Knowledge (XXG)

Gyrification

Source 📝

365:(SVZ), amplifying the number of cortical neurons being produced. The long fibers of RGCs project all the way through the developing cortex to the pial surface of the brain, and these fibers serve as physical guides for neuronal migration. A second class of RGC, termed basal RGCs (bRGC)s, forms a third progenitor pool in the outer SVZ. Basal RGCs are generally much more abundant in higher mammals. Both classic RGCs and the recently described bRGCs represent guiding cues that lead newborn neurons to their destination in the cortex. Increased numbers of bRGCs increase the density of guiding fibers in an otherwise fanning out array which would lose fiber density. The scientific literature points to differences in the dynamics of proliferation and neuronal differentiation in each of these progenitor zones across mammalian species, and such differences may account for the large differences in cortical size and gyrification among mammals. One hypothesis suggests that certain progenitor cells generate abundant neurons destined for the outer cortical layers, causing greater surface area increase in the outer layers compared with the inner cortical layers. It remains unclear how this may work without further mechanistic elements. 520: 237:; ossification of the cranial plates does not occur until later in development. The human cranium continues to grow substantially along with the brain after birth until the cranial plates finally fuse after several years. Experimental studies in animals have furthermore shown that cortical folding can occur without external constraints. Cranial growth is thus thought to be driven by brain growth; mechanical and genetic factors intrinsic to the brain are now thought to be the primary drivers of gyrification. The only observed role that the cranium may play in gyrification is in flattening of gyri as the brain matures after the cranial plates fuse. 536: 404:. Some, like mouse brains, remain lissencephalic throughout adulthood. It has been shown that lissencephalic species possess many of the molecular cues needed to achieve gyrencephaly, but a large variety of genes are involved in the regulation of the neural progenitor proliferation and neurogenic processes that underlie gyrification. It is hypothesized that spatiotemporal differences in these molecular pathways, including FGF, Shh, and Trnp1 and likely many others, determine the timing and extent of gyrification in various species. 312:. Local expression levels of Trnp1, can determine the future position of developing folds/gyri in human brains. Genes that influence cortical progenitor dynamics, neurogenesis and neuronal migration, as well as genes that influence the development of cortical circuits and axonal projections may all contribute to gyrification. Trnp1 is a DNA-binding factor that has been shown to regulate other genes that regulate the proliferation of cortical progenitor cells – thereby serving as a master gene-regulator. In addition, the 120: 20: 3193: 519: 344:
and generate the excitatory glutamatergic neurons of the cerebral cortex. These cells rapidly proliferate through self-renewal at early developmental stages, expanding the progenitor pool and increasing cortical surface area. At this stage, the pattern of cortical areas is genetically programmed by a
307:
twins of the late 1990s support this idea, particularly with regards to primary gyri and sulci, whereas there is more variability among secondary and tertiary gyri. Therefore, one may hypothesize that secondary and tertiary folds could be more sensitive to genetic and environmental factors. The first
127:
As fetal development proceeds, gyri and sulci begin to take shape with the emergence of deepening indentations on the surface of the cortex. Not all gyri begin to develop at the same time. Instead, the primary cortical gyri form first (beginning as early as gestational week 10 in humans), followed by
494:
and subsequent cell death. Death of cortical stem cells causes the loss of all expected daughter cells, and the scope of the malformation thus depends on the timing of infection as well as its severity during the schedule of neural stem cell proliferation and neurogenesis. Earlier infections would
281:
growth suggests that the grey (outer shell) and white matter (inner core) layers each grow at separate rates, that are uniform in all dimensions. Tangential growth suggests that the grey matter grows at a faster rate than the inner white matter and that the growth rate of the grey matter determines
268:
Early conditions of the brain have a strong influence on its final level of gyrification. In particular, there is an inverse relationship between cortical thickness and gyrification. Areas of the brain with low values of thickness are found to have higher levels of gyrification. The reverse is also
245:
An alternative theory suggests that axonal tension forces between highly interconnected cortical areas pull local cortical areas towards each other, inducing folds. This model has been criticised: A numerical computer simulation could not produce a biologically realistic folding pattern. One study
503:
Cortical Gyrification can be measured in terms of the Gyrification Index (GI), Fractal Dimensionality and a combination of morphometric terms (Area, Thickness, Volume). The GI is defined as the ratio between the Total Area and the Exposed Area ("perimeter of the brain delineated on two-dimensional
410:
is a human disease state. For humans with lissencephaly, a large number of neurons fail to reach the outer cortex during neuronal migration, and remain under the cortical plate. This displacement results in not only defects in cortical connections, but also a thickened cortex, consistent with the
422:
is a condition in which the brain has an overly convoluted cortex. Though at the surface, the brain appears smooth with a few sulci, looking at the interior of the brain reveals a convoluted structure with a large number of secondary and tertiary folds. Brain imaging with MRI reveals a brain with
381:
brains do not show gyrification. Mammals with a high GI are generally larger than those with a low GI; for example the pilot whale and bottlenose dolphin show the highest GI values. The human brain, while larger than that of a horse, shows a similar GI. Rodents generally show the lowest GIs.
254:
More recently, the theory of differential tangential expansion has been proposed, stating that folding patterns of the brain are a result of different tangential expansion rates between different cortical areas. This is proposed to be due to areal differences in early progenitor division rates.
453:
The folds of autistic human brains are found to experience slight shifts in location, early in brain development. Specifically, different patterns appear in the superior frontal sulcus, Sylvian fissure, inferior frontal gyrus, superior temporal gyrus, and olfactory sulci. These areas relate to
443:
have overall higher levels of cortical gyrification, but only in the temporal, parietal, and occipital lobes, as well as part of the cingulate cortex. The higher levels of gyrification are found to relate to greater local connectivity in autistic brains, suggesting hyperconnectivity.
385:
A linear relation between mammals expressed in gyrification terms has been found by Mota & Herculano-Houzel, 2015. They suggest a model that combines morphometric measurements (Cortical Thickness, Exposed Area, and Total Area) which could be a way to describe gyrification.
320:(SHH)-signaling pathways have recently been reported to be able to induce cortical folds, with a full complement of cortical layers, in mice that live to adulthood. These FGF and Shh factors regulate cortical stem cell proliferation and neurogenesis dynamics. Roles for 285:
Creases on the brain's surface are formed as a result of instability, and tangential growth models reach levels of instability that cause creasing more frequently than isotropic models. This level is called a critical point, at which, the models prefer to release
298:
The pattern of cortical gyri and sulci is not random; most of the major convolutions are conserved between individuals and are also found across species. This reproducibility may suggest that genetic mechanisms can specify the location of major gyri. Studies of
450:, which was able to induce gyrification in animal models, has been hypothesized to be associated with disorders of gyrification in some cases of autism, but a review in 2012 found only one reported case of a mutation, in a patient with Rett syndrome (not ASD). 490:, or 'small-brain'. Due to the large reduction in volume of the cerebral cortex in microcephaly, changes in gyrification are not unexpected. Studies of the mechanism of Zika malformations indicate that the principal defect is due to infection of 823:
Gautam, Prapti; Anstey, Kaarin J.; Wen, Wei; Sachdev, Perminder S.; Cherbuin, Nicolas (2015-07-01). "Cortical gyrification and its relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life adults".
