly. The binding of GEFs to their GTPase substrates catalyzes the dissociation of GDP, allowing a GTP molecule to bind in its place. GEFs function to promote the dissociation of GDP. After GDP has disassociated from the GTPase, GTP generally binds in its
84:
and are involved in essential cell processes such as cell differentiation and proliferation, cytoskeletal organization, vesicle trafficking, and nuclear transport. GTPases are active when bound to GTP and inactive when bound to GDP, allowing their activity to be regulated by GEFs and the opposing
121:
ion to maintain high affinity binding of the nucleotide. GEF binding induces conformational changes in the P loop and switch regions of the GTPase while the rest of the structure is largely unchanged. The binding of the GEF sterically hinders the magnesium-binding site and interferes with the
195:, DHR2 was already present at the origin of eukaryotes. The DOCK family is a separate subset of GEFs from the Dbl family and bears no structural or sequence relation to the DH domain. There are 11 identified DOCK family members divided into subfamilies based on their activation of 315:, which can be activated by the GEF receptor, has been shown to promote tumor proliferation in pancreatic cancer. GEFs represent possible therapeutic targets as they can potentially play a role in regulating these pathways through their activation of GTPases. 235:
in response to upstream signals. GEFs are multi-domain proteins and interact with other proteins inside the cell through these domains. Adaptor proteins can modulate GEF activity by interacting with other domains besides the catalytic domain. For example,
179:
DH domain. It is generally thought to modulate membrane binding through interactions with phospholipids, but its function has been shown to vary in different proteins. This PH domain is also present in other proteins beyond RhoGEFs.
275:
Crosstalk has also been shown between GEFs and multiple GTPase signaling pathways. For example, SOS contains a Dbl homology domain in addition to its CDC25 catalytic domain. SOS can act as a GEF to activate
333:
is a eukaryotic initiation factor necessary to initiate protein translation. eIF-2b regenerates the GTP-bound form of eIF-2 for an additional cycle in protein synthesis initiation, i.e., its binding to the
340:
are trans-membrane receptors that act as GEFs for their cognate G proteins upon binding of a ligand. Ligand binding induces a conformational change that allows the GPCR to activate an associated GTPase.
143:, is the catalytic domain of many Ras GEFs, which activate Ras GTPases. The CDC25 domain comprises approximately 500 amino acids and was first identified in the CDC25 protein in budding yeast ( 158:
Dbl-like RhoGEFs were present at the origin of eukaryotes and evolved as highly adaptive cell signaling mediators. Dbl-like RhoGEFs are characterized by the presence of a Dbl Homology domain (
1346: 327:(SOS1) is an important GEF in the cell growth-regulatory MAPK/ERK pathway. SOS1 binds GRB2 at the plasma membrane after EGF receptor activation. SOS1 activates the small G protein Ras. 131:
of these GEF families are not structurally related and do not share sequence homology. These GEF domains appear to be evolutionarily unrelated despite similar function and substrates.
223:
trafficking. Though ARF GEFs are divergent in their overall sequences, they contain a conserved Sec 7 domain. This 200 amino acid region is homologous to the yeast Sec7p protein.
1077:
Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D (May 1993). "Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2".
1232:
Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL, Bikoff JB, Ho HY, Soskis MJ, Sahin M, Greenberg ME (October 2010).
1405: 1319: 346:
is the guanine nucleotide exchange factor for Ran GTPase. It localizes to the nucleus and catalyzes the activation of Ran to allow nuclear export of proteins.
1762: 1339: 996:
Yang J, Zhang Z, Roe SM, Marshall CJ, Barford D (September 2009). "Activation of Rho GTPases by DOCK exchange factors is mediated by a nucleotide sensor".
612:
Quilliam LA, Rebhun JF, Castro AF (2002). "A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases".
