Knowledge

Galaxy rotation curve

Source 📝

887:
stars and gas but not dark matter). This so-called radial acceleration relation (RAR) might be fundamental for understanding the dynamics of galaxies. The same relation provided a good fit for 2693 samples in 153 rotating galaxies, with diverse shapes, masses, sizes, and gas fractions. Brightness in the near infrared, where the more stable light from red giants dominates, was used to estimate the density contribution due to stars more consistently. The results are consistent with MOND, and place limits on alternative explanations involving dark matter alone. However, cosmological simulations within a Lambda-CDM framework that include baryonic feedback effects reproduce the same relation, without the need to invoke new dynamics (such as MOND). Thus, a contribution due to dark matter itself can be fully predictable from that of the baryons, once the feedback effects due to the dissipative collapse of baryons are taken into account. MOND is not a relativistic theory, although relativistic theories which reduce to MOND have been proposed, such as
796: 31: 207:
missing matter. Babcock's measurements turned out to disagree substantially with those found later, and the first measurement of an extended rotation curve in good agreement with modern data was published in 1957 by Henk van de Hulst and collaborators, who studied M31 with the newly commissioned Dwingeloo 25 meter telescope. A companion paper by Maarten Schmidt showed that this rotation curve could be fit by a flattened mass distribution more extensive than the light. In 1959, Louise Volders used the same telescope to demonstrate that the spiral galaxy
3910: 3922: 142: 3962: 3986: 3974: 783:. Dark matter is believed to dominate the gravitational potential of galaxies and clusters of galaxies. Under this theory, galaxies are baryonic condensations of stars and gas (namely hydrogen and helium) that lie at the centers of much larger haloes of dark matter, affected by a gravitational instability caused by primordial density fluctuations. 40: 3950: 77:, and the data observed from each side of a spiral galaxy are generally asymmetric, so that data from each side are averaged to create the curve. A significant discrepancy exists between the experimental curves observed, and a curve derived by applying gravity theory to the matter observed in a galaxy. Theories involving 771:
Since observations of galaxy rotation do not match the distribution expected from application of Kepler's laws, they do not match the distribution of luminous matter. This implies that spiral galaxies contain large amounts of dark matter or, alternatively, the existence of exotic physics in action on
206:
reported in his PhD thesis measurements of the rotation curve for Andromeda which suggested that the mass-to-luminosity ratio increases radially. He attributed that to either the absorption of light within the galaxy or to modified dynamics in the outer portions of the spiral and not to any form of
886:
Using data from the Spitzer Photometry and Accurate Rotation Curves (SPARC) database, a group has found that the radial acceleration traced by rotation curves (an effect given the name "radial acceleration relation") could be predicted just from the observed baryon distribution (that is, including
278:
is assumed to be correct, it would follow that most of the mass of the galaxy had to be in the galactic bulge near the center and that the stars and gas in the disk portion should orbit the center at decreasing velocities with radial distance from the galactic center (the dashed line in Fig. 1).
282:
Observations of the rotation curve of spirals, however, do not bear this out. Rather, the curves do not decrease in the expected inverse square root relationship but are "flat", i.e. outside of the central bulge the speed is nearly a constant (the solid line in Fig. 1). It is also observed that
84:
The rotational/orbital speeds of galaxies/stars do not follow the rules found in other orbital systems such as stars/planets and planets/moons that have most of their mass at the centre. Stars revolve around their galaxy's centre at equal or increasing speed over a large range of distances. In
226:
wrote that "the distribution of mass in the system appears to bear almost no relation to that of light... one finds the ratio of mass to light in the outer parts of NGC 3115 to be about 250". On page 302–303 of his journal article, he wrote that "The strongly condensed luminous system appears
786:
Many cosmologists strive to understand the nature and the history of these ubiquitous dark haloes by investigating the properties of the galaxies they contain (i.e. their luminosities, kinematics, sizes, and morphologies). The measurement of the kinematics (their positions, velocities and
857:
is a persistent problem for the standard cold dark matter theory. Simulations involving the feedback of stellar energy into the interstellar medium in order to alter the predicted dark matter distribution in the innermost regions of galaxies are frequently invoked in this context.
34:
Rotation curve of spiral galaxy Messier 33 (yellow and blue points with error bars), and a predicted one from distribution of the visible matter (gray line). The discrepancy between the two curves can be accounted for by adding a dark matter halo surrounding the
96:
The galaxy rotation problem is the discrepancy between observed galaxy rotation curves and the theoretical prediction, assuming a centrally dominated mass associated with the observed luminous material. When mass profiles of galaxies are calculated from the
227:
imbedded in a large and more or less homogeneous mass of great density" and although he went on to speculate that this mass may be either extremely faint dwarf stars or interstellar gas and dust, he had clearly detected the dark matter halo of this galaxy.
45: 43: 44: 874:
in 1983, which modifies the Newtonian force law at low accelerations to enhance the effective gravitational attraction. MOND has had a considerable amount of success in predicting the rotation curves of low-surface-brightness galaxies, matching the
270:
does not apply universally or that, conservatively, upwards of 50% of the mass of galaxies was contained in the relatively dark galactic halo. Although initially met with skepticism, Rubin's results have been confirmed over the subsequent decades.
811:
and then read its rotation rate from its location on the Tully–Fisher diagram. Conversely, knowing the rotational velocity of a spiral galaxy gives its luminosity. Thus the magnitude of the galaxy rotation is related to the galaxy's visible mass.
488: 650: 815:
While precise fitting of the bulge, disk, and halo density profiles is a rather complicated process, it is straightforward to model the observables of rotating galaxies through this relationship. So, while state-of-the-art cosmological and
42: 848:
Very importantly, the analysis of the inner parts of low and high surface brightness galaxies showed that the shape of the rotation curves in the centre of dark-matter dominated systems indicates a profile different from the
261:
the discovery that most stars in spiral galaxies orbit at roughly the same speed, and that this implied that galaxy masses grow approximately linearly with radius well beyond the location of most of the stars (the
824:
included can be matched to galaxy observations, there is not yet any straightforward explanation as to why the observed scaling relationship exists. Additionally, detailed investigations of the rotation curves of
787:
accelerations) of the observable stars and gas has become a tool to investigate the nature of dark matter, as to its content and distribution relative to that of the various baryonic components of those galaxies.
758: 807:, which shows that for spiral galaxies the rotational velocity is uniquely related to their total luminosity. A consistent way to predict the rotational velocity of a spiral galaxy is to measure its 539:
The authors then remarked that a "gently changing logarithmic slope" for a density profile function could also accommodate approximately flat rotation curves over large scales. They found the famous
536:
to some inner "core radius" where the density is then assumed constant. Observations do not comport with such a simple profile, as reported by Navarro, Frenk, and White in a seminal 1996 paper.
202:
indicated that they moved faster than expected when a mass distribution based upon visible matter was assumed, but these measurements were later determined to be essentially erroneous. In 1939,
1352: 1321: 1290: 290:
The rotation curves might be explained by hypothesizing the existence of a substantial amount of matter permeating the galaxy outside of the central bulge that is not emitting light in the
352: 550: 1523:
Rubin, V.; Thonnard, N.; Ford, W. K. Jr. (1980). "Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)".
1071:
Rubin, V.; Thonnard, N.; Ford, W. K. Jr. (1980). "Rotational Properties of 21 Sc Galaxies With a Large Range of Luminosities and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)".
833:
that are more extended and less dense than those of galaxies with high surface brightness, and thus surface brightness is related to the halo properties. Such dark-matter-dominated
672:, are parameters that vary from halo to halo. Because the slope of the density profile diverges at the center, other alternative profiles have been proposed, for example the 334:
In order to accommodate a flat rotation curve, a density profile for a galaxy and its environs must be different than one that is centrally concentrated. Newton's version of
41: 3007: 2924: 2871: 2076: 2023: 1828: 1568: 1110: 1038:
The explanation of the mass discrepancy in spiral galaxies by means of massive and extensive dark component was first put forward by A. Bosma in a PhD dissertation, see
772:
galactic scales. The additional invisible component becomes progressively more conspicuous in each galaxy at outer radii and among galaxies in the less luminous ones.