164:
One advantage of gyrification is thought to be increased speed of brain cell communication, since cortical folds allow for cells to be closer to one other, requiring less time and energy to transmit neuronal electrical impulses, termed
454:
working memory, emotional processing, language, and eye gaze, and their difference in location and level of gyrification when compared to a neurotypical human brain could explain some altered behaviors in autistic patients.
399:
A cerebral cortex lacking surface convolutions is said to be lissencephalic, meaning 'smooth-brained'. During embryonic development, all mammalian brains begin as lissencephalic structures derived from the
198:
in the late 19th century asserts that mechanical buckling forces due to the expanding brain tissue cause the cortical surface to fold. Many theories since have been loosely tied to this hypothesis.
423:
polymicrogyria to have a thin cortex, consistent with the idea that a brain with a thin cortex will have a high level of gyrification. A wide array of genes when mutated have been shown to cause
282:
the growth rate of the white matter. Though both methods are differential, with the cortex growing more rapidly than the subcortex, tangential growth has been suggested as a more plausible model.
2758:
Palaniyappan, Lena; Mallikarjun, Pavan; Joseph, Verghese; White, Thomas P.; Liddle, Peter F. (2011). "Folding of the Prefrontal Cortex in Schizophrenia: Regional Differences in Gyrification".
76:
projections to and from the cortical neurons residing near the surface. Gyrification allows a larger cortical surface area and hence greater cognitive functionality to fit inside a smaller
535: 1421:
Stahl, Ronny; Walcher, Tessa; De Juan Romero, Camino; Pilz, Gregor Alexander; Cappello, Silvia; Irmler, Martin; Sanz-Aquela, José Miguel; Beckers, Johannes; Blum, Robert (2013-04-25).
1916:
Noctor, SC; Martínez-Cerdeño, V; Ivic, L; Kriegstein, AR (February 2004). "Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases".
466:, has also been associated with structural abnormalities in the brain. A reduced cortical thickness and increased gyrification is seen similar to the changes shown in those with 194:
The mechanisms of cortical gyrification are not well understood, and several hypotheses are debated in the scientific literature. A popular hypothesis dating back to the time of
2709:
Levitt, Jennifer G.; Blanton, Rebecca E.; Smalley, Susan; Thompson, P. M.; Guthrie, Donald; McCracken, James T.; Sadoun, Tania; Heinichen, Laura; Toga, Arthur W. (2003-07-01).
1738:
Noctor, SC; Flint, AC; Weissman, TA; Dammerman, RS; Kriegstein, AR (8 February 2001). "Neurons derived from radial glial cells establish radial units in neocortex".
495:
generally be expected to produce a more severe malformation. The microcephaly and gyrification malformations are permanent and there are no known treatments.
233:, including the future cranium). These thin layers grow easily along with cortical expansion but eventually, the cranial mesenchyme differentiates into 1789:
Malatesta, P; Hartfuss, E; Götz, M (December 2000). "Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage".
205:
is not thought to cause gyrification. This is primarily because the primordium of the cranium during the period of fetal brain development is not yet
3005:
Zilles, Karl; Armstrong, Este; Schleicher, Axel; Kretschmann, Hans-Joachim (1988-11-01). "The human pattern of gyrification in the cerebral cortex".
2602:"Cortical morphological markers in children with autism: a structural magnetic resonance imaging study of thickness, area, volume, and gyrification" 2891:
Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge (2016-05-13).
2282:
Mota, Bruno; Herculano-Houzel, Suzana (2015-07-03). "Cortical folding scales universally with surface area and thickness, not number of neurons".
2054:
Hansen, DV; Lui, JH; Parker, PR; Kriegstein, AR (25 March 2010). "Neurogenic radial glia in the outer subventricular zone of human neocortex".
3232: 2948:
Tang, Hengli; Hammack, Christy; Ogden, Sarah C.; Wen, Zhexing; Qian, Xuyu; Li, Yujing; Yao, Bing; Shin, Jaehoon; Zhang, Feiran (2016-05-05).
753: 638: 169:. There is evidence to suggest a positive relationship between gyrification and cognitive information processing speed, as well as better 373:
A 'gyrification index' (GI) has been used as a measure of the magnitude of cortical convolutions on the surface of the mammalian brain.
246:
showed that gyrification can be experimentally induced in the embryonic mouse, but at early stages in the absence of axonal connections.
3227: 695:
Rajagopalan, V; Scott, J; Habas, PA; Kim, K; Corbett-Detig, J; Rousseau, F; Barkovich, AJ; Glenn, OA; Studholme, C (23 February 2011).
353:'. Cortical neurogenesis begins to deplete the pool of progenitor cells, subject to the influences of many genetic cues such as 1218:
Ronan, L; Voets, N; Rua, C; Alexander-Bloch, A; Hough, M; Mackay, C; Crow, TJ; James, A; Giedd, JN; Fletcher, PC (August 2014).
937:
Ronan, L; Voets, N; Rua, C; Alexander-Bloch, A; Hough, M; Mackay, C; Crow, TJ; James, A; Giedd, JN; Fletcher, PC (August 2014).
902:
Weiner, S; Monge, J; Mann, A (September 2008). "Bipedalism and parturition: an evolutionary imperative for cesarean delivery?".
1646:
Chenn, A; Walsh, CA (19 July 2002). "Regulation of cerebral cortical size by control of cell cycle exit in neural precursors".
2447:
Ross, M. Elizabeth; Walsh, Christopher A. (2001-01-01). "Human Brain Malformations and Their Lessons for Neuronal Migration".
1066:
Van Essen, DC (23 January 1997). "A tension-based theory of morphogenesis and compact wiring in the central nervous system".
2195:
Zilles, K; Armstrong, E; Moser, KH; Schleicher, A; Stephan, H (1989). "Gyrification in the cerebral cortex of primates".
2543:
Wallace, Gregory L.; Robustelli, Briana; Dankner, Nathan; Kenworthy, Lauren; Giedd, Jay N.; Martin, Alex (2013-06-01).
277:
There is some dispute over the growth rates through which cortical and subcortical layers of the brain develop. Purely
2893:"Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice" 2654:
Identification and functional analysis of Trnp1: a novel DNA associated protein with a key role in neurogenesis
2156:"Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent" 1480:
de Juan Romero, Camino; Bruder, Carl; Tomasello, Ugo; Sanz-Anquela, José Miguel; Borrell, Víctor (2015-07-14).
354: 313: 3208: 1697:
Kuida, K; Haydar, TF; Kuan, CY; Gu, Y; Taya, C; Karasuyama, H; Su, MS; Rakic, P; Flavell, RA (7 August 1998).
629:
Kandel, Eric R.; Schwartz, James H.; Jessell, Thomas M.; Siegelbaum, Steven A.; Hudspeth, A.J., eds. (2012) .
358: 350: 269:
true, that areas of the brain with high values of thickness are found to have lower levels of gyrification.
2801:
Nowakowski, TJ; Pollen, AA; Di Lullo, E; Sandoval-Espinosa, C; Bershteyn, M; Kriegstein, AR (5 May 2016).
