Knowledge (XXG)

Gating (electrophysiology)

Source 📝

219:
functionally categories into channel or transporter. They share homodimeric structure with independent ion permeation pathway in each of the subunit. Based on functional characterization, there are two known gating mechanism: protopore and common gating. The protopore gating, also known as fast gating, is associated with occlusion of the pore via side-chain of conserved glutamate. While the common gating, also known as the slow gating, inactivated or reactivates both pores through unknown mechanism. This family either transports two chloride for one proton or simply allows flux down its electrochemical gradient. With this channel the correct depolarization and repolarization via chloride ions is essential for propagation of an action potential.
210:
gradient. This influx of calcium subsequently is what causes the neurotransmitter vesicles to fuse with the presynaptic membrane. The calcium ions initiate the interaction of obligatory cofactor proteins with SNARE proteins to form a SNARE complex. These SNARE complexes mediate vesicle fusion by pulling the membranes together, leaking the neurotransmitters into the synaptic cleft. The neurotransmitter molecules can then signal the next cell via receptors on the post synaptic membrane. These receptors can either act as ion channels or GPCR (G-Protein Coupled Receptors). In general the neurotransmitter can either cause an excitatory or inhibitory response, depending on what occurs at the receptor.
309:. Recent studies have suggested a molecular dynamics simulation-based method to determine gating charge by measuring electrical capacitor properties of membrane-embedded proteins. Activity of ion channels located in the plasma membrane can be measured by simply attaching a glass capillary electrode continuously with the membrane. Other ion channels located in the membranes of mitochondria, lysosomes, and the Golgi apparatus can be measured by an emergent technique that involves the use of an artificial bilayer lipid membrane attached to a 16 electrode device that measures electrical activity. 201: 282: 257: 142:
main ion channels responsible for action potentials. Being complex, they are made of bigger α subunits that are then paired with two smaller β subunits. They contain transmembrane segments known as S1-6. The charged S4 segments are the channels voltage sensors. When exposed to a certain minimum potential difference, the S4 segments move across the membrane. This causes movement of the S4-S5 linker, which causes the S5-S6 linker to twist and opens the channel.
115: 98:), and 'deactivation' is the opposite process of the activation gate closing in response to the inside of the membrane becoming more negative (repolarization). 'Inactivation' is the closing of the inactivation gate, and occurs in response to the voltage inside the membrane becoming more positive, but more slowly than activation. 'Reactivation' is the opposite of inactivation, and is the process of reopening the inactivation gate. 129:, moving these voltage-sensing domains. This changes the conformation of other elements of the channel to either the open or closed position. When they move from the closed position to the open position, this is called "activation." Voltage-gated ion channels underlie many of the electrical behaviors of the cell, including action potentials, resting membrane potentials, and synaptic transmission. 17: 231:
through the channels down their concentration gradient. Ligand-gated ion channels are responsible for fast synaptic transmission in the nervous system and at the neuromuscular junction. Each ligand-gated ion channel has a wide range of receptors with differing biophysical properties as well as patterns of expression in the nervous system.
209:
Neurotransmitters are initially stored and synthesized in vesicles at the synapse of a neuron. When an action potential occurs in a cell, the electrical signal reaches the presynaptic terminal and the depolarization causes calcium channels to open, releasing calcium to travel down its electrochemical
141:
Voltage Gated Sodium (Na) channels are significant when it comes to propagating the action potentials in neurons and other excitable cells, mostly being used for the propagation of action potential in axons, muscle fibers and the neural somatodendritic compartment. Sodium(Na) channels are some of the
272:
N-terminus. The ball domain is electrostatically attracted to the inner channel domain. When the ion channel is activated, the inner channel domain is exposed, and within milliseconds the chain will fold and the ball will enter the channel, occluding ion permeation. The channel returns to its closed
239:
Inactivation is when the flow of ions is blocked by a mechanism other than the closing of the channel. A channel in its open state may stop allowing ions to flow through, or a channel in its closed state may be preemptively inactivated to prevent the flow of ions. Inactivation typically occurs when
196:
Calcium (Ca) channels regulate the release of neurotransmitters at synapses, control the shape of action potentials made by sodium channels, and in some neurons, generate action potentials. Calcium channels consist of six transmembrane helices. S4 acts as the voltage sensor by rotating when exposed
296:
In voltage gated potassium channels, the reverse is true, and deactivation slows the channel's recovery from activation. The closed conformation is assumed by default, and involves the partial straightening of helix VI by the IV-V linker. The mechanisms that cause opening and closing are not fully
150:
Potassium (K) channels play a large role in setting the resting membrane potential. When the cell membrane depolarizes, the intracellular part of the channel becomes positively charged, which causes the channel's open configuration to become a more stable state than the closed configuration. There
230:
are found on postsynaptic neurons. By default, they assume their closed conformation. When the presynaptic neuron releases neurotransmitters at the end of an action potential, they bind to ligand-gated ion channels. This causes the channels to assume their open conformation, allowing ions to flow
247:
In sodium channels, inactivation appears to be the result of the actions of helices III-VI, with III and IV acting as a sort of hinged lid that block the channel. The exact mechanism is poorly understood, but seems to rely on a particle that has a high affinity for the exposed inside of the open
132:
Voltage-gated ion channels are often specific to ions, including Na, K, Ca, and Cl. Each of these ions plays an important role in the electrical behavior of the cell. The gates also have unique properties with important physiological implications. For example, Na channels open and close rapidly,
218:
Chloride channels are another group of voltage gated ion channels, of which are less understood. They are involved with processes such as skeletal and cardiac smooth muscle, cell volume regulation, the cell cycle, and apoptosis. One major family of chloride proteins are called CLC proteins,
89:
are often described as having four gating processes: activation, deactivation, inactivation, and reactivation (also called 'recovery from inactivation'). Activation is the process of opening the activation gate, which occurs in response to the voltage inside the cell membrane (the
268:, also known as N-type inactivation or hinged lid inactivation, is a gating mechanism for some voltage-gated ion channels. Voltage-gated ion channels are composed of 4 α subunits, one or more of which will have a ball domain located on its 289:
Deactivation is the return of an ion channel to its closed conformation. For voltage-gated channels this occurs when the voltage differential that originally caused the channel to open returns to its resting value.
204:
Calcium release causes a strong attraction between multiple proteins including synaptobrevin and SNARE proteins to pull the neurotransmitter vesicle to the membrane and release its contents into the synaptic
47:
to ions and do not conduct electrical current. When ion channels are in their open state, they conduct electrical current by allowing specific types of ions to pass through them, and thus, across the
125:
open and close in response to the electrical potential across the cell membrane. Portions of the channel domain act as voltage sensors. As the membrane potential changes, this results in changes in
118:
Voltage-gated ion channel. When the membrane is polarized, the voltage sensing domain of the channel shifts, opening the channel to ion flow (ions represented by yellow circles).
133:
while K gates open and close much more slowly. The difference in speed between these channels underlies the depolarization and repolarization phases of the action potential.
1274: 285:
As the membrane potential returns to its resting value, the voltage differential is not sufficient to keep the channel in its open state, causing the channel to close.
297:
understood. The closed conformation appears to be a higher energy conformation than the open conformation, which may also help explain how the ion channel activates.
260:
Voltage-gated ion channel in its closed, open, and inactivated states. The inactivated channel is still in its open state, but the ball domain blocks ion permeation.
166:
posits that the S3 and S4 helices of the channel form "paddles" that move through the depolarized membrane and pull the S5 helix away from the channel's opening.
792:
Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (2001).
2132:
Kamiya, Koki; Osaki, Toshihisa; Nakao, Kenji; Kawano, Ryuji; Fujii, Satoshi; Misawa, Nobuo; Hayakawa, Masatoshi; Takeuchi, Shoji (2018-11-30).
82:
of gating. Some drugs and many ion channel toxins act as 'gating modifiers' of voltage-gated ion channels by changing the kinetics of gating.
1309: 591: 360: 846:
Mantegazza, Massimo; Catterall, William A. (2012), Noebels, Jeffrey L.; Avoli, Massimo; Rogawski, Michael A.; Olsen, Richard W. (eds.),
58:
A variety of cellular changes can trigger gating, depending on the ion channel, including changes in voltage across the cell membrane (
173:
posits that a focused electric field causes charged particles to move across the channel with only a small movement of the S4 helix.
1781:
Yang, Kefan; Coburger, Ina; Langner, Johanna M.; Peter, Nicole; Hoshi, Toshinori; Schönherr, Roland; Heinemann, Stefan H. (2019).
44: 101:
These voltage-dependent changes in function are critical for a large number of processes in excitable and nonexcitable cells.
248:
channel. Rapid inactivation allows the channel to halt the flow of sodium very shortly after assuming its open conformation.