1481:
Rubin, V.C.; Thonnard, N.; Ford, W.K. Jr. (1978). "Extended rotation curves of high-luminosity spiral galaxies. IV – Systematic dynamical properties, SA through SC".
3732: 795: 3779: 120:
Though dark matter is by far the most accepted explanation of the rotation problem, other proposals have been offered with varying degrees of success. Of the
866:
There have been a number of attempts to solve the problem of galaxy rotation by modifying gravity without invoking dark matter. One of the most discussed is
3429: 4016: 682: 152: 1798:"Dark Matter Less Influential in Galaxies in Early Universe – VLT observations of distant galaxies suggest they were dominated by normal matter" 1288:
Van de Hulst, H.C; et al. (1957). "Rotation and density distribution of the Andromeda nebula derived from observations of the 21-cm line".
2339:
S. S. McGaugh; W. J. G. de Blok (1998). "Testing the Hypothesis of Modified Dynamics with Low Surface Brightness Galaxies and Other Evidence".
1233: 892: 888: 93:
within those systems. The mass estimations for galaxies based on the light they emit are far too low to explain the velocity observations.
961: 850: 540: 212: 3162: 3845: 876: 3764: 922:
are consistent with the mass density distributions of the visible matter, avoiding the need for a massive halo of exotic dark matter.
512: 242: 4006: 1483: 971: 181: 30: 3145: 1689:"Empirical Models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models" 1184: 1060: 283:
galaxies with a uniform distribution of luminous matter have a rotation curve that rises from the center to the edge, and most
85:
contrast, the orbital velocities of planets in planetary systems and moons orbiting planets decline with distance according to
49:
Left: A simulated galaxy without dark matter. Right: Galaxy with a flat rotation curve that would be expected with dark matter.
3850: 163: 2506:
Stacy McGaugh; Federico Lelli; Jim Schombert (2016). "The Radial Acceleration Relation in Rotationally Supported Galaxies".
1319:
Schmidt, M (1957). "Rotation and density distribution of the Andromeda nebula derived from observations of the 21-cm line".
775:
A popular interpretation of these observations is that about 26% of the mass of the Universe is composed of dark matter, a
3577: 1153:
The Unknown Universe: The Origin of the Universe, Quantum Gravity, Wormholes, and Other Things Science Still Can't Explain
826: 284: 258: 1434:
Rubin, V.; Ford, W. K. Jr. (1970). "Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions".
1382:
Some Problems Concerning the Structure and Dynamics of the Galactic System and the Elliptical Nebulae NGC 3115 and 4494
4011: 3747: 1173: 1049: 867: 125: 2191: 829:(LSB galaxies) in the 1990s and of their position on the Tully–Fisher relation showed that LSB galaxies had to have 3940: 3865: 3820: 3628: 3217: 3212: 3185: 156: 804: 3546: 1884: 1748: 1623: 1525: 1436: 1251: 1073: 780: 2914:
Beordo, William; Crosta, Mariateresa; Lattanzi, Mario G.; Re Fiorentin, Paola; Spagna, Alessandro (April 2024).
162:
Help add sources such as review articles, monographs, or textbooks. Please also establish the relevance for any
3830: 3742: 3737: 3643: 3539: 3497: 3207: 3180: 2782:
Cooperstock, Fred I., and S. Tieu. "General relativity resolves galactic rotation without exotic dark matter."
1693: 3825: 3810: 3757: 3416: 3404: 3399: 3313: 3278: 3249: 3239: 2933: 2880: 1955: 949: 934: 765: 70: 86: 3328: 3227: 2253: 1960:"Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles" 966: 508: 254: 105:
in the stellar disks, they do not match with the masses derived from the observed rotation curves and the
2651:
J. D. Bekenstein (2004). "Relativistic gravitation theory for the modified Newtonian dynamics paradigm".
3752: 3454: 3113: 2292: 991: 808: 335: 2245: 483:{\displaystyle \rho (r)={\frac {v(r)^{2}}{4\pi Gr^{2}}}\left(1+2~{\frac {d\log v(r)}{d\log r}}\right)} 253:
to a greater degree of accuracy than had ever before been achieved. Together with fellow staff-member
3885: 3835: 3670: 3582: 3318: 3202: 3138: 3086: 3016: 2970: 2819: 2755: 2715: 2670: 2623: 2525: 2472: 2411: 2358: 2311: 2268: 2210: 2146: 2095: 2042: 1981: 1921: 1847: 1767: 1712: 1642: 1587: 1534: 1492: 1445: 1406: 1361: 1330: 1299: 1260: 1169:
The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types
1119: 1082: 1045:
The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types
838: 645:{\displaystyle \rho (r)={\frac {\rho _{0}}{{\frac {r}{R_{s}}}\left(1+{\frac {r}{R_{s}}}\right)^{2}}}} 2797: 266:). Rubin presented her results in an influential paper in 1980. These results suggested either that 3990: 3648: 3556: 3487: 3379: 3254: 842: 291: 275: 102: 3921: 2072:"The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution" 1167: 1043: 3978: 3966: 3880: 3875: 3860: 3815: 3784: 3769: 3687: 3655: 3492: 3444: 3434: 3102: 3076: 2884: 2843: 2809: 2731: 2705: 2660: 2613: 2549: 2515: 2488: 2462: 2435: 2401: 2374: 2348: 2301: 2258: 2226: 2200: 2164: 2136: 2085: 2032: 1999: 1971: 1937: 1911: 1865: 1837: 1757: 1702: 1632: 1577: 1463: 1203: 1003: 945: 938: 903: 854: 544: 319: 231: 199: 799:
Comparison of rotating disc galaxies in the present day (left) and the distant Universe (right).
1902:
Weinberg, David H.; et, al. (2008). "Baryon Dynamics, Dark Matter Substructure, and Galaxies".
298:, the existence of which was first posited in the 1930s by Jan Oort in his measurements of the 4021: 3913: 3895: 3870: 3840: 3719: 3561: 3551: 3534: 3466: 3295: 3261: 3222: 3175: 2835: 2541: 2453:
S. S. McGaugh; M. Milgrom (2013). "Andromeda Dwarfs in Light of Modified Newtonian Dynamics".
2427: 1229: 1021: 926: 208: 90: 3925: 3727: 3702: 3682: 3677: 3665: 3519: 3340: 3273: 3094: 3024: 2978: 2937: 2894: 2827: 2763: 2723: 2678: 2631: 2580: 2533: 2480: 2419: 2366: 2319: 2218: 2214: 2183: 2154: 2103: 2050: 1989: 1929: 1855: 1777: 1722: 1652: 1597: 1544: 1502: 1455: 1414: 1270: 1129: 1092: 1013: 871: 830: 817: 315: 311: 114: 679:
Observations of orbit velocities in spiral galaxies suggest a mass structure according to:
3774: 3697: 3389: 3362: 3333: 3285: 3131: 2392:
S. S. McGaugh (2011). "Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies".
821: 673: 250: 74: 3098: 2861:
Crosta, Mariateresa; Giammaria, Marco; Lattanzi, Mario G.; Poggio, Eloisa (August 2020).
2569:"On the fundamentality of the radial acceleration relation for late-type galaxy dynamics" 1274: 3090: 3020: 2974: 2823: 2759: 2727: 2719: 2674: 2627: 2529: 2476: 2415: 2362: 2315: 2272: 2150: 2099: 2046: 1985: 1925: 1851: 1772: 1717: 1647: 1592: 1539: 1497: 1450: 1410: 1366: 1335: 1304: 1265: 1124: 1087: 1017: 3638: 3471: 3374: 3369: 3323: 3266: 307: 299: 263: 203: 106: 17: 2983: 2958: 2636: 2601: 234:(Carnegie Double Astrograph) was intended to study this problem of Galactic rotation. 4000: 3794: 3660: 3623: 3394: 3357: 3345: 3197: 3192: 3117: 3106: 3053: 2492: 2484: 2159: 2124: 2003: 1994: 1959: 1860: 1823: 1467: 98: 2735: 2553: 2378: 2230: 2168: 1941: 1869: 1381: 803:
The rotational dynamics of galaxies are well characterized by their position on the
3954: 3789: 3692: 3633: 3618: 3524: 3449: 3244: 3234: 3035:
Primary research report discussing Oort limit, and citing original Oort 1932 study.