2341:
Armstrong, E; Schleicher, A; Omran, H; Curtis, M; Zilles, K (1991). "The ontogeny of human gyrification".
2668:
Chen, Jason A.; Peñagarikano, Olga; Belgard, T. Grant; Swarup, Vivek; Geschwind, Daniel H. (2015-01-01).
1423:"Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate" 52: 2600:
Yang, Daniel Y.-J.; Beam, Danielle; Pelphrey, Kevin A.; Abdullahi, Sebiha; Jou, Roger J. (2016-01-25).
2398: 2291: 2063: 1833: 1747: 1655: 1075: 1012: 88: 1599:"Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex" 1482:"Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly" 2545:"Increased gyrification, but comparable surface area in adolescents with autism spectrum disorders" 1959:
Rakic, P (May 1972). "Mode of cell migration to the superficial layers of fetal monkey neocortex".
697:"Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero" 362: 346: 128:
secondary and tertiary gyri later in development. One of the first and most prominent sulci is the
68:, only 2–4 mm thick, at the surface of the brain. Much of the interior volume is occupied by 2803:"Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells" 1869:"FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis" 3174: 3038: 2783: 2490:
Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R, Partlow JN, et al. (September 2018).
2472: 2323: 2087: 1984: 1941: 1771: 1679: 1099: 1002: 849: 2850:
Li, C; Xu, D; Ye, Q; Hong, S; Jiang, Y; Liu, X; Zhang, N; Shi, L; Qin, CF; Xu, Z (11 May 2016).
382:
Nonetheless, some rodents show gyrencephaly and a few primate species are quite lissencephalic.
3137:
Schaer, M.; Cuadra, M.B.; Tamarit, L.; Lazeyras, F.; Eliez, S.; Thiran, J.-P. (February 2008).
3166: 3158: 3095: 3077: 3030: 3022: 2987: 2969: 2930: 2912: 2873: 2832: 2775: 2740: 2732: 2691: 2633: 2582: 2564: 2525: 2464: 2424: 2358: 2315: 2307: 2261: 2212: 2177: 2136: 2079: 2033: 1976: 1933: 1898: 1849: 1806: 1763: 1720: 1671: 1628: 1576: 1558: 1519: 1501: 1462: 1454: 1396: 1378: 1339: 1290: 1249: 1200: 1148: 1091: 1048: 1030: 968: 919: 884: 841: 805: 749: 726: 677: 656:"Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes" 634: 611: 491: 337: 230: 149: 3150: 3085: 3069: 3014: 2977: 2961: 2920: 2904: 2863: 2822: 2814: 2767: 2722: 2681: 2623: 2613: 2572: 2556: 2515: 2507: 2456: 2414: 2406: 2350: 2299: 2251: 2243: 2204: 2167: 2126: 2118: 2071: 2023: 2015: 2004:"OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease" 1968: 1925: 1888: 1880: 1841: 1798: 1755: 1710: 1663: 1618: 1610: 1566: 1550: 1509: 1493: 1444: 1434: 1386: 1370: 1329: 1321: 1280: 1239: 1231: 1190: 1182: 1138: 1130: 1083: 1038: 1020: 958: 950: 911: 876: 833: 795: 716: 708: 667: 601: 593: 341: 287: 166: 145: 119: 1699:"Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9" 34: 2686: 2669: 1359:"Increased morphological asymmetry, evolvability and plasticity in human brain evolution" 3198: 2402: 2295: 2067: 1837: 1751: 1659: 1079: 1016: 800: 783: 3090: 3057: 2982: 2949: 2925: 2892: 2827: 2802: 2628: 2601: 2577: 2544: 2520: 2491: 2419: 2387:"A mechanical model predicts morphological abnormalities in the developing human brain" 2386: 2256: 2231: 2131: 2106: 2028: 2003: 1893: 1868: 1623: 1598: 1571: 1538: 1514: 1481: 1391: 1358: 1334: 1309: 1308:
White, Tonya; Su, Shu; Schmidt, Marcus; Kao, Chiu-Yen; Sapiro, Guillermo (2010-02-01).
1244: 1219: 1195: 1170: 1143: 1118: 1043: 990: 963: 938: 721: 696: 672: 655: 606: 581: 542: 526: 427:
in humans, ranging from mTORopathies (e.g. AKT3) to channelopathies (sodium channels, "
424: 419: 317: 195: 170: 141: 129: 1715: 1698: 19: 3237: 3221: 3073: 2852:"Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice" 2232:"The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis" 2107:"The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis" 546: 508:, a surface reconstruction Software is one of the tools available to measure the GI. 479: 463: 407: 328:) and appropriate levels of cell death of cortical progenitors have also been found. 210: 2787: 2476: 2460: 2327: 1988: 1945: 1683: 3042: 2771: 2091: 1884: 1775: 1186: 1103: 853: 712: 487: 411:
idea that a brain with a thicker cortex will have a lesser degree of gyrification.
321: 69: 3178: 2950:"Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth" 2154:
García-Moreno, F; Vasistha, NA; Trevia, N; Bourne, JA; Molnár, Z (February 2012).
989:
Tallinen, Tuomas; Chung, Jun Young; Biggins, John S.; Mahadevan, L. (2014-09-02).
2511: 349:, and the primordial map of cortical functional areas at this stage is called a ' 3113: 1537:
Fernández, Virginia; Llinares-Benadero, Cristina; Borrell, Víctor (2016-05-17).
1325: 1171:"Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain" 1117:
Xu, G; Knutsen, A K; Dikranian, K; Kroenke, C D; Bayly, P V; Taber, L A (2010).
401: 325: 152:). Most cortical gyri and sulci begin to take shape between weeks 24 and 38 of 65: 24: 2965: 2868: 2851: 2818: 2019: 1439: 1422: 2727: 2710: 2618: 2496:
1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development"
2382: 1285: 1268: 915: 867:
Jordaan, HV (March 1976). "Newborn: adult brain ratios in hominid evolution".
837: 505: 483: 222: 178: 174: 3162: 3081: 3026: 2973: 2916: 2736: 2568: 2311: 1562: 1505: 1458: 1382: 1034: 361:. RGCs generate intermediate neuronal precursors that divide further in the 3154: 2354: 2303: 2247: 2172: 2155: 2122: 1845: 1802: 1667: 1554: 1497: 1235: 1220:"Differential tangential expansion as a mechanism for cortical gyrification" 1025: 954: 939:"Differential tangential expansion as a mechanism for cortical gyrification" 880: 234: 153: 3170: 3099: 2991: 2934: 2877: 2836: 2779: 2744: 2695: 2637: 2586: 2560: 2529: 2468: 2428: 2319: 2265: 2181: 2140: 2083: 2037: 1937: 1902: 1810: 1767: 1675: 1632: 1580: 1523: 1466: 1400: 1374: 1343: 1253: 1204: 1152: 1052: 972: 923: 845: 809: 730: 615: 3138: 3034: 2670:"The Emerging Picture of Autism Spectrum Disorder: Genetics and Pathology" 2362: 2216: 1980: 1972: 1853: 1724: 1294: 1095: 681: 2657:(Text.PhDThesis). Ludwig-Maximilians-Universität München. pp. 86–88. 2652: 1357:
Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C. (2013-06-22).