80:. Small GTPases act as molecular switches in intracellular signaling pathways and have many downstream targets. The most well-known GTPases comprise the 60:
have been shown to exhibit guanine nucleotide exchange activity. Some GEFs can activate multiple GTPases while others are specific to a single GTPase.
1783: 1332: 280:, a RhoGTPase, in addition to its role as a GEF for Ras. SOS is therefore a link between the Ras-Family and Rho-Family GTPase signaling pathways. 292:
therapy due to their role in many signaling pathways, particularly cell proliferation. For example, many cancers are caused by mutations in the
1601: 30: 1115:
Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina JR, Fonseca R, Smyrk TC, Chari ST, Urrutia R, Billadeau DD (January 2005).
232: 1440: 633: 1355: 490:
Bourne HR, Sanders DA, McCormick F (November 1990). "The GTPase superfamily: a conserved switch for diverse cell functions".
460: 265: 776:
Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J (July 1998). "The structural basis of the activation of Ras by Sos".
574:
Feig LA (April 1994). "Guanine-nucleotide exchange factors: a family of positive regulators of Ras and related GTPases".
337: 252:
activation. The binding of SOS1 to GRB2 localizes it to the plasma membrane, where it can activate the membrane-bound
1412: 1234:"EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation" 1039:
Jackson CL, Casanova JE (February 2000). "Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors".
387: 167: 86: 1193:"Heterotrimeric G protein βγ subunits stimulate FLJ00018, a guanine nucleotide exchange factor for Rac1 and Cdc42" 660:
Cherfils J, Chardin P (August 1999). "GEFs: structural basis for their activation of small GTP-binding proteins".
1363: 145: 96:
The localization of GEFs can determine where in the cell a particular GTPase will be active. For example, the
824:"The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals" 216: 53: 23: 76:
Guanine nucleotide exchange factors (GEFs) are proteins or protein domains involved in the activation of
1290: 733:
Vetter IR, Wittinghofer A (November 2001). "The guanine nucleotide-binding switch in three dimensions".
257: 163: 49: 957:"Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein" 264:, are activated upon phosphorylation in response to upstream signals. Secondary messengers such as 1021: 801: 758: 515: 1191:
Ueda H, Nagae R, Kozawa M, Morishita R, Kimura S, Nagase T, Ohara O, Yoshida S, Asano T (2008).
212: 1263: 1214: 1173: 1138: 1094: 1056: 1013: 978: 934: 888: 853: 793: 750: 715: 677: 639: 629: 591: 556: 507: 456: 428: 220: 117:-binding loop of the GTPase interact with the phosphates of the nucleotide and a coordinating 57: 411:
Cherfils J, Zeghouf M (January 2013). "Regulation of small GTPases by GEFs, GAPs, and GDIs".
1574: 1253: 1245: 1204: 1165: 1128: 1086: 1048: 1005: 968: 924: 880: 843: 835: 785: 742: 707: 669: 621: 583: 546: 499: 420: 324: 293: 241: 237: 1541: 1303: 1117:"Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis" 711: 81: 1636: 1258: 1233: 848: 823: 308: 19: 1052: 973: 956: 884: 673: 625: 1777: 1590: 1400: 1169: 805: 587: 450: 392: 253: 140: 77: 1025: 762: 519: 249: 196: 29: 311:
because mutations in this protein have been found in many cancers. The Rho GTPase
1324: 188: 68: 1249: 551: 534: 424: 1388: 1383: 1133: 1116: 377: 304: 97: 1282: 1192: 1090: 1009: 913:"Guanine nucleotide exchange factors for Rho GTPases: turning on the switch" 746: 192: 175: 171: 159: 118: 114: 1267: 1218: 1209: 1156:
Price N, Proud C (1994). "The guanine nucleotide-exchange factor, eIF-2B".
1142: 1060: 1017: 938: 892: 871:
Zheng Y (December 2001). "Dbl family guanine nucleotide exchange factors".