2537: 2439: 2423: 834: 303: 294:
ratio of the central bulge. The material responsible for the extra mass was dubbed
246: 2847: 676:, which has exhibited better agreement with certain dark matter halo simulations. 3003:"The Mass Distribution in the Galactic Disc – III. The Local Volume Mass Density" 2222: 1564:"The universal rotation curve of spiral galaxies – I. The dark matter connection" 1223: 3890: 3707: 3597: 3587: 3384: 3350: 3290: 3170: 1106:"Extended Rotation Curves of Spiral Galaxies: Dark Haloes and Modified Dynamics" 896: 880: 295: 110: 78: 58: 2682: 3592: 3529: 3049: 3029: 3002: 2831: 2798:"Galactic Dynamics Via General Relativity: A Compilation and New Developments" 2108: 2071: 2070:
Zwaan, M. A.; van der Hulst, J. M.; de Blok, W. J. G.; McGaugh, S. S. (1995).
2055: 2018: 1134: 1105: 911: 776: 238: 2899: 2862: 2839: 2585: 2568: 2019:"The dark and visible matter content of low surface brightness disc galaxies" 1602: 1563: 1025: 3602: 2942: 2915: 930: 907: 2768: 2743: 2545: 2431: 1797: 2916:"Geometry-driven and dark-matter-sustained Milky Way rotation curves with 2324: 2287: 166:
cited. Unsourced or poorly sourced material may be challenged and removed.
2863:"On testing CDM and geometry-driven Milky Way rotation curve models with 2814: 2665: 2353: 2205: 2141: 2090: 2037: 1916: 1842: 1762: 1707: 1637: 1582: 919: 915: 323: 223: 219: 195: 2959:"Galactic rotation curve and dark matter according to gravitomagnetism" 2123:
Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P. (2004).
267: 2710: 879:, and the velocity dispersions of the small satellite galaxies of the 3439: 3424: 3154: 73:
from that galaxy's centre. It is typically rendered graphically as a
2184:"High-resolution rotation curves of low surface brightness galaxies" 1687:
Merritt, D.; Graham, A.; Moore, B.; Diemand, J.; Terzić, B. (2006).
933:'s rotation curve without requiring any dark matter if instead of a 3949: 2889: 2618: 2520: 2370: 1933: 1782: 1743: 1727: 1688: 1657: 1618: 1548: 1506: 1459: 1419: 1394: 1096: 1008: 906:
metric was also proposed, showing that the rotation curves for the
113:
and to assume its distribution from the galaxy's center out to its
3512: 3507: 3502: 3459: 3081: 2467: 2406: 2306: 2263: 1976: 1208: 794: 241:, an astronomer at the Department of Terrestrial Magnetism at the 109:. A solution to this conundrum is to hypothesize the existence of 38: 29: 198:
became the first to report that measurements of the stars in the
1200:
For an extensive discussion of the data and its fit to MOND see
66: 3127: 1249:
Babcock, H. W. (1939). "The rotation of the Andromeda Nebula".
753:{\displaystyle v(r)=\left(r\,{\frac {d\Phi }{dr}}\right)^{1/2}} 338:
implies that the spherically symmetric, radial density profile
81:
are the main postulated solutions to account for the variance.
135: 1742:
Merritt, D.; Navarro, J. F.; Ludlow, A.; Jenkins, A. (2005).
992:"The Connection Between Galaxies and Their Dark Matter Halos" 944:
In March 2021, Gerson Otto Ludwig published a model based on
2696:
J. W. Moffat (2006). "Scalar tensor vector gravity theory".
3123: 1744:"A Universal Density Profile for Dark and Luminous Matter?" 2125:"The cored distribution of dark matter in spiral galaxies" 1824:"The radial Tully-Fisher relation for spiral galaxies – I" 1353:
Bulletin of the Astronomical Institutes of the Netherlands
1350:
Volders, L. (1959). "Neutral hydrogen in M 33 and M 101".
1322:
Bulletin of the Astronomical Institutes of the Netherlands
1291:
Bulletin of the Astronomical Institutes of the Netherlands
2602:"Λ is Consistent with SPARC Radial Acceleration Relation" 925:
According to recent analysis of the data produced by the
1885:"Reliance on Indirect Evidence Fuels Dark Matter Doubts" 1399:
Publications of the Astronomical Society of the Pacific
287:(LSB galaxies) have the same anomalous rotation curve. 1617:
Navarro, J. F.; Frenk, C. S.; White, S. D. M. (1996).
1104:
Begeman, K. G.; Broeils, A. H.; Sanders, R.H. (1991).
128:(MOND), which involves modifying the laws of gravity. 3938: 2744:"The dark matter problem from f(R) gravity viewpoint" 685: 553: 511:. This profile closely matches the expectations of a 355: 779:
type of matter which does not emit or interact with
3803: 3718: 3611: 3570: 3480: 3415: 3306: 3161: 990:Wechsler, Risa H.; Tinker, Jeremy L. (2018-09-14). 3067:Bergstrom, Lars (2009). "Dark Matter Candidates". 853:spatial mass distribution profile. This so-called 752: 644: 482: 3008:Monthly Notices of the Royal Astronomical Society 2925:Monthly Notices of the Royal Astronomical Society 2872:Monthly Notices of the Royal Astronomical Society 2600:Keller, B. W.; Wadsley, J. W. (23 January 2017). 2573:Monthly Notices of the Royal Astronomical Society 2129:Monthly Notices of the Royal Astronomical Society 2077:Monthly Notices of the Royal Astronomical Society 2024:Monthly Notices of the Royal Astronomical Society 1964:Monthly Notices of the Royal Astronomical Society 1829:Monthly Notices of the Royal Astronomical Society 1569:Monthly Notices of the Royal Astronomical Society 1111:Monthly Notices of the Royal Astronomical Society 929:, it would seem possible to explain at least the 249:that could measure the velocity curve of edge-on 1196: 1194: 121: 27:Observed discrepancy in galactic angular momenta 2698:Journal of Cosmology and Astroparticle Physics 2246:"Dark Matter in galaxies: Leads to its Nature" 3780:List of the most distant astronomical objects 3139: 1672:Ostlie, Dale A.; Carroll, Bradley W. (2017). 65:) is a plot of the orbital speeds of visible 8: 1518: 1516: 211:also does not spin as expected according to 3120:'s approach to the problem. (November 2016) 2796:Cooperstock, F. I.; Tieu, S. (2007-05-20). 2567:Stiskalek, Richard; Desmond, Harry (2023). 