888: 560: 278: 218: 206: 173:. Additionally, because a large cranium requires a larger pelvis during 100: 2075: 1449: 3018: 2908: 782:
Striedter, Georg F.; Srinivasan, Shyam; Monuki, Edwin S. (2015-01-01).
486:
are due to infection during pregnancy, and are generally classified as
374: 202: 104: 96: 92: 77: 2410: 2208: 1316:. Adolescent Brain Development: Current Themes and Future Directions. 1134: 1119:"Axons pull on the brain, but tension does not drive cortical folding" 582:"Evolution of the neocortex: a perspective from developmental biology" 1759: 1269:"Genetic variability of human brain size and cortical gyral patterns" 1169:
Rash, BG; Tomasi, S; Lim, HD; Suh, CY; Vaccarino, FM (26 June 2013).
1087: 467: 440: 226: 214: 108: 84: 61: 1824:
Rakic, P (8 July 1988). "Specification of cerebral cortical areas".
1614: 597: 1929: 1007: 107:
generally have none. Gyrification in some animals, for example the
103:
have extensive cortical gyri, with a few species exceptions, while
3139:"A Surface-Based Approach to Quantify Local Cortical Gyrification" 447: 428: 309: 118: 42: 1867:
Rash, BG; Lim, HD; Breunig, JJ; Vaccarino, FM (26 October 2011).
378: 304: 300: 73: 3058:"Cortical complexity as a measure of age-related brain atrophy" 2002:
LaMonica, BE; Lui, JH; Wang, X; Kriegstein, AR (October 2012).
1539:"Cerebral cortex expansion and folding: what have we learned?" 1310:"The development of gyrification in childhood and adolescence" 529:; Adult mouse; Midgestation human; Newborn human; Adult human. 3056:
Madan, Christopher R.; Kensinger, Elizabeth A. (2016-07-01).
290:
by destabilizing and forming creases to become more stable.
33:
is the process of forming the characteristic folds of the
1267:
Bartley, AJ; Jones, DW; Weinberger, DR (February 1997).
16:
Formation of the folds of the brain's cerebral cortex
345:system of signaling centers through the process of 991:"Gyrification from constrained cortical expansion" 156:, and continue to enlarge and mature after birth. 2674:Annual Review of Pathology: Mechanisms of Disease 64:of the cerebral cortex reside in a thin layer of 995:Proceedings of the National Academy of Sciences 777: 775: 773: 771: 769: 767: 765: 525:Various brains. Clockwise from top left: Adult 784:"Cortical Folding: When, Where, How, and Why?" 181:, a smaller cranium is more easily delivered. 1164: 1162: 8: 308:gene reported to influence gyrification was 746:The Human Brain during the Second Trimester 115:Gyrification during human brain development 217:cerebral cortex is several thin layers of 3089: 2981: 2924: 2867: 2826: 2726: 2685: 2627: 2617: 2576: 2519: 2418: 2255: 2171: 2130: 2027: 1892: 1714: 1622: 1570: 1513: 1448: 1438: 1390: 1333: 1284: 1243: 1194: 1142: 1042: 1024: 1006: 962: 869:American Journal of Physical Anthropology 799: 744:Bayer, Shirley A; Altman, Joseph (2005). 720: 671: 605: 2230:Hevner, RF; Haydar, TF (February 2012). 2105:Hevner, RF; Haydar, TF (February 2012). 1597:Wang, L; Hou, S; Han, YG (23 May 2016). 18: 633:(5th ed.). New York: McGraw Hill. 572: 515: 2442: 2440: 2438: 2376: 2374: 2372: 2049: 2047: 1592: 1590: 1416: 1414: 1412: 1410: 390:Neurological disorders of gyrification 111:, continues well into postnatal life. 2277: 2275: 984: 982: 654:Smart, IH; McSherry, GM (June 1986). 201:An external growth constraint of the 185:Theories on causality in gyrification 7: 3143:IEEE Transactions on Medical Imaging 2687:10.1146/annurev-pathol-012414-040405 1961:The Journal of Comparative Neurology 1123:Journal of Biomechanical Engineering 541:Normal human adult cerebrum (left), 144:, which separates the motor cortex ( 40:The peak of such a fold is called a 801:10.1146/annurev-neuro-071714-034128 2381:Budday, Silvia; Raybaud, Charles; 140:), followed by others such as the 14: 748:. Boca Raton, FL USA: CRC Press. 250:Differential tangential expansion 3191: 3074:10.1016/j.neuroimage.2016.04.029 2711:"Cortical Sulcal Maps in Autism" 534: 518: 209:(hardened into the bone through 2461:10.1146/annurev.neuro.24.1.1041 2008:Current Opinion in Neurobiology 2772:10.1016/j.biopsych.2010.12.012 1885:10.1523/jneurosci.4439-11.2011 1187:10.1523/jneurosci.3621-12.2013 713:10.1523/jneurosci.5458-10.2011 336:Cortical stem cells, known as 50:), and its trough is called a 1: 2449:Annual Review of Neuroscience 2197:Brain, Behavior and Evolution 1716:10.1016/s0092-8674(00)81476-2 788:Annual Review of Neuroscience 177:, with implied difficulty in 148:) from somatosensory cortex ( 87:, gyrification begins during 3233:Embryology of nervous system 2512:10.1016/j.neuron.2018.07.052 631:Principles of Neural Science 499:Measurements of gyrification 462:A more prevalent condition, 332:Cell biological determinants 213:). The tissue covering the 1873:The Journal of Neuroscience 1326:10.1016/j.bandc.2009.10.009 1175:The Journal of Neuroscience 701:The Journal of Neuroscience 586:Nature Reviews Neuroscience 123:Human cortical development. 