857: 754: 681: 643: 560: 432: 1177: 1098: 982: 797: 719: 595: 511: 1579: 1378: 839: 698:
Seki T, Hayashi N, Nishimoto T (August 1996). "RCC1 in the Ran pathway".
364: 349: 929: 912: 1648: 382: 359: 354: 269: 45: 1738: 1713: 1708: 1395: 1283:"Regulation of excitatory synapse development by the RhoGEF Ephexin5" 535:"GEFs and GAPs: critical elements in the control of small G proteins" 503: 301: 289: 955:
Soisson SM, Nimnual AS, Uy M, Bar-Sagi D, Kuriyan J (October 1998).
1703: 1693: 1688: 1683: 1673: 1668: 1658: 1653: 1569: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 789: 330: 200: 67: 28: 18: 211:
The Sec7 domain is responsible for the GEF catalytic activity in
1733: 1728: 1625: 1620: 1615: 1610: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1422: 1417: 343: 312: 297: 277: 261: 245: 101: 1328: 191:
is the catalytic domain of the DOCK family of Rho GEFs. Like
44:) are proteins or protein domains that activate monomeric 1110: 1108: 614:
Progress in Nucleic Acid Research and Molecular Biology
367:
is a RhoA GEF involved in neuronal synapse development.
444: 442: 1755: 1634: 1599: 1588: 1556: 1433: 1371: 1362: 1072: 1070: 950: 948: 906: 904: 902: 655: 653: 607: 605: 533:Bos JL, Rehmann H, Wittinghofer A (June 2007). 162:), responsible for GEF catalytic activity for 1340: 1320:MBInfo - Glossary Terms: GAPs, GEFs, and GDIs 485: 483: 481: 479: 8: 1763:Guanosine nucleotide dissociation inhibitors 817: 815: 693: 691: 139:The CDC25 homology domain, also called the 1596: 1562: 1368: 1347: 1333: 1325: 296:that lead to uncontrolled growth. The GEF 1257: 1208: 1132: 972: 928: 847: 550: 272:can also play a role in GEF activation. 403: 72:Schematic of GEF activation of a GTPase 1299: 1288: 244:, is recruited by the adaptor protein 16:Proteins which remove GDP from GTPases 712:10.1093/oxfordjournals.jbchem.a021400 7: 449:Bruce Alberts; et al. (2002). 300:activates Ras, whose target is the 38:Guanine nucleotide exchange factors 1558:Guanine nucleotide exchange factor 455:. Garland Science. pp. 877–. 14: 1441:Regulator of G protein signalling 1281:Salogiannis, John (2013-10-18). 174:) are associated in tandem with 911:Schmidt A, Hall A (July 2002). 576:Current Opinion in Cell Biology 56:(GTP). A variety of unrelated 1784:GTP-binding protein regulators 1356:GTP-binding protein regulators 873:Trends in Biochemical Sciences 822:Fort P, Blangy A (June 2017). 