996:Annual Review of Astronomy and Astrophysics 526:is approximately constant then the density 501:is the radial orbital velocity profile and 257:, Rubin announced at a 1975 meeting of the 3146: 3132: 3124: 1676:. Cambridge University Press. p. 918. 1562:Persic, M.; Salucci, P.; Stel, F. (1996). 948:that explains galaxy rotation curves with 3080: 3028: 2982: 2941: 2898: 2888: 2813: 2802:International Journal of Modern Physics A 2767: 2709: 2664: 2635: 2617: 2584: 2519: 2466: 2405: 2352: 2323: 2305: 2262: 2204: 2158: 2140: 2107: 2089: 2054: 2036: 1993: 1975: 1915: 1859: 1841: 1781: 1771: 1761: 1726: 1716: 1706: 1656: 1646: 1636: 1619:"The Structure of Cold Dark Matter Halos" 1601: 1591: 1581: 1538: 1496: 1449: 1418: 1365: 1334: 1303: 1264: 1228:. Oxford: Oxford University Press. 1999. 1207: 1202:Milgrom, M. (2007). "The MOND Paradigm". 1133: 1123: 1086: 1007: 740: 736: 711: 710: 684: 633: 620: 611: 591: 582: 575: 569: 552: 434: 408: 387: 371: 354: 182:Learn how and when to remove this message 2742:S. Capozziello; M. De Laurentis (2012). 3945: 2017:de Blok, W. J. G.; McGaugh, S. (1997). 982: 820:simulations of dark matter with normal 2244:Salucci, P.; De Laurentis, M. (2012). 1674:An Introduction to Modern Astrophysics 902:A model of galaxy rotation based on a 314:(CDM) is today a major feature of the 2182:de Blok, W. J. G.; Bosma, A. (2002). 1822:Yegorova, I. A.; Salucci, P. (2007). 7: 962:List of unsolved problems in physics 1155:. Franklin Lakes, NJ: Career Press. 1018:10.1146/annurev-astro-081817-051756 237:In the late 1960s and early 1970s, 69:or gas in that galaxy versus their 717: 513:singular isothermal sphere profile 243:Carnegie Institution of Washington 25: 4017:Physics beyond the Standard Model 1484:The Astrophysical Journal Letters 972:Nonsymmetric gravitational theory 899:of Capozziello and De Laurentis. 3984: 3972: 3960: 3948: 3920: 3909: 3908: 2160:10.1111/j.1365-2966.2004.07836.x 1995:10.1111/j.1365-2966.2010.16613.x 1861:10.1111/j.1365-2966.2007.11637.x 1275:10.5479/ADS/bib/1939LicOB.19.41B 1185:NASA/IPAC Extragalactic Database 1151:Hammond, Richard (May 1, 2008). 1061:NASA/IPAC Extragalactic Database 837:may hold the key to solving the 543:, which is consistent both with 306:in his studies of the masses of 140: 99:distribution of stars in spirals 3001:Kuijken K.; Gilmore G. (1989). 2984:10.1140/epjc/s10052-021-08967-3 2963:The European Physical Journal C 2784:arXiv preprint astro-ph/0507619 1883:Dorminey, Bruce (30 Dec 2010). 1225:Oxford Dictionary of Scientists 937:the entire set of equations of 870:(MOND), originally proposed by 827:low-surface-brightness galaxies 285:low-surface-brightness galaxies 3851:Galaxy formation and evolution 3846:Galaxy color–magnitude diagram 3099:10.1088/1367-2630/11/10/105006 2538:10.1103/physrevlett.117.201101 2424:10.1103/PhysRevLett.106.121303 1395:"1947PASP...59..182S Page 182" 877:baryonic Tully–Fisher relation 695: 689: 563: 557: 455: 449: 384: 377: 365: 359: 245:, worked with a new sensitive 1: 2728:10.1088/1475-7516/2006/03/004 312:non-baryonic cold dark matter 259:American Astronomical Society 157:secondary or tertiary sources 124:, one of the most notable is 3114:The Case Against Dark Matter 2957:Ludwig, G. O. (2021-02-23). 2192:Astronomy & Astrophysics 893:scalar–tensor–vector gravity 889:tensor–vector–scalar gravity 3733:Galaxies named after people 2637:10.3847/2041-8213/835/1/L17 1174:Rijksuniversiteit Groningen 1050:Rijksuniversiteit Groningen 868:modified Newtonian dynamics 862:Alternatives to dark matter 652:where the central density, 541:Navarro–Frenk–White profile 126:modified Newtonian dynamics 4038: 3866:Gravitational microlensing 3821:Galactic coordinate system 2683:10.1103/PhysRevD.70.083509 2485:10.1088/0004-637X/766/1/22 2286:de Blok, W. J. G. (2010). 2223:10.1051/0004-6361:20020080 547:and observations given by 3904: 2832:10.1142/S0217751X0703666X 2606:The Astrophysical Journal 2455:The Astrophysical Journal 1904:The Astrophysical Journal 1749:The Astrophysical Journal 1624:The Astrophysical Journal 1526:The Astrophysical Journal 1437:The Astrophysical Journal 1252:Lick Observatory Bulletin 1074:The Astrophysical Journal 781:electromagnetic radiation 164:primary research articles 4007:Concepts in astrophysics 3831:Galactic magnetic fields 3644:Brightest cluster galaxy 3540:Luminous infrared galaxy 1694:The Astronomical Journal 661:, and the scale radius, 3826:Galactic habitable zone 3811:Extragalactic astronomy 3400:Supermassive black hole 3314:Active galactic nucleus 3030:10.1093/mnras/239.2.651 2508:Physical Review Letters 2394:Physical Review Letters 2288:"The Core-Cusp Problem" 2215:2002A&A...385..816D 2109:10.1093/mnras/273.1.l35 2056:10.1093/mnras/290.3.533 1135:10.1093/mnras/249.3.523 950:gravitoelectromagnetism 935:Newtonian approximation 766:gravitational potential 18:Galactic rotation curve 3578:Low surface brightness 3329:Central massive object 3069:New Journal of Physics 2900:10.1093/mnras/staa1511 2769:10.1002/andp.201200109 2586:10.1093/mnras/stad2675 2254:Proceedings of Science 1603:10.1093/mnras/278.1.27 967:Long-slit spectroscopy 800: 791:Further investigations 754: 646: 509:gravitational constant 484: 50: 36: 3856:Galaxy rotation curve 3048:, Dmitri Mihalas and 2943:10.1093/mnras/stae855 2341:Astrophysical Journal 2293:Advances in Astronomy 1393:Shane, C. D. (1947). 