3254: 3228:Developmental neuroscience 3118:surfer.nmr.mgh.harvard.edu 2966:10.1016/j.stem.2016.02.016 2869:10.1016/j.stem.2016.04.017 2819:10.1016/j.stem.2016.03.012 2020:10.1016/j.conb.2012.03.006 1440:10.1016/j.cell.2013.03.027 826:Behavioural Brain Research 2619:10.1186/s13229-016-0076-x 2492:"Sodium Channel SCN3A (Na 916:10.1016/j.clp.2008.06.003 838:10.1016/j.bbr.2015.03.018 580:Rakic, P (October 2009). 355:fibroblast growth factors 72:, which consists of long 3114:"LGI - Free Surfer Wiki" 474:Zika virus malformations 369:Variation across species 314:fibroblast growth factor 3155:10.1109/tmi.2007.903576 2728:10.1093/cercor/13.7.728 2304:10.1126/science.aaa9101 1846:10.1126/science.3291116 1803:10.1242/dev.127.24.5253 1668:10.1126/science.1074192 1555:10.15252/embj.201593701 1498:10.15252/embj.201591176 1286:10.1093/brain/120.2.257 1026:10.1073/pnas.1406015111 904:Clinics in Perinatology 881:10.1002/ajpa.1330440209 160:Evolutionary advantages 3007:Anatomy and Embryology 1375:10.1098/rspb.2013.0575 340:(RGC)s, reside in the 124: 27: 2760:Biological Psychiatry 2651:Stahl, Ronny (2012). 2355:10.1093/cercor/5.1.56 2248:10.1093/cercor/bhr336 2173:10.1093/cercor/bhr312 2123:10.1093/cercor/bhr336 1973:10.1002/cne.901450105 1236:10.1093/cercor/bht082 955:10.1093/cercor/bht082 171:verbal working memory 122: 22: 2561:10.1093/brain/awt106 504:coronal sections"). 23:Gyrification in the 2403:2014NatSR...4E5644B 2296:2015Sci...349...74M 2076:10.1038/nature08845 2068:2010Natur.464..554H 1918:Nature Neuroscience 1838:1988Sci...241..170R 1752:2001Natur.409..714N 1660:2002Sci...297..365C 1603:Nature Neuroscience 1314:Brain and Cognition 1080:1997Natur.385..313E 1017:2014PNAS..11112667T 1001:(35): 12667–12672. 363:subventricular zone 347:cortical patterning 190:Mechanical buckling 132:(also known as the 3019:10.1007/BF00304699 2909:10.1038/cr.2016.58 2391:Scientific Reports 1369:(1761): 20130575. 660:Journal of Anatomy 492:radial glial cells 338:radial glial cells 264:Cortical thickness 259:Mechanical factors 221:(future skin) and 125: 28: 2506:(5): 905–913.e7. 2411:10.1038/srep05644 2209:10.1159/000116500 2062:(7288): 554–561. 1549:(10): 1021–1044. 1492:(14): 1859–1874. 1135:10.1115/1.4001683 910:(3): 469–78, ix. 755:978-0-8493-1422-3 640:978-0-07-139011-8 512:Additional images 231:connective tissue 167:action potentials 150:postcentral gyrus 89:fetal development 3245: 3195: 3194: 3183: 3182: 3134: 3128: 3127: 3125: 3124: 3110: 3104: 3103: 3093: 3053: 3047: 3046: 3002: 2996: 2995: 2985: 2945: 2939: 2938: 2928: 2888: 2882: 2881: 2871: 2847: 2841: 2840: 2830: 2798: 2792: 2791: 2755: 2749: 2748: 2730: 2706: 2700: 2699: 2689: 2665: 2659: 2658: 2648: 2642: 2641: 2631: 2621: 2606:Molecular Autism 2597: 2591: 2590: 2580: 2555:(6): 1956–1967. 2540: 2534: 2533: 2523: 2487: 2481: 2480: 2455:(1): 1041–1070. 2444: 2433: 2432: 2422: 2378: 2367: 2366: 2338: 2332: 2331: 2279: 2270: 2269: 2259: 2227: 2221: 2220: 2192: 2186: 2185: 2175: 2151: 2145: 2144: 2134: 2102: 2096: 2095: 2051: 2042: 2041: 2031: 1999: 1993: 1992: 1956: 1950: 1949: 1913: 1907: 1906: 1896: 1879:(43): 15604–17. 1864: 1858: 1857: 1821: 1815: 1814: 1786: 1780: 1779: 1760:10.1038/35055553 1746:(6821): 714–20. 1735: 1729: 1728: 1718: 1694: 1688: 1687: 1643: 1637: 1636: 1626: 1594: 1585: 1584: 1574: 1543:The EMBO Journal 1534: 1528: 1527: 1517: 1486:The EMBO Journal 1477: 1471: 1470: 1452: 1442: 1418: 1405: 1404: 1394: 1354: 1348: 1347: 1337: 1305: 1299: 1298: 1288: 1264: 1258: 1257: 1247: 1215: 1209: 1208: 1198: 1181:(26): 10802–14. 1166: 1157: 1156: 1146: 1114: 1108: 1107: 1088:10.1038/385313a0 1063: 1057: 1056: 1046: 1028: 1010: 986: 977: 976: 966: 934: 928: 927: 899: 893: 892: 864: 858: 857: 820: 814: 813: 803: 779: 760: 759: 741: 735: 734: 724: 692: 686: 685: 675: 651: 645: 644: 626: 620: 619: 609: 577: 538: 522: 342:ventricular zone 288:potential energy 146:precentral gyrus 3253: 3252: 3248: 3247: 3246: 3244: 3243: 3242: 3218: 3217: 3216: 3215: 3214: 3196: 3192: 3187: 3186: 3136: 3135: 3131: 3122: 3120: 3112: 3111: 3107: 3055: 3054: 3050: 3004: 3003: 2999: 2947: 2946: 2942: 2890: 2889: 2885: 2849: 2848: 2844: 2800: 2799: 2795: 2766:(10): 974–979. 2757: 2756: 2752: 2715:Cerebral Cortex 2708: 2707: 2703: 2667: 2666: 2662: 2650: 2649: 2645: 2599: 2598: 2594: 2542: 2541: 2537: 2495: 2489: 2488: 2484: 2446: 2445: 2436: 2380: 2379: 2370: 2343:Cerebral Cortex 2340: 2339: 2335: 2290:(6243): 74–77. 2281: 2280: 2273: 2236:Cerebral Cortex 2229: 2228: 2224: 2194: 2193: 2189: 2160:Cerebral Cortex 2153: 2152: 2148: 2111:Cerebral Cortex 2104: 2103: 2099: 2053: 2052: 2045: 2001: 2000: 1996: 1958: 1957: 1953: 1915: 1914: 1910: 1866: 1865: 1861: 1832:(4862): 170–6. 1823: 1822: 1818: 1797:(24): 5253–63. 1788: 1787: 1783: 1737: 1736: 1732: 1696: 1695: 1691: 1654:(5580): 365–9. 1645: 1644: 1640: 1615:10.1038/nn.4307 1596: 1595: 1588: 1536: 1535: 1531: 1479: 1478: 1474: 1420: 1419: 1408: 1363:Proc. R. Soc. B 1356: 1355: 1351: 1307: 1306: 1302: 1266: 1265: 1261: 1224:Cerebral Cortex 1217: 1216: 1212: 1168: 1167: 1160: 1116: 1115: 1111: 1074:(6614): 313–8. 