662:Trends in Biochemical Sciences 288:GEFs are potential target for 48:by stimulating the release of 1: 1053:10.1016/s0962-8924(99)01699-2 974:10.1016/S0092-8674(00)81756-0 885:10.1016/S0968-0004(01)01973-9 674:10.1016/S0968-0004(99)01429-2 626:10.1016/S0079-6603(02)71047-7 452:Molecular Biology of the Cell 1170:10.1016/0300-9084(94)90079-5 588:10.1016/0955-0674(94)90137-6 231:GEFs are often recruited by 338:G protein-coupled receptors 168:Pleckstrin homology domains 1800: 1413:Tuberous sclerosis protein 1250:10.1016/j.cell.2010.09.038 552:10.1016/j.cell.2007.05.018 425:10.1152/physrev.00003.2012 388:Nucleotide exchange factor 256:. Other GEFs, such as the 87:GTPase activating proteins 52:(GDP) to allow binding of 1724: 1565: 1364:GTPase activating protein 1134:10.1016/j.ccr.2004.11.024 126:Structure and specificity 146:Saccharomyces cerevisiae 1091:10.1126/science.8493579 1010:10.1126/science.1174468 917:Genes & Development 747:10.1126/science.1062023 700:Journal of Biochemistry 1298:Cite journal requires 1210:10.1074/jbc.m707037200 1041:Trends in Cell Biology 240:1, the Ras GEF in the 113:These regions and the 73: 54:guanosine triphosphate 34: 26: 413:Physiological Reviews 71: 50:guanosine diphosphate 32: 22: 930:10.1101/gad.1003302 1004:(5946): 1398–402. 840:10.1093/gbe/evx100 741:(5545): 1299–304. 74: 58:structural domains 35: 27: 1771: 1770: 1751: 1750: 1747: 1746: 1552: 1551: 1085:(5112): 1338–43. 154:DH and PH domains 1791: 1639: 1604: 1597: 1593: 1575:Son of Sevenless 1563: 1369: 1349: 1342: 1335: 1326: 1308: 1307: 1301: 1296: 1294: 1286: 1278: 1272: 1271: 1261: 1229: 1223: 1222: 1212: 1203:(4): 1946–1953. 1188: 1182: 1181: 1153: 1147: 1146: 1136: 1112: 1103: 1102: 1074: 1065: 1064: 1036: 1030: 1029: 993: 987: 986: 976: 952: 943: 942: 932: 923:(13): 1587–609. 908: 897: 896: 868: 862: 861: 851: 834:(6): 1471–1486. 828:Genome Biol Evol 819: 810: 809: 784:(6691): 337–43. 773: 767: 766: 730: 724: 723: 695: 686: 685: 657: 648: 647: 609: 600: 599: 571: 565: 564: 554: 530: 524: 523: 504:10.1038/348125a0 498:(6297): 125–32. 487: 474: 473: 471: 469: 446: 437: 436: 408: 325:Son of sevenless 294:MAPK/ERK pathway 242:MAPK/ERK pathway 233:adaptor proteins 1799: 1798: 1794: 1793: 1792: 1790: 1789: 1788: 1774: 1773: 1772: 1767: 1743: 1720: 1635: 1630: 1600: 1589: 1584: 1548: 1429: 1358: 1353: 1316: 1311: 1297: 1287: 1280: 1279: 1275: 1231: 1230: 1226: 1190: 1189: 1185: 1155: 1154: 1150: 1114: 1113: 1106: 1076: 1075: 1068: 1038: 1037: 1033: 995: 994: 990: 954: 953: 946: 910: 909: 900: 870: 869: 865: 821: 820: 813: 775: 774: 770: 732: 731: 727: 697: 696: 689: 659: 658: 651: 636: 611: 610: 603: 573: 572: 568: 532: 531: 527: 489: 488: 477: 467: 465: 463: 448: 447: 440: 410: 409: 405: 401: 374: 321: 286: 248:in response to 229: 209: 185: 156: 137: 128: 110: 82:Ras superfamily 66: 17: 12: 11: 5: 1797: 1795: 1787: 1786: 1776: 1775: 1769: 1768: 1766: 1765: 1759: 1757: 1753: 1752: 1749: 1748: 