809:bolometric luminosity 805:Tully–Fisher relation 798: 755: 647: 485: 330:Halo density profiles 122:possible alternatives 89:. This reflects the 48: 33: 3891:Population III stars 3886:Intergalactic travel 3836:Galactic orientation 3703:Voids and supervoids 839:dwarf galaxy problem 683: 551: 353: 103:mass-to-light ratios 3881:Intergalactic stars 3770:Large quasar groups 3765:Groups and clusters 3629:Groups and clusters 3488:Lyman-alpha emitter 3380:Interstellar medium 3091:2009NJPh...11j5006B 3021:1989MNRAS.239..651K 2975:2021EPJC...81..186L 2824:2007IJMPA..22.2293C 2760:2012AnP...524..545C 2720:2006JCAP...03..004M 2675:2004PhRvD..70h3509B 2628:2017ApJ...835L..17K 2530:2016PhRvL.117t1101M 2477:2013ApJ...766...22M 2416:2011PhRvL.106l1303M 2363:1998ApJ...499...66M 2325:10.1155/2010/789293 2316:2010AdAst2010E...5D 2273:2013arXiv1302.2268S 2151:2004MNRAS.351..903G 2100:1995MNRAS.273L..35Z 2047:1997MNRAS.290..533D 1986:2010MNRAS.405.2161D 1926:2008ApJ...678....6W 1889:Scientific American 1852:2007MNRAS.377..507Y 1773:2005ApJ...624L..85M 1718:2006AJ....132.2685M 1648:1996ApJ...462..563N 1593:1996MNRAS.281...27P 1540:1980ApJ...238..471R 1498:1978ApJ...225L.107R 1451:1970ApJ...159..379R 1411:1947PASP...59..182S 1380:Oort, J.H. (1940), 1367:1959BAN....14..323V 1336:1957BAN....14...17S 1305:1957BAN....14....1V 1266:1939LicOB..19...41B 1125:1991MNRAS.249..523B 1088:1980ApJ...238..471R 843:structure formation 318:that describes the 310:. The existence of 276:Newtonian mechanics 4012:Galactic astronomy 3876:Intergalactic dust 3861:Gravitational lens 3816:Galactic astronomy 3785:Starburst galaxies 3525:blue compact dwarf 3481:Energetic galaxies 3445:BL Lacertae object 3046:Galactic Astronomy 2748:Annalen der Physik 1958:; al., et (2010). 1166:Bosma, A. (1978). 1042:Bosma, A. (1978). 946:general relativity 939:general relativity 904:general relativity 855:cuspy halo problem 831:dark matter haloes 801: 750: 642: 545:N-body simulations 480: 336:Kepler's Third Law 232:Carnegie telescope 213:Keplerian dynamics 200:solar neighborhood 91:mass distributions 87:Kepler’s third law 51: 37: 3936: 3935: 3896:Galaxy X (galaxy) 3871:Illustris project 3841:Galactic quadrant 3562:Wolf-Rayet galaxy 3552:Green bean galaxy 3547:Hot dust-obscured 3498:Luminous infrared 3262:Elliptical galaxy 2808:(13): 2293–2325. 2754:(9–10): 545–578. 2653:Physical Review D 1235:978-0-19-280086-2 729: 640: 626: 597: 473: 433: 415: 268:Newtonian gravity 192: 191: 184: 151:needs additional 46: 16:(Redirected from 4029: 3989: 3988: 3987: 3977: 3976: 3975: 3965: 3964: 3963: 3953: 3952: 3944: 3924: 3912: 3911: 3557:Hanny's Voorwerp 3467:Relativistic jet 3341:Dark matter halo 3148: 3141: 3134: 3125: 3110: 3084: 3034: 3032: 2989: 2988: 2986: 2954: 2948: 2947: 2945: 2911: 2905: 2904: 2902: 2892: 2858: 2852: 2851: 2817: 2815:astro-ph/0610370 2793: 2787: 2780: 2774: 2773: 2771: 2739: 2713: 2693: 2687: 2686: 2668: 2666:astro-ph/0403694 2648: 2642: 2641: 2639: 2621: 2597: 2591: 2590: 2588: 2579:(4): 6130–6145. 2564: 2558: 2557: 2523: 2503: 2497: 2496: 2470: 2450: 2444: 2443: 2409: 2389: 2383: 2382: 2356: 2354:astro-ph/9801102 2336: 2330: 2329: 2327: 2309: 2283: 2277: 2276: 2266: 2257:(DSU 2012): 12. 2250: 2241: 2235: 2234: 2208: 2206:astro-ph/0201276 2188: 2179: 2173: 2172: 2162: 2144: 2142:astro-ph/0403154 2120: 2114: 2113: 2111: 2093: 2091:astro-ph/9501102 2067: 2061: 2060: 2058: 2040: 2038:astro-ph/9704274 2014: 2008: 2007: 1997: 1979: 1970:(4): 2161–2178. 1952: 1946: 1945: 1919: 1917:astro-ph/0604393 1899: 1893: 1892: 1880: 1874: 1873: 1863: 1845: 1843:astro-ph/0612434 1819: 1813: 1812: 1810: 1808: 1794: 1788: 1787: 1785: 1775: 1765: 1763:astro-ph/0502515 1739: 1733: 1732: 1730: 1720: 1710: 1708:astro-ph/0509417 1701:(6): 2685–2700. 1684: 1678: 1677: 1669: 1663: 1662: 1660: 1650: 1640: 1638:astro-ph/9508025 1614: 1608: 1607: 1605: 1595: 1585: 1583:astro-ph/9506004 1559: 1553: 1552: 1542: 1520: 1511: 1510: 1500: 1478: 1472: 1471: 1453: 1431: 1425: 1424: 1422: 1390: 1384: 1378: 1372: 1371: 1369: 1347: 1341: 1340: 1338: 1316: 1310: 1309: 1307: 1285: 1279: 1278: 1268: 1246: 1240: 1239: 1220: 1214: 1213: 1211: 1198: 1189: 1188: 1182: 1180: 1163: 1157: 1156: 1148: 1142: 1139: 1137: 1127: 1100: 1090: 1064: 1058: 1056: 1036: 1030: 1029: 1011: 987: 895:(STVG), and the 872:Mordehai Milgrom 818:galaxy formation 763: 759: 757: 756: 751: 749: 748: 744: 735: 731: 730: 728: 720: 712: 671: 660: 651: 649: 648: 643: 641: 639: 638: 637: 632: 628: 627: 625: 624: 612: 598: 596: 595: 583: 580: 579: 570: 535: 525: 506: 500: 489: 487: 486: 481: 479: 475: 474: 472: 458: 435: 431: 416: 414: 413: 412: 393: 392: 391: 372: 348: 316:Lambda-CDM model 196:Jan Hendrik Oort 187: 180: 176: 173: 167: 144: 143: 136: 47: 21: 4037: 4036: 4032: 4031: 4030: 4028: 4027: 4026: 3997: 3996: 3995: 3985: 3983: 3973: 3971: 3961: 3959: 3947: 3939: 3937: 3932: 3900: 3799: 3714: 3607: 3566: 3476: 3411: 3390:Galaxy filament 3334:Galactic Center 3302: 3157: 3152: 3066: 3063: 3042: 3000: 2997: 2995:Further reading 2992: 2956: 2955: 2951: 2913: 2912: 2908: 2860: 2859: 2855: 2795: 2794: 2790: 2781: 2777: 2741: 2695: 2694: 2690: 2650: 2649: 2645: 2599: 2598: 2594: 2566: 2565: 2561: 2505: 2504: 2500: 2452: 2451: 2447: 2391: 2390: 2386: 2338: 2337: 2333: 2285: 2284: 2280: 2248: 2243: 2242: 2238: 2186: 2181: 2180: 2176: 2122: 2121: 2117: 2069: 2068: 2064: 2016: 2015: 2011: 1954: 1953: 1949: 1901: 1900: 1896: 1882: 1881: 1877: 1821: 1820: 1816: 1806: 1804: 1796: 1795: 1791: 1741: 1740: 1736: 1686: 1685: 1681: 1671: 1670: 1666: 1616: 1615: 1611: 1561: 1560: 1556: 1522: 1521: 1514: 1480: 1479: 1475: 1433: 1432: 1428: 1392: 1391: 1387: 1379: 1375: 1349: 1348: 1344: 1318: 1317: 1313: 1287: 1286: 1282: 1248: 1247: 1243: 1236: 1222: 1221: 1217: 1201: 1199: 1192: 1178: 1176: 1165: 1164: 1160: 1150: 1149: 1145: 1103: 1070: 1054: 1052: 1041: 1037: 1033: 989: 988: 984: 980: 958: 927:Gaia spacecraft 864: 822:baryonic matter 793: 761: 721: 713: 706: 702: 701: 681: 680: 674:Einasto profile 670: 662: 659: 653: 616: 604: 600: 599: 587: 581: 571: 549: 548: 527: 516: 502: 491: 459: 436: 421: 417: 404: 394: 383: 373: 351: 350: 339: 332: 308:galaxy clusters 251:spiral galaxies 188: 177: 171: 168: 161: 145: 141: 134: 71:radial distance 61:(also called a 39: 28: 23: 22: 15: 12: 11: 5: 4035: 4033: 4025: 4024: 4019: 4014: 4009: 3999: 