1065: 1064: 1060: 988: 987: 980: 943:Cerebral Cortex 936: 935: 931: 901: 900: 896: 866: 865: 861: 822: 821: 817: 781: 780: 763: 756: 743: 742: 738: 694: 693: 689: 653: 652: 648: 641: 628: 627: 623: 598:10.1038/nrn2719 579: 578: 574: 569: 557: 550: 539: 530: 523: 514: 501: 482:induced by the 476: 460: 437: 417: 397: 392: 371: 334: 296: 294:Genetic factors 275: 266: 261: 252: 243: 192: 187: 162: 138:Sylvian fissure 134:lateral fissure 117: 35:cerebral cortex 17: 12: 11: 5: 3251: 3249: 3241: 3240: 3235: 3230: 3220: 3219: 3197: 3190: 3189: 3188: 3185: 3184: 3149:(2): 161–170. 3129: 3105: 3048: 3013:(2): 173–179. 2997: 2960:(5): 587–590. 2954:Cell Stem Cell 2940: 2903:(6): 645–654. 2883: 2856:Cell Stem Cell 2842: 2807:Cell Stem Cell 2793: 2750: 2721:(7): 728–735. 2701: 2680:(1): 111–144. 2660: 2643: 2592: 2535: 2493: 2482: 2434: 2385:(2014-07-10). 2368: 2333: 2271: 2222: 2187: 2146: 2097: 2043: 1994: 1951: 1930:10.1038/nn1172 1908: 1859: 1816: 1781: 1730: 1689: 1638: 1586: 1529: 1472: 1433:(3): 535–549. 1406: 1349: 1300: 1259: 1230:(8): 2219–28. 1210: 1158: 1109: 1058: 978: 949:(8): 2219–28. 929: 894: 859: 815: 794:(1): 291–307. 761: 754: 736: 707:(8): 2878–87. 687: 646: 639: 621: 592:(10): 724–35. 571: 570: 568: 565: 564: 563: 556: 553: 552: 551: 543:polymicrogyria 540: 533: 531: 524: 517: 513: 510: 500: 497: 475: 472: 459: 456: 439:Patients with 436: 433: 425:Polymicrogyria 420:Polymicrogyria 416: 415:Polymicrogyria 413: 396: 393: 391: 388: 370: 367: 333: 330: 318:sonic hedgehog 295: 292: 274: 271: 265: 262: 260: 257: 251: 248: 242: 241:Axonal tension 239: 191: 188: 186: 183: 161: 158: 142:central sulcus 130:lateral sulcus 116: 113: 15: 13: 10: 9: 6: 4: 3: 2: 3250: 3239: 3236: 3234: 3231: 3229: 3226: 3225: 3223: 3212: 3211: 3210: 3204: 3200: 3180: 3176: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3140: 3133: 3130: 3119: 3115: 3109: 3106: 3101: 3097: 3092: 3087: 3083: 3079: 3075: 3071: 3067: 3063: 3059: 3052: 3049: 3044: 3040: 3036: 3032: 3028: 3024: 3020: 3016: 3012: 3008: 3001: 2998: 2993: 2989: 2984: 2979: 2975: 2971: 2967: 2963: 2959: 2955: 2951: 2944: 2941: 2936: 2932: 2927: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2897:Cell Research 2894: 2887: 2884: 2879: 2875: 2870: 2865: 2861: 2857: 2853: 2846: 2843: 2838: 2834: 2829: 2824: 2820: 2816: 2812: 2808: 2804: 2797: 2794: 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2761: 2754: 2751: 2746: 2742: 2738: 2734: 2729: 2724: 2720: 2716: 2712: 2705: 2702: 2697: 2693: 2688: 2683: 2679: 2675: 2671: 2664: 2661: 2656: 2655: 2647: 2644: 2639: 2635: 2630: 2625: 2620: 2615: 2611: 2607: 2603: 2596: 2593: 2588: 2584: 2579: 2574: 2570: 2566: 2562: 2558: 2554: 2550: 2546: 2539: 2536: 2531: 2527: 2522: 2517: 2513: 2509: 2505: 2501: 2497: 2486: 2483: 2478: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2443: 2441: 2439: 2435: 2430: 2426: 2421: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2377: 2375: 2373: 2369: 2364: 2360: 2356: 2352: 2348: 2344: 2337: 2334: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2289: 2285: 2278: 2276: 2272: 2267: 2263: 2258: 2253: 2249: 2245: 2241: 2237: 2233: 2226: 2223: 2218: 2214: 2210: 2206: 2203:(3): 143–50. 2202: 2198: 2191: 2188: 2183: 2179: 2174: 2169: 2166:(2): 482–92. 2165: 2161: 2157: 2150: 2147: 2142: 2138: 2133: 2128: 2124: 2120: 2116: 2112: 2108: 2101: 2098: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2050: 2048: 2044: 2039: 2035: 2030: 2025: 2021: 2017: 2014:(5): 747–53. 2013: 2009: 2005: 1998: 1995: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1955: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1924:(2): 136–44. 1923: 1919: 1912: 1909: 1904: 1900: 1895: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1860: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1820: 1817: 1812: 1808: 1804: 1800: 1796: 1792: 1785: 1782: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1734: 1731: 1726: 1722: 1717: 1712: 1709:(3): 325–37. 1708: 1704: 1700: 1693: 1690: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1642: 1639: 1634: 1630: 1625: 1620: 1616: 1612: 1609:(7): 888–96. 1608: 1604: 1600: 1593: 1591: 1587: 1582: 1578: 1573: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1533: 1530: 1525: 1521: 1516: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1473: 1468: 1464: 1460: 1456: 1451: 1446: 1441: 1436: 1432: 1428: 1424: 1417: 1415: 1413: 1411: 1407: 1402: 1398: 1393: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1353: 1350: 1345: 1341: 1336: 1331: 1327: 1323: 1319: 1315: 1311: 1304: 1301: 1296: 1292: 1287: 1282: 1279:(2): 257–69. 1278: 1274: 1270: 1263: 1260: 1255: 1251: 1246: 1241: 1237: 1233: 1229: 1225: 1221: 1214: 1211: 1206: 1202: 1197: 1192: 1188: 1184: 1180: 1176: 1172: 1165: 1163: 1159: 1154: 1150: 1145: 1140: 1136: 1132: 1129:(7): 071013. 