1745: 1744: 1742: 1741: 1736: 1731: 1725: 1722: 1721: 1719: 1718: 1717: 1716: 1711: 1706: 1698: 1697: 1696: 1691: 1686: 1678: 1677: 1676: 1671: 1663: 1662: 1661: 1656: 1651: 1642: 1640: 1632: 1631: 1629: 1628: 1623: 1618: 1613: 1607: 1605: 1594: 1586: 1585: 1583: 1582: 1577: 1572: 1566: 1560: 1554: 1553: 1550: 1549: 1547: 1546: 1545: 1544: 1539: 1534: 1529: 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1489: 1484: 1479: 1474: 1469: 1464: 1459: 1454: 1449: 1437: 1435: 1434:Heterotrimeric 1431: 1430: 1428: 1427: 1426: 1425: 1420: 1410: 1409: 1408: 1403: 1393: 1392: 1391: 1386: 1375: 1373: 1366: 1360: 1359: 1354: 1352: 1351: 1344: 1337: 1329: 1323: 1322: 1315: 1314:External links 1312: 1310: 1309: 1300:|journal= 1273: 1224: 1183: 1148: 1104: 1066: 1031: 988: 944: 898: 879:(12): 724–32. 863: 811: 768: 725: 687: 649: 634: 601: 566: 525: 475: 461: 438: 419:(1): 269–309. 402: 400: 397: 396: 395: 390: 385: 380: 373: 370: 369: 368: 362: 357: 352: 347: 341: 335: 328: 320: 317: 309:proto-oncogene 285: 282: 228: 225: 208: 205: 184: 181: 155: 152: 136: 133: 127: 124: 109: 106: 65: 62: 15: 13: 10: 9: 6: 4: 3: 2: 1796: 1785: 1782: 1781: 1779: 1764: 1761: 1760: 1758: 1754: 1740: 1737: 1735: 1732: 1730: 1727: 1726: 1723: 1715: 1712: 1710: 1707: 1705: 1702: 1701: 1699: 1695: 1692: 1690: 1687: 1685: 1682: 1681: 1679: 1675: 1672: 1670: 1667: 1666: 1664: 1660: 1657: 1655: 1652: 1650: 1647: 1646: 1644: 1643: 1641: 1638: 1633: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1608: 1606: 1603: 1598: 1595: 1592: 1587: 1581: 1578: 1576: 1573: 1571: 1568: 1567: 1564: 1561: 1559: 1555: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1444: 1442: 1439: 1438: 1436: 1432: 1424: 1421: 1419: 1416: 1415: 1414: 1411: 1407: 1404: 1402: 1399: 1398: 1397: 1394: 1390: 1387: 1385: 1382: 1381: 1380: 1377: 1376: 1374: 1370: 1367: 1365: 1361: 1357: 1350: 1345: 1343: 1338: 1336: 1331: 1330: 1327: 1321: 1318: 1317: 1313: 1305: 1292: 1284: 1277: 1274: 1269: 1265: 1260: 1255: 1251: 1247: 1244:(3): 442–55. 1243: 1239: 1235: 1228: 1225: 1220: 1216: 1211: 1206: 1202: 1198: 1197:J. Biol. Chem 1194: 1187: 1184: 1179: 1175: 1171: 1167: 1164:(8): 748–60. 1163: 1159: 1152: 1149: 1144: 1140: 1135: 1130: 1126: 1122: 1118: 1111: 1109: 1105: 1100: 1096: 1092: 1088: 1084: 1080: 1073: 1071: 1067: 1062: 1058: 1054: 1050: 1046: 1042: 1035: 1032: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 992: 989: 984: 980: 975: 970: 967:(2): 259–68. 966: 962: 958: 951: 949: 945: 940: 936: 931: 926: 922: 918: 914: 907: 905: 903: 899: 894: 890: 886: 882: 878: 874: 867: 864: 859: 855: 850: 845: 841: 837: 833: 829: 825: 818: 816: 812: 807: 803: 799: 795: 791: 790:10.1038/28548 787: 783: 779: 772: 769: 764: 760: 756: 752: 748: 744: 740: 736: 729: 726: 721: 717: 713: 709: 706:(2): 207–14. 