3998: 3994: 3993: 3981: 3969: 3957: 3934: 3933: 3931: 3930: 3918: 3905: 3902: 3901: 3899: 3898: 3893: 3888: 3883: 3878: 3873: 3868: 3863: 3858: 3853: 3848: 3843: 3838: 3833: 3828: 3823: 3818: 3813: 3807: 3805: 3801: 3800: 3798: 3797: 3792: 3787: 3782: 3777: 3772: 3767: 3762: 3761: 3760: 3755: 3750: 3745: 3740: 3735: 3724: 3722: 3716: 3715: 3713: 3712: 3711: 3710: 3700: 3695: 3690: 3688:Stellar stream 3685: 3680: 3675: 3674: 3673: 3668: 3663: 3653: 3652: 3651: 3646: 3641: 3636: 3626: 3621: 3615: 3613: 3609: 3608: 3606: 3605: 3600: 3595: 3590: 3585: 3580: 3574: 3572: 3568: 3567: 3565: 3564: 3559: 3554: 3549: 3544: 3543: 3542: 3537: 3532: 3527: 3517: 3516: 3515: 3510: 3505: 3495: 3490: 3484: 3482: 3478: 3477: 3475: 3474: 3469: 3464: 3463: 3462: 3457: 3447: 3442: 3437: 3432: 3427: 3421: 3419: 3413: 3412: 3410: 3409: 3408: 3407: 3397: 3392: 3387: 3382: 3377: 3375:Galactic ridge 3372: 3370:Galactic plane 3367: 3366: 3365: 3355: 3354: 3353: 3343: 3338: 3337: 3336: 3326: 3321: 3316: 3310: 3308: 3304: 3303: 3301: 3300: 3299: 3298: 3288: 3283: 3282: 3281: 3271: 3270: 3269: 3259: 3258: 3257: 3252: 3247: 3242: 3232: 3231: 3230: 3225: 3220: 3215: 3210: 3205: 3200: 3190: 3189: 3188: 3183: 3173: 3167: 3165: 3159: 3158: 3153: 3151: 3150: 3143: 3136: 3128: 3122: 3121: 3111: 3075:(10): 105006. 3062: 3061:External links 3059: 3058: 3057: 3041: 3038: 3037: 3036: 3015:(2): 651–664. 2996: 2993: 2991: 2990: 2949: 2906: 2853: 2788: 2775: 2688: 2643: 2592: 2559: 2514:(20): 201101. 2498: 2445: 2400:(12): 121303. 2384: 2371:10.1086/305629 2331: 2278: 2236: 2199:(3): 816–846. 2174: 2135:(3): 903–922. 2115: 2084:(2): L35–L38. 2062: 2031:(3): 533–552. 2009: 1956:Duffy, Alan R. 1947: 1934:10.1086/524646 1894: 1875: 1836:(2): 507–515. 1814: 1789: 1783:10.1086/430636 1756:(2): L85–L88. 1734: 1728:10.1086/508988 1679: 1664: 1658:10.1086/177173 1609: 1554: 1549:10.1086/158003 1512: 1507:10.1086/182804 1473: 1460:10.1086/150317 1426: 1420:10.1086/125941 1385: 1373: 1342: 1311: 1280: 1241: 1234: 1215: 1190: 1158: 1143: 1141: 1140: 1118:(3): 523–537. 1101: 1097:10.1086/158003 1066: 1065: 1031: 1002:(1): 435–487. 981: 979: 976: 975: 974: 969: 964: 957: 954: 863: 860: 835:dwarf galaxies 792: 789: 747: 743: 739: 734: 727: 724: 719: 716: 709: 705: 700: 697: 694: 691: 688: 666: 657: 636: 631: 623: 619: 615: 610: 607: 603: 594: 590: 586: 578: 574: 568: 565: 562: 559: 556: 478: 471: 468: 465: 462: 457: 454: 451: 448: 445: 442: 439: 430: 427: 424: 420: 411: 407: 403: 400: 397: 390: 386: 382: 379: 376: 370: 367: 364: 361: 358: 331: 328: 300:Oort constants 264:galactic bulge 204:Horace Babcock 190: 189: 148: 146: 139: 133: 130: 107:law of gravity 63:velocity curve 55:rotation curve 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4034: 4023: 4020: 4018: 4015: 4013: 4010: 4008: 4005: 4004: 4002: 3992: 3982: 3980: 3970: 3968: 3958: 3956: 3951: 3946: 3942: 3929: 3928: 3923: 3919: 3917: 3916: 3907: 3906: 3903: 3897: 3894: 3892: 3889: 3887: 3884: 3882: 3879: 3877: 3874: 3872: 3869: 3867: 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3819: 3817: 3814: 3812: 3809: 3808: 3806: 3802: 3796: 3793: 3791: 3790:Superclusters 3788: 3786: 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3730: 3729: 3726: 3725: 3723: 3721: 3717: 3709: 3706: 3705: 3704: 3701: 3699: 3696: 3694: 3693:Superclusters 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3672: 3669: 3667: 3664: 3662: 3659: 3658: 3657: 3654: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3631: 3630: 3627: 3625: 3624:Galactic tide 3622: 3620: 3617: 3616: 3614: 3610: 3604: 3601: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3583:Ultra diffuse 3581: 3579: 3576: 3575: 3573: 3569: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3522: 3521: 3518: 3514: 3511: 3509: 3506: 3504: 3501: 3500: 3499: 3496: 3494: 3491: 3489: 3486: 3485: 3483: 3479: 3473: 3470: 3468: 3465: 3461: 3458: 3456: 3453: 3452: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3422: 3420: 3418: 3417:Active nuclei 3414: 3406: 3403: 3402: 3401: 3398: 3396: 3393: 3391: 3388: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3364: 3361: 3360: 3359: 3356: 3352: 3349: 3348: 3347: 3344: 3342: 3339: 3335: 3332: 3331: 3330: 3327: 3325: 3322: 3320: 3317: 3315: 3312: 3311: 3309: 3305: 3297: 3294: 3293: 3292: 3289: 3287: 3284: 3280: 3277: 3276: 3275: 3272: 3268: 3265: 3264: 3263: 3260: 3256: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3237: 3236: 3233: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3211: 3209: 3206: 3204: 3201: 3199: 3196: 3195: 3194: 3191: 3187: 3184: 3182: 3179: 3178: 3177: 3174: 3172: 3169: 3168: 3166: 3164: 3160: 3156: 3149: 3144: 3142: 3137: 3135: 3130: 3129: 3126: 3119: 3118:Erik Verlinde 3115: 3112: 3108: 3104: 3100: 3096: 3092: 3088: 3083: 3078: 3074: 3070: 3065: 3064: 3060: 3055: 3054:W. H. Freeman 3051: 3047: 3044: 3043: 3039: 3031: 3026: 3022: 3018: 3014: 3010: 3009: 3004: 2999: 2998: 2994: 2985: 2980: 2976: 2972: 2968: 2964: 2960: 2953: 2950: 2944: 2939: 2936:: 4681–4698. 2935: 2931: 2927: 2926: 2921: 2919: 2910: 2907: 2901: 2896: 2891: 2886: 2883:: 2107–2122. 2882: 2878: 2874: 2873: 2868: 2866: 2857: 2854: 2849: 2845: 2841: 2837: 2833: 2829: 2825: 2821: 2816: 2811: 2807: 2803: 2799: 2792: 2789: 2785: 2779: 2776: 2770: 2765: 2761: 2757: 2753: 2749: 2745: 2737: 2733: 2729: 2725: 2721: 2717: 2712: 2711:gr-qc/0506021 2707: 2703: 2699: 2692: 2689: 2684: 2680: 2676: 2672: 2667: 2662: 2659:(8): 083509. 