1128: 1124: 1120: 1113: 1110: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1062: 1059: 1054: 1050: 1045: 1040: 1036: 1032: 1027: 1022: 1018: 1014: 1009: 1004: 1000: 996: 992: 985: 983: 979: 974: 970: 965: 960: 956: 952: 948: 944: 940: 933: 930: 925: 921: 917: 913: 909: 905: 898: 895: 890: 886: 882: 878: 874: 870: 863: 860: 855: 851: 847: 843: 839: 835: 831: 827: 819: 816: 811: 807: 802: 797: 793: 789: 785: 778: 776: 774: 772: 770: 768: 766: 762: 757: 751: 747: 740: 737: 732: 728: 723: 718: 714: 710: 706: 702: 698: 691: 688: 683: 679: 674: 669: 665: 661: 657: 650: 647: 642: 636: 632: 625: 622: 617: 613: 608: 603: 599: 595: 591: 587: 583: 576: 573: 566: 562: 559: 558: 554: 548: 547:lissencephaly 545:(center) and 544: 537: 532: 528: 521: 516: 511: 509: 507: 498: 496: 493: 489: 485: 481: 480:malformations 473: 471: 469: 465: 464:schizophrenia 458:Schizophrenia 457: 455: 451: 449: 445: 442: 434: 432: 430: 426: 421: 414: 412: 409: 408:Lissencephaly 405: 403: 395:Lissencephaly 394: 389: 387: 383: 380: 376: 368: 366: 364: 360: 356: 352: 348: 343: 339: 331: 329: 327: 324:(part of the 323: 319: 315: 311: 306: 302: 293: 291: 289: 283: 280: 272: 270: 263: 258: 256: 249: 247: 240: 238: 236: 232: 228: 224: 220: 216: 212: 211:calcification 208: 204: 199: 197: 189: 184: 182: 180: 176: 172: 168: 159: 157: 155: 151: 147: 143: 139: 135: 131: 121: 114: 112: 110: 106: 102: 98: 94: 90: 86: 81: 79: 75: 71: 67: 63: 59: 55: 54: 49: 45: 44: 38: 36: 32: 26: 21: 3209:Gyrification 3207: 3206: 3205:profile for 3202: 3146: 3142: 3132: 3121:. Retrieved 3117: 3108: 3065: 3061: 3051: 3010: 3006: 3000: 2957: 2953: 2943: 2900: 2896: 2886: 2862:(1): 120–6. 2859: 2855: 2845: 2813:(5): 591–6. 2810: 2806: 2796: 2763: 2759: 2753: 2718: 2714: 2704: 2677: 2673: 2663: 2653: 2646: 2609: 2605: 2595: 2552: 2548: 2538: 2503: 2499: 2485: 2452: 2448: 2394: 2390: 2349:(1): 56–63. 2346: 2342: 2336: 2287: 2283: 2242:(2): 465–8. 2239: 2235: 2225: 2200: 2196: 2190: 2163: 2159: 2149: 2117:(2): 465–8. 2114: 2110: 2100: 2059: 2055: 2011: 2007: 1997: 1967:(1): 61–83. 1964: 1960: 1954: 1921: 1917: 1911: 1876: 1872: 1862: 1829: 1825: 1819: 1794: 1790: 1784: 1743: 1739: 1733: 1706: 1702: 1692: 1651: 1647: 1641: 1606: 1602: 1546: 1542: 1532: 1489: 1485: 1475: 1450:10261/338716 1430: 1426: 1366: 1362: 1352: 1320:(1): 36–45. 1317: 1313: 1303: 1276: 1272: 1262: 1227: 1223: 1213: 1178: 1174: 1126: 1122: 1112: 1071: 1067: 1061: 998: 994: 946: 942: 932: 907: 903: 897: 875:(2): 271–8. 872: 868: 862: 829: 825: 818: 791: 787: 745: 739: 704: 700: 690: 663: 659: 649: 630: 624: 589: 585: 575: 502: 488:microcephaly 477: 461: 452: 446: 438: 418: 406: 398: 384: 372: 335: 322:beta-catenin 297: 284: 276: 273:Growth speed 267: 253: 244: 200: 193: 163: 137: 133: 126: 82: 70:white matter 57: 51: 47: 41: 39: 31:Gyrification 30: 29: 3068:: 617–629. 2383:Kuhl, Ellen 1791:Development 832:: 331–339. 402:neural tube 357:(FGF)s and 326:Wnt pathway 316:(FGF)- and 301:monozygotic 66:gray matter 25:human brain 3222:Categories 3123:2018-05-02 3062:NeuroImage 1008:1503.03853 666:: 141–52. 567:References 506:FreeSurfer 484:Zika virus 223:mesenchyme 179:bipedalism 175:childbirth 3163:0278-0062 3082:1053-8119 3027:0340-2061 2974:1934-5909 2917:1748-7838 2737:1047-3211 2612:(1): 11. 2569:0006-8950 2312:0036-8075 1563:1460-2075 1506:1460-2075 1459:1097-4172 1383:0962-8452 1035:0027-8424 478:Cortical 305:dizygotic 279:isotropic 235:cartilage 215:embryonic 154:gestation 101:ungulates 97:cetaceans 3171:18334438 3100:27103141 2992:26952870 2935:27174054 2878:27179424 2837:27038591 2788:16645055 2780:21257157 2745:12816888 2696:25621659 2638:26816612 2587:23715094 2530:30146301 2477:18582415 2469:11520927 2429:25008163 2397:: 5644. 2328:24572675 2320:26138976 2266:22116731 2182:22114081 2141:22116731 2084:20154730 2038:22487088 1989:41001390 1946:15946842 1938:14703572 1903:22031906 1811:11076748 1768:11217860 1684:15145974 1676:12130776 1633:27214567 1581:27056680 1524:25916825 1467:23622239 1401:23615289 1344:19942335 1254:23542881 1205:23804101 1153:20590291 1053:25136099 973:23542881 924:18952015 846:25804360 810:25897870 731:21414909 616:19763105 561:Ulegyria 555:See also 549:(right). 351:protomap 225:(future 219:ectoderm 207:ossified 93:Primates 83:In most 60:). The 3199:Scholia 3091:4945358 3043:8739203 3035:3232854 2983:5299540 2926:4897185 2828:4860115 2629:4727390 2578:3673467 2521:6226006 2420:4090617 2399:Bibcode 2363:7719130 2292:Bibcode 2284:Science 2257:3256413 2217:2512000 2132:3256413 2092:4412132 2064:Bibcode 2029:3402619 1981:4624784 1894:3235689 1854:3291116 1834:Bibcode 1826:Science 1776:3041502 1748:Bibcode 1725:9708735 1656:Bibcode 1648:Science 1624:4925239 1572:4868950 1515:4547892 1392:3652445 1335:2815169 1295:9117373 1245:4089386 1196:3693057 1144:3170872 1104:4355025 1096:9002514 1076:Bibcode 1044:4156754 1013:Bibcode 964:4089386 854:7476449 722:3093305 682:3693054 673:1166530 607:2913577 375:Reptile 203:cranium 196:Retzius 105:rodents 85:mammals 78:cranium 62:neurons 3201:has a 3179:756173 3177:  3169:  3161:  3098:  3088:  3080:  3041:  3033:  3025:  2990:  2980:  2972:  2933:  2923:  2915:  2876:  2835:  2825:  2786:  2778:  2743:  2735:  2694:  2636:  2626:  2585:  2575:  2567:  2528:  2518:  2500:Neuron 2475:  2467:  2427:  2417:  2361:  2326:  2318:  2310:  2264:  2254:  2215:  2180:  2139:  2129:  2090:  2082:  2056:Nature 2036:  2026:  1987:  1979:  1944:  1936:  1901:  1891:  1852:  1809:  1774:  1766:  1740:Nature 1723:  1682:  1674:  1631:  1621:  