705: 701: 694: 692: 688: 683: 679: 675: 671: 668:(8): 306–11. 667: 663: 656: 654: 650: 645: 641: 637: 635:9780125400718 631: 627: 623: 619: 615: 608: 606: 602: 597: 593: 589: 585: 582:(2): 204–11. 581: 577: 570: 567: 562: 558: 553: 548: 545:(5): 865–77. 544: 540: 536: 529: 526: 521: 517: 513: 509: 505: 501: 497: 493: 486: 484: 482: 480: 476: 464: 458: 454: 453: 445: 443: 439: 434: 430: 426: 422: 418: 414: 407: 404: 398: 394: 393:Small GTPases 391: 389: 386: 384: 381: 379: 376: 375: 371: 366: 363: 361: 358: 356: 353: 351: 348: 345: 342: 339: 336: 332: 329: 326: 323: 322: 318: 316: 314: 310: 306: 303: 299: 295: 291: 283: 281: 279: 273: 271: 267: 263: 259: 255: 251: 247: 243: 239: 234: 226: 224: 222: 218: 214: 206: 204: 202: 198: 194: 190: 182: 180: 177: 173: 169: 165: 161: 153: 151: 149: 147: 142: 141:RasGEF domain 134: 132: 125: 123: 120: 116: 107: 105: 103: 99: 94: 90: 88: 83: 79: 78:small GTPases 70: 63: 61: 59: 55: 51: 47: 43: 39: 31: 25: 21: 1557: 1291:cite journal 1276: 1241: 1237: 1227: 1200: 1196: 1186: 1161: 1157: 1151: 1127:(1): 39–49. 1124: 1120: 1082: 1078: 1044: 1040: 1034: 1001: 997: 991: 964: 960: 920: 916: 876: 872: 866: 831: 827: 781: 777: 771: 738: 734: 728: 703: 699: 665: 661: 617: 613: 579: 575: 569: 542: 538: 528: 495: 491: 466:. Retrieved 451: 416: 412: 406: 287: 274: 250:EGF receptor 230: 219:function in 217:ARF proteins 210: 186: 157: 144: 138: 135:CDC25 domain 129: 111: 95: 91: 75: 41: 37: 36: 1121:Cancer Cell 1047:(2): 60–7. 620:: 391–444. 307:. Raf is a 213:ARF GTPases 207:Sec7 domain 189:DHR2 domain 183:DHR2 domain 164:Rho GTPases 468:12 January 462:0815332181 399:References 378:G proteins 334:Met-t-RNA. 227:Regulation 176:DH domains 172:PH domains 1372:Monomeric 1158:Biochimie 806:204998911 193:DH domain 160:DH domain 119:magnesium 115:phosphate 108:Mechanism 1778:Category 1580:Ras-GRF1 1379:Chimerin 1268:21029865 1219:18045877 1143:15652748 1061:10652516 1026:35369555 1018:19745154 939:12101119 893:11738596 858:28541439 755:11701921 682:10431174 644:12102558 561:17540168 433:23303910 372:See also 365:Ephexin5 350:Ras-GRF1 319:Examples 89:(GAPs). 64:Function 1700:DOCK-D 1680:DOCK-C 1665:DOCK-B 1645:DOCK-A 1259:2967209 1178:7893825 1099:8493579 1079:Science 998:Science 983:9790532 849:5499878 798:9690470 763:6636339 735:Science 720:8889801 596:8024811 520:4329238 512:2122258 383:Guanine 360:PLEKHG2 355:Kalirin 270:calcium 221:vesicle 46:GTPases 1739:IQSEC2 1714:Dock11 1709:Dock10 1591:RhoGEF 1396:RasGAP 1266:  1256:  1217:  1176:  1141:  1097:  1059:  1024:  1016:  981:  