2658: 2654: 2647: 2644: 2638: 2633: 2629: 2625: 2620: 2615: 2611: 2607: 2603: 2596: 2593: 2587: 2582: 2578: 2574: 2570: 2563: 2560: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2522: 2517: 2513: 2509: 2502: 2499: 2494: 2490: 2486: 2482: 2478: 2474: 2469: 2464: 2460: 2456: 2449: 2446: 2441: 2437: 2433: 2429: 2425: 2421: 2417: 2413: 2408: 2403: 2399: 2395: 2388: 2385: 2380: 2376: 2372: 2368: 2364: 2360: 2355: 2350: 2346: 2342: 2335: 2332: 2326: 2321: 2317: 2313: 2308: 2303: 2299: 2295: 2294: 2289: 2282: 2279: 2274: 2270: 2265: 2260: 2256: 2255: 2247: 2240: 2237: 2232: 2228: 2224: 2220: 2216: 2212: 2207: 2202: 2198: 2194: 2193: 2185: 2178: 2175: 2170: 2166: 2161: 2156: 2152: 2148: 2143: 2138: 2134: 2130: 2126: 2119: 2116: 2110: 2105: 2101: 2097: 2092: 2087: 2083: 2079: 2078: 2073: 2066: 2063: 2057: 2052: 2048: 2044: 2039: 2034: 2030: 2026: 2025: 2020: 2013: 2010: 2005: 2001: 1996: 1991: 1987: 1983: 1978: 1973: 1969: 1965: 1961: 1957: 1951: 1948: 1943: 1939: 1935: 1931: 1927: 1923: 1918: 1913: 1909: 1905: 1898: 1895: 1890: 1886: 1879: 1876: 1871: 1867: 1862: 1857: 1853: 1849: 1844: 1839: 1835: 1831: 1830: 1825: 1818: 1815: 1803: 1799: 1793: 1790: 1784: 1779: 1774: 1769: 1764: 1759: 1755: 1751: 1750: 1745: 1738: 1735: 1729: 1724: 1719: 1714: 1709: 1704: 1700: 1696: 1695: 1690: 1683: 1680: 1675: 1668: 1665: 1659: 1654: 1649: 1644: 1639: 1634: 1630: 1626: 1625: 1620: 1613: 1610: 1604: 1599: 1594: 1589: 1584: 1579: 1575: 1571: 1570: 1565: 1558: 1555: 1550: 1546: 1541: 1536: 1532: 1528: 1527: 1519: 1517: 1513: 1508: 1504: 1499: 1494: 1491:: L107–L111. 1490: 1486: 1485: 1477: 1474: 1469: 1465: 1461: 1457: 1452: 1447: 1443: 1439: 1438: 1430: 1427: 1421: 1416: 1412: 1408: 1404: 1400: 1396: 1389: 1386: 1383: 1377: 1374: 1368: 1363: 1359: 1355: 1354: 1346: 1343: 1337: 1332: 1328: 1324: 1323: 1315: 1312: 1306: 1301: 1297: 1293: 1292: 1284: 1281: 1276: 1272: 1267: 1262: 1258: 1254: 1253: 1245: 1242: 1237: 1231: 1227: 1226: 1219: 1216: 1210: 1205: 1197: 1195: 1191: 1186: 1175: 1171: 1170: 1162: 1159: 1154: 1147: 1144: 1136: 1131: 1126: 1121: 1117: 1113: 1112: 1107: 1102: 1098: 1094: 1089: 1084: 1080: 1076: 1075: 1069: 1068: 1062: 1051: 1047: 1046: 1040: 1039: 1035: 1032: 1027: 1023: 1019: 1015: 1010: 1005: 1001: 997: 993: 986: 983: 977: 973: 970: 968: 965: 963: 960: 959: 955: 953: 951: 947: 942: 940: 936: 932: 928: 923: 921: 917: 913: 909: 905: 900: 898: 894: 890: 884: 882: 878: 873: 869: 861: 859: 856: 852: 846: 844: 840: 836: 832: 828: 823: 819: 813: 810: 806: 797: 790: 788: 784: 782: 778: 773: 769: 767: 745: 741: 737: 732: 725: 722: 714: 707: 703: 698: 692: 686: 677: 675: 669: 665: 656: 634: 629: 621: 617: 613: 608: 605: 601: 592: 588: 584: 576: 572: 566: 560: 554: 546: 542: 537: 534: 530: 523: 519: 514: 510: 505: 498: 494: 476: 469: 466: 463: 460: 452: 446: 443: 440: 437: 428: 425: 422: 418: 409: 405: 401: 398: 395: 388: 380: 374: 368: 362: 356: 346: 342: 337: 329: 327: 325: 321: 317: 313: 309: 305: 301: 297: 293: 292:mass-to-light 288: 286: 280: 277: 272: 269: 265: 260: 256: 252: 248: 244: 240: 235: 233: 228: 225: 221: 218:Reporting on 216: 214: 210: 205: 201: 197: 186: 183: 175: 172:December 2016 165: 159: 158: 154: 149:This section 147: 138: 137: 131: 129: 127: 123: 118: 116: 112: 108: 104: 100: 94: 92: 88: 82: 80: 76: 72: 68: 64: 60: 56: 32: 19: 3991:Solar System 3926: 3914: 3855: 3649:fossil group 3571:Low activity 3405:Ultramassive 3235:Dwarf galaxy 3218:intermediate 3213:grand design 3072: 3068: 3045: 3040:Bibliography 3012: 3006: 2966: 2962: 2952: 2929: 2923: 2917: 2909: 2876: 2870: 2864: 2856: 2805: 2801: 2791: 2783: 2778: 2751: 2747: 2701: 2697: 2691: 2656: 2652: 2646: 2609: 2605: 2595: 2576: 2572: 2562: 2511: 2507: 2501: 2458: 2454: 2448: 2397: 2393: 2387: 2347:(1): 66–81. 2344: 2340: 2334: 2297: 2291: 2281: 2252: 2239: 2196: 2190: 2177: 2132: 2128: 2118: 2081: 2075: 2065: 2028: 2022: 2012: 1967: 1963: 1950: 1907: 1903: 1897: 1888: 1878: 1833: 1827: 1817: 1805:. Retrieved 1801: 1792: 1753: 1747: 1737: 1698: 1692: 1682: 1673: 1667: 1628: 1622: 1612: 1576:(1): 27–47. 1573: 1567: 1557: 1530: 1524: 1488: 1482: 1476: 1441: 1435: 1429: 1405:(349): 182. 1402: 1398: 1388: 1376: 1360:(492): 323. 1357: 1351: 1345: 1326: 1320: 1314: 1295: 1289: 1283: 1256: 1250: 1244: 1224: 1218: 1183:– via 1179:December 30, 1177:. Retrieved 1168: 1161: 1152: 1146: 1115: 1109: 1078: 1072: 1059:– via 1055:December 30, 1053:. Retrieved 1044: 1034: 999: 995: 985: 943: 941:is adopted. 924: 901: 885: 865: 847: 814: 802: 785: 777:hypothetical 774: 770: 678: 667: 663: 654: 538: 532: 528: 521: 517: 503: 496: 492: 344: 340: 333: 304:Fritz Zwicky 289: 281: 273: 247:spectrograph 236: 229: 217: 193: 178: 169: 150: 119: 95: 83: 62: 54: 52: 3979:Outer space 3967:Spaceflight 3708:void galaxy 3671:cannibalism 3656:Interacting 3612:Interaction 3598:Blue Nugget 3588:Dark galaxy 3493:Lyman-break 3385:Protogalaxy 3351:Disc galaxy 1910:(1): 6–21. 1802:www.eso.org 1631:: 563–575. 1081:: 471–487. 897:f(R) theory 881:Local Group 764:the galaxy 296:dark matter 111:dark matter 79:dark matter 59:disc galaxy 4001:Categories 3748:Polar-ring 3593:Red nugget 3535:faint blue 3395:Spiral arm 3250:spheroidal 3240:elliptical 3223:Magellanic 3208:flocculent 3176:Lenticular 3163:Morphology 3050:Paul McRae 2969:(2): 186. 2890:1810.04445 2619:1610.06183 2612:(1): L17. 2521:1609.05917 2300:: 789293. 1009:1804.03097 239:Vera Rubin 3683:Satellite 3678:Jellyfish 3666:collision 3603:Dead disk 3520:Starburst 3435:Markarian 3307:Structure 3274:Irregular 3245:irregular 3107:204020148 3082:0903.4849 2840:0217-751X 2493:118576979 2468:1301.0822 2461:(1): 22. 2407:1102.3913 2307:0910.3538 2264:1302.2268 2004:118517066 1977:1001.3447 1468:122756867 1259:: 41–51. 1209:0801.3133 1067:See also 1026:0066-4146 978:Footnotes 931:Milky Way 908:Milky Way 891:(TeVeS), 718:Φ 573:ρ 555:ρ 515:where if 467:⁡ 444:⁡ 399:π 357:ρ 320:cosmology 255:Kent Ford 194:In 1932, 153:citations 4022:Rotation 3915:Category 3804:See also 3728:Galaxies 3455:X-shaped 3286:Peculiar 3228:unbarred 3186:unbarred 3155:Galaxies 3116:. About 2736:17376981 2704:(3): 4. 