1579:  1569:  1561:  1522:  1512:  1504:  1465:  1457:  1399:  1389:  1381:  1342:  1332:  1293:  1252:  1242:  1203:  1193:  1151:  1141:  1102:  1094:  1068:Nature 1051:  1041:  1033:  971:  961:  922:  889:816206 887:  852:  844:  808:  752:  729:  719:  680:  670:  637:  614:  604:  527:rhesus 468:autism 441:autism 435:Autism 227:muscle 109:ferret 99:, and 74:axonal 53:sulcus 3203:topic 3175:S2CID 3039:S2CID 2784:S2CID 2549:Brain 2473:S2CID 2324:S2CID 2088:S2CID 1985:S2CID 1942:S2CID 1772:S2CID 1680:S2CID 1273:Brain 1100:S2CID 1003:arXiv 850:S2CID 448:Trnp1 429:SCN3A 359:Notch 310:Trnp1 58:sulci 56:(pl. 46:(pl. 43:gyrus 3238:Gyri 3167:PMID 3159:ISSN 3096:PMID 3078:ISSN 3031:PMID 3023:ISSN 2988:PMID 2970:ISSN 2931:PMID 2913:ISSN 2874:PMID 2833:PMID 2776:PMID 2741:PMID 2733:ISSN 2692:PMID 2634:PMID 2583:PMID 2565:ISSN 2526:PMID 2465:PMID 2425:PMID 2359:PMID 2316:PMID 2308:ISSN 2262:PMID 2213:PMID 2178:PMID 2137:PMID 2080:PMID 2034:PMID 1977:PMID 1934:PMID 1899:PMID 1850:PMID 1807:PMID 1764:PMID 1721:PMID 1703:Cell 1672:PMID 1629:PMID 1577:PMID 1559:ISSN 1520:PMID 1502:ISSN 1463:PMID 1455:ISSN 1427:Cell 1397:PMID 1379:ISSN 1340:PMID 1291:PMID 1250:PMID 1201:PMID 1149:PMID 1092:PMID 1049:PMID 1031:ISSN 969:PMID 920:PMID 885:PMID 842:PMID 806:PMID 750:ISBN 727:PMID 678:PMID 635:ISBN 612:PMID 431:"). 379:bird 377:and 303:and 229:and 80:. 48:gyri 3151:doi 3086:PMC 3070:doi 3066:134 3015:doi 3011:179 2978:PMC 2962:doi 2921:PMC 2905:doi 2864:doi 2823:PMC 2815:doi 2768:doi 2723:doi 2682:doi 2624:PMC 2614:doi 2573:PMC 2557:doi 2553:136 2516:PMC 2508:doi 2457:doi 2415:PMC 2407:doi 2351:doi 2300:doi 2288:349 2252:PMC 2244:doi 2205:doi 2168:doi 2127:PMC 2119:doi 2072:doi 2060:464 2024:PMC 2016:doi 1969:doi 1965:145 1926:doi 1889:PMC 1881:doi 1842:doi 1830:241 1799:doi 1795:127 1756:doi 1744:409 1711:doi 1664:doi 1652:297 1619:PMC 1611:doi 1567:PMC 1551:doi 1510:PMC 1494:doi 1445:hdl 1435:doi 1431:153 1387:PMC 1371:doi 1367:280 1330:PMC 1322:doi 1281:doi 1277:120 1240:PMC 1232:doi 1191:PMC 1183:doi 1139:PMC 1131:doi 1127:132 1084:doi 1072:385 1039:PMC 1021:doi 999:111 959:PMC 951:doi 912:doi 877:doi 834:doi 830:287 796:doi 717:PMC 709:doi 668:PMC 664:146 602:PMC 594:doi 136:or 3224:: 3173:. 3165:. 3157:. 3147:27 3145:. 3141:. 3116:. 3094:. 3084:. 3076:. 3064:. 3060:. 3037:. 3029:. 3021:. 3009:. 2986:. 2976:. 2968:. 2958:18 2956:. 2952:. 2929:. 2919:. 2911:. 2901:26 2899:. 2895:. 2872:. 2860:19 2858:. 2854:. 2831:. 2821:. 2811:18 2809:. 2805:. 2782:. 2774:. 2764:69 2762:. 2739:. 2731:. 2719:13 2717:. 2713:. 2690:. 2678:10 2676:. 2672:. 2632:. 2622:. 2608:. 2604:. 2581:. 2571:. 2563:. 2551:. 2547:. 2524:. 2514:. 2504:99 2502:. 2498:. 2471:. 2463:. 2453:24 2451:. 2437:^ 2423:. 2413:. 2405:. 2393:. 2389:. 2371:^ 2357:. 2345:. 2322:. 2314:. 2306:. 2298:. 2286:. 2274:^ 2260:. 2250:. 2240:22 2238:. 2234:. 2211:. 2201:34 2199:. 2176:. 2164:22 2162:. 2158:. 2135:. 2125:. 2115:22 2113:. 2109:. 2086:. 2078:. 2070:. 2058:. 2046:^ 2032:. 2022:. 2012:22 2010:. 2006:. 1983:. 1975:. 1963:. 1940:. 1932:. 1920:. 1897:. 1887:. 1877:31 1875:. 1871:. 1848:. 1840:. 1828:. 1805:. 1793:. 1770:. 1762:. 1754:. 1742:. 1719:. 1707:94 1705:. 1701:. 1678:. 1670:. 1662:. 1650:. 1627:. 1617:. 1607:19 1605:. 1601:. 1589:^ 1575:. 1565:. 1557:. 1547:35 1545:. 1541:. 1518:. 1508:. 1500:. 1490:34 1488:. 1484:. 1461:. 1453:. 1443:. 1429:. 1425:. 1409:^ 1395:. 1385:. 1377:. 1365:. 1361:. 1338:. 1328:. 1318:72 1312:. 1289:. 1275:. 1271:. 1248:. 1238:. 1228:24 1226:. 1222:. 1199:. 1189:. 1179:33 1177:. 1173:. 1161:^ 1147:. 1137:. 1125:. 1121:. 1098:. 1090:. 1082:. 1070:. 1047:. 1037:. 1029:. 1019:. 1011:. 997:. 993:. 981:^ 967:. 957:. 947:24 945:. 941:. 918:. 908:35 906:. 883:. 873:44 871:. 848:. 840:. 828:. 804:. 792:38 790:. 786:. 764:^ 725:. 715:. 705:31 703:. 699:. 676:. 662:. 658:. 610:. 600:. 590:10 588:. 584:. 470:. 95:, 91:. 37:. 3213:. 3181:. 3153:: 3126:. 3102:. 3072:: 3045:. 3017:: 2994:. 2964:: 2937:. 2907:: 2880:. 2866:: 2839:. 2817:: 2790:. 2770:: 2747:. 2725:: 2698:. 2684:: 2640:. 2616:: 2610:7 2589:. 2559:: 2532:. 2510:: 2494:V 2479:. 2459:: 2431:. 2409:: 2401:: 2395:4 2365:. 2353:: 2347:5 2330:. 2302:: 2294:: 2268:. 2246:: 2219:. 2207:: 2184:. 2170:: 2143:. 2121:: 2094:. 2074:: 2066:: 2040:. 2018:: 1991:. 1971:: 1948:. 1928:: 1922:7 1905:. 1883:: 1856:. 1844:: 1836:: 1813:. 1801:: 1778:. 1758:: 1750:: 1727:. 1713:: 1686:. 1666:: 1658:: 1635:. 1613:: 1583:. 1553:: 1526:. 1496:: 1469:. 1447:: 1437:: 1403:. 1373:: 1346:. 1324:: 1297:. 1283:: 1256:. 1234:: 1207:. 1185:: 1155:. 1133:: 1106:. 1086:: 1078:: 1055:. 1023:: 1015:: 1005:: 975:. 953:: 926:. 914:: 891:. 879:: 856:. 836:: 812:. 798:: 758:. 733:. 711:: 684:. 643:. 618:. 596::

Index


human brain
cerebral cortex
gyrus
sulcus
neurons
gray matter
white matter
axonal
cranium
mammals
fetal development
Primates
cetaceans
ungulates
rodents
ferret

lateral sulcus
central sulcus
precentral gyrus
postcentral gyrus
gestation
action potentials
verbal working memory
childbirth
bipedalism
Retzius
cranium
ossified

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.