937:  891:  856:  846:  804:  796:  778:Nature 761:  753:  718:  680:  642:  632:  594:  559:  518:  510:  492:Nature 459:  431:  331:eIF-2b 302:kinase 290:cancer 284:Cancer 1756:Other 1704:Dock9 1694:Dock8 1689:Dock7 1684:Dock6 1674:Dock4 1669:Dock3 1659:Dock5 1654:Dock2 1649:DOCK1 1570:EIF2B 1542:RGS21 1537:RGS20 1532:RGS19 1527:RGS18 1522:RGS17 1517:RGS16 1512:RGS14 1507:RGS13 1502:RGS12 1497:RGS11 1492:RGS10 1406:IQGAP 1022:S2CID 802:S2CID 759:S2CID 516:S2CID 201:Cdc42 100:GEF, 1734:SIL1 1729:ALS2 1637:DOCK 1626:FGD4 1621:FGD3 1616:FGD2 1611:FGD1 1487:RGS9 1482:RGS8 1477:RGS7 1472:RGS6 1467:RGS5 1462:RGS4 1457:RGS3 1452:RGS2 1447:RGS1 1423:TSC2 1418:TSC1 1389:CHN2 1384:CHN1 1304:help 1264:PMID 1238:Cell 1215:PMID 1174:PMID 1139:PMID 1095:PMID 1057:PMID 1014:PMID 979:PMID 961:Cell 935:PMID 889:PMID 854:PMID 794:PMID 751:PMID 716:PMID 678:PMID 640:PMID 630:ISBN 592:PMID 557:PMID 539:Cell 508:PMID 470:2011 457:ISBN 429:PMID 344:RCC1 313:Vav1 298:SOS1 278:Rac1 268:and 266:cAMP 262:Vav1 260:GEF 246:GRB2 199:and 187:The 102:RCC1 42:GEFs 1602:FGD 1401:NF1 1254:PMC 1246:doi 1242:143 1205:doi 1201:283 1166:doi 1129:doi 1087:doi 1083:260 1049:doi 1006:doi 1002:325 969:doi 925:doi 881:doi 844:PMC 836:doi 786:doi 782:394 743:doi 739:294 708:doi 704:120 670:doi 622:doi 584:doi 547:doi 543:129 500:doi 496:348 421:doi 305:Raf 258:Rho 254:Ras 238:SOS 197:Rac 98:Ran 33:GDP 24:GTP 1780:: 1443:: 1295:: 1293:}} 1289:{{ 1262:. 1252:. 1240:. 1236:. 1213:. 1199:. 1195:. 1172:. 1162:76 1160:. 1137:. 1123:. 1119:. 1107:^ 1093:. 1081:. 1069:^ 1055:. 1045:10 1043:. 1020:. 1012:. 1000:. 977:. 965:95 963:. 959:. 947:^ 933:. 921:16 919:. 915:. 901:^ 887:. 877:26 875:. 852:. 842:. 830:. 826:. 814:^ 800:. 792:. 780:. 757:. 749:. 737:. 714:. 702:. 690:^ 676:. 666:24 664:. 652:^ 638:. 628:. 618:71 616:. 604:^ 590:. 578:. 555:. 541:. 537:. 514:. 506:. 494:. 478:^ 441:^ 427:. 417:93 415:. 215:. 150:. 1348:e 1341:t 1334:v 1306:) 1302:( 1285:. 1270:. 1248:: 1221:. 1207:: 1180:. 1168:: 1145:. 1131:: 1125:7 1101:. 1089:: 1063:. 1051:: 1028:. 1008:: 985:. 971:: 941:. 927:: 895:. 883:: 860:. 838:: 832:9 808:. 788:: 765:. 745:: 722:. 710:: 684:. 672:: 646:. 624:: 598:. 586:: 580:6 563:. 549:: 522:. 502:: 472:. 435:. 423:: 170:( 148:) 40:(

Index


GTP

GTPases
guanosine diphosphate
guanosine triphosphate
structural domains

small GTPases
Ras superfamily
GTPase activating proteins
Ran
RCC1
phosphate
magnesium
RasGEF domain
Saccharomyces cerevisiae
DH domain
Rho GTPases
Pleckstrin homology domains
PH domains
DH domains
DHR2 domain
DH domain
Rac
Cdc42
ARF GTPases
ARF proteins
vesicle
adaptor proteins

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.