2554:34521243 2546:27886485 2432:21517295 2379:18901029 2231:15880032 2169:14308775 1942:14893610 1870:17917374 1807:16 March 956:See also 920:NGC 7331 916:NGC 3198 912:NGC 3031 324:universe 224:Jan Oort 220:NGC 3115 3941:Portals 3775:Quasars 3743:Nearest 3738:Largest 3639:cluster 3472:Seyfert 3087:Bibcode 3017:Bibcode 2971:Bibcode 2820:Bibcode 2786:(2005). 2756:Bibcode 2716:Bibcode 2671:Bibcode 2624:Bibcode 2526:Bibcode 2473:Bibcode 2440:1427896 2412:Bibcode 2359:Bibcode 2312:Bibcode 2269:Bibcode 2211:Bibcode 2147:Bibcode 2096:Bibcode 2043:Bibcode 1982:Bibcode 1922:Bibcode 1848:Bibcode 1768:Bibcode 1713:Bibcode 1643:Bibcode 1588:Bibcode 1535:Bibcode 1533:: 471. 1493:Bibcode 1446:Bibcode 1444:: 379. 1407:Bibcode 1362:Bibcode 1331:Bibcode 1300:Bibcode 1261:Bibcode 1172:(PhD). 1120:Bibcode 1083:Bibcode 1048:(PhD). 507:is the 322:of the 132:History 35:galaxy. 3927:Portal 3758:Spiral 3661:merger 3440:Quasar 3425:Blazar 3363:corona 3279:barred 3255:spiral 3203:barred 3198:anemic 3193:Spiral 3181:barred 3105:  2848:155920 2846:  2838:  2734:  2552:  2544:  2491:  2438:  2430:  2377:  2229:  2167:  2002:  1940:  1868:  1466:  1329:: 17. 1232:  1024:  490:where 432:  3955:Stars 3795:Voids 3720:Lists 3698:Walls 3634:group 3619:Field 3513:ELIRG 3508:HLIRG 3503:ULIRG 3460:DRAGN 3450:Radio 3430:LINER 3324:Bulge 3296:Polar 3103:S2CID 3077:arXiv 3056:1968. 2932:(4). 2885:arXiv 2879:(2). 2844:S2CID 2810:arXiv 2732:S2CID 2706:arXiv 2661:arXiv 2614:arXiv 2550:S2CID 2516:arXiv 2489:S2CID 2463:arXiv 2436:S2CID 2402:arXiv 2375:S2CID 2349:arXiv 2302:arXiv 2259:arXiv 2249:(PDF) 2227:S2CID 2201:arXiv 2187:(PDF) 2165:S2CID 2137:arXiv 2086:arXiv 2033:arXiv 2000:S2CID 1972:arXiv 1938:S2CID 1912:arXiv 1866:S2CID 1838:arXiv 1758:arXiv 1703:arXiv 1633:arXiv 1578:arXiv 1464:S2CID 1298:: 1. 1204:arXiv 1004:arXiv 760:with 67:stars 57:of a 3753:Ring 3358:Halo 3346:Disc 3291:Ring 3171:Disc 2920:DR3" 2918:Gaia 2867:DR2" 2865:Gaia 2836:ISSN 2542:PMID 2428:PMID 2298:2010 1809:2017 1230:ISBN 1181:2016 1057:2016 1022:ISSN 918:and 349:is: 302:and 230:The 115:halo 101:and 75:plot 53:The 3530:pea 3319:Bar 3095:doi 3025:doi 3013:239 2979:doi 2938:doi 2934:OUP 2930:529 2895:doi 2881:OUP 2877:496 2828:doi 2764:doi 2752:524 2724:doi 2679:doi 2632:doi 2610:835 2581:doi 2577:525 2534:doi 2512:117 2481:doi 2459:766 2420:doi 2398:106 2367:doi 2345:499 2320:doi 2219:doi 2197:385 2155:doi 2133:351 2104:doi 2082:273 2051:doi 2029:290 1990:doi 1968:405 1930:doi 1908:678 1856:doi 1834:377 1778:doi 1754:624 1723:doi 1699:132 1653:doi 1629:463 1598:doi 1574:281 1545:doi 1531:238 1503:doi 1489:225 1456:doi 1442:159 1415:doi 1271:doi 1130:doi 1116:249 1093:doi 1079:238 1014:doi 851:NFW 841:of 464:log 441:log 274:If 209:M33 155:to 4003:: 3267:cD 3101:. 3093:. 3085:. 3073:11 3071:. 3052:. 3023:. 3011:. 3005:. 2977:. 2967:81 2965:. 2961:. 2928:. 2922:. 2893:. 2875:. 2869:. 2842:. 2834:. 2826:. 2818:. 2806:22 2804:. 2800:. 2762:. 2750:. 2746:. 2730:. 2722:. 2714:. 2700:. 2677:. 2669:. 2657:70 2655:. 2630:. 2622:. 2608:. 2604:. 2575:. 2571:. 2548:. 2540:. 2532:. 2524:. 2510:. 2487:. 2479:. 2471:. 2457:. 2434:. 2426:. 2418:. 2410:. 2396:. 2373:. 2365:. 2357:. 2343:. 2318:. 2310:. 2296:. 2290:. 2267:. 2251:. 2225:. 2217:. 2209:. 2195:. 2189:. 2163:. 2153:. 2145:. 2131:. 2127:. 2102:. 2094:. 2080:. 2074:. 2049:. 2041:. 2027:. 2021:. 1998:. 1988:. 1980:. 1966:. 1962:. 1936:. 1928:. 1920:. 1906:. 1887:. 1864:. 1854:. 1846:. 1832:. 1826:. 1800:. 1776:. 1766:. 1752:. 1746:. 1721:. 1711:. 1697:. 1691:. 1651:. 1641:. 1627:. 1621:. 1596:. 1586:. 1572:. 1566:. 1543:. 1529:. 1515:^ 1501:. 1487:. 1462:. 1454:. 1440:. 1413:. 1403:59 1401:. 1397:. 1358:14 1356:. 1327:14 1325:. 1296:14 1294:. 1269:. 1257:19 1255:. 1193:^ 1128:. 1114:. 1108:. 1091:. 1077:. 1020:. 1012:. 1000:56 998:. 994:. 952:. 914:, 910:, 883:. 845:. 768:. 531:∝ 326:. 222:, 215:. 117:. 3943:: 3147:e 3140:t 3133:v 3109:. 3097:: 3089:: 3079:: 3033:. 3027:: 3019:: 2987:. 2981:: 2973:: 2946:. 2940:: 2903:. 2897:: 2887:: 2850:. 2830:: 2822:: 2812:: 2772:. 2766:: 2758:: 2740:, 2738:. 2726:: 2718:: 2708:: 2702:3 2685:. 2681:: 2673:: 2663:: 2640:. 2634:: 2626:: 2616:: 2589:. 2583:: 2556:. 2536:: 2528:: 2518:: 2495:. 2483:: 2475:: 2465:: 2442:. 2422:: 2414:: 2404:: 2381:. 2369:: 2361:: 2351:: 2328:. 2322:: 2314:: 2304:: 2275:. 2271:: 2261:: 2233:. 2221:: 2213:: 2203:: 2171:. 2157:: 2149:: 2139:: 2112:. 2106:: 2098:: 2088:: 2059:. 2053:: 2045:: 2035:: 2006:. 1992:: 1984:: 1974:: 1944:. 1932:: 1924:: 1914:: 1891:. 1872:. 1858:: 1850:: 1840:: 1811:. 1786:. 1780:: 1770:: 1760:: 1731:. 1725:: 1715:: 1705:: 1661:. 1655:: 1645:: 1635:: 1606:. 1600:: 1590:: 1580:: 1551:. 1547:: 1537:: 1509:. 1505:: 1495:: 1470:. 1458:: 1448:: 1423:. 1417:: 1409:: 1370:. 1364:: 1339:. 1333:: 1308:. 1302:: 1277:. 1273:: 1263:: 1238:. 1212:. 1206:: 1187:. 1138:. 1132:: 1122:: 1099:. 1095:: 1085:: 1063:. 1028:. 1016:: 1006:: 762:Φ 746:2 742:/ 738:1 733:) 726:r 723:d 715:d 708:r 704:( 699:= 696:) 693:r 690:( 687:v 668:s 664:R 658:0 655:ρ 635:2 630:) 622:s 618:R 614:r 609:+ 606:1 602:( 593:s 589:R 585:r 577:0 567:= 564:) 561:r 558:( 533:r 529:ρ 524:) 522:r 520:( 518:v 504:G 499:) 497:r 495:( 493:v 477:) 470:r 461:d 456:) 453:r 450:( 447:v 438:d 429:2 426:+ 423:1 419:( 410:2 406:r 402:G 396:4 389:2 385:) 381:r 378:( 375:v 369:= 366:) 363:r 360:( 347:) 345:r 343:( 341:ρ 185:) 179:( 174:) 170:( 160:. 20:)

Index

Galactic rotation curve

disc galaxy
stars
radial distance
plot
dark matter
Kepler’s third law
mass distributions
distribution of stars in spirals
mass-to-light ratios
law of gravity
dark matter
halo
possible alternatives
modified Newtonian dynamics
citations
secondary or tertiary sources
primary research articles
Learn how and when to remove this message
Jan Hendrik Oort
solar neighborhood
Horace Babcock
M33
Keplerian dynamics
NGC 3115
Jan Oort
Carnegie telescope
Vera Rubin
Carnegie Institution of Washington

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.