1895:"Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation" 2203: 2134:"Electrophysiological measurement of ion channels on plasma/organelle membranes using an on-chip lipid bilayer system" 265: 180:
posits that the S4 and S5 helices both rotate, and the S4-S5 linker causes the S6 helix to move, opening the channel.
2208: 200: 122: 59: 281: 878:
Sula, Altin; Booker, Jennifer; Ng, Leo C. T.; Naylor, Claire E.; DeCaen, Paul G.; Wallace, B. A. (2017-02-16).
256: 227: 63: 381:
Machtens, Jan-Philipp; Briones, Rodolfo; Alleva, Claudia; de Groot, Bert L.; Fahlke, Christoph (2017-04-11).
1671:
Kuo, Chung-Chin; Bean, Bruce P. (1994-04-01). "Na+ channels must deactivate to recover from inactivation".
1783:"Modulation of K+ channel N-type inactivation by sulfhydration through hydrogen sulfide and polysulfides" 78:). The rate at which any of these gating processes occurs in response to these triggers are known as the 2213: 1268: 306: 2145: 2077: 1614: 1296:, Handbook of Experimental Pharmacology, vol. 283, Berlin, Heidelberg: Springer, pp. 1–34, 1166:
Yoon, Tae-Young; Lu, Xiaobing; Diao, Jiajie; Lee, Soo-Min; Ha, Taekjip; Shin, Yeon-Kyun (June 2008).
891: 536: 469: 394: 126: 343:
Alberts, Bruce; Bray, Dennis; Lewis, Julian; Raff, Martin; Roberts, Keith; Watson, James D. (1994).
1704: 1436: 607:
Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H (April 2013).
459: 323: 91: 79: 55:. Gating is the process by which an ion channel transitions between its open and closed states. 2179: 2161: 2111: 2093: 2046: 2028: 1989: 1971: 1932: 1914: 1875: 1857: 1812: 1763: 1745: 1696: 1688: 1650: 1632: 1532: 1493: 1475: 1428: 1420: 1379: 1361: 1315: 1305: 1246: 1205: 1187: 1148: 1130: 1088: 1070: 1031: 982: 964: 925: 907: 855: 820: 765: 747: 703: 685: 646: 628: 587: 564: 505: 487: 428: 410: 356: 352: 241: 25: 2169: 2153: 2101: 2085: 2036: 2020: 1979: 1963: 1922: 1906: 1865: 1849: 1802: 1794: 1753: 1735: 1680: 1640: 1622: 1581: 1573: 1540: 1524: 1483: 1467: 1410: 1369: 1351: 1297: 1254: 1238: 1195: 1179: 1138: 1122: 1078: 1062: 1021: 1013: 972: 956: 915: 899: 755: 739: 693: 677: 636: 620: 554: 544: 495: 477: 418: 402: 86: 114: 318: 293:
In voltage-gated sodium channels, deactivation is necessary to recover from inactivation.
71: 66:), changes in temperature, stretching or deformation of the cell membrane, addition of a 2149: 2081: 1618: 895: 540: 473: 398: 2174: 2133: 2106: 2065: 2041: 2024: 2008: 1984: 1951: 1927: 1910: 1894: 1870: 1837: 1807: 1645: 1602: 1586: 1577: 1561: 1545: 1528: 1512: 1488: 1455: 1374: 1339: 1259: 1242: 1226: 1200: 1167: 1143: 1110: 1083: 1050: 1026: 1001: 977: 944: 920: 879: 760: 727: 698: 665: 641: 608: 423: 382: 95: 52: 1758: 1723: 1399:"CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease" 500: 447: 2197: 1684: 1017: 664:
Ahern, Christopher A.; Payandeh, Jian; Bosmans, Frank; Chanda, Baron (January 2016).
559: 524: 345: 48: 1893:
Bénitah, J. P.; Chen, Z.; Balser, J. R.; Tomaselli, G. F.; Marbán, E. (1999-03-01).
1708: 1440: 960: 187:
is an average of the above models that helps reconcile them with experimental data.
37: 1967: 1471: 743: 159:
posits that the potassium channel opens due to a screwing motion by its S4 helix.
40:. This change in conformation is a response to changes in transmembrane voltage. 1126: 1066: 624: 2157: 1415: 1398: 812: 793: 452:
Proceedings of the National Academy of Sciences of the United States of America
1798: 945:"Structure and function of voltage-gated sodium channels at atomic resolution" 847: 406: 33: 2165: 2097: 2032: 1975: 1918: 1861: 1749: 1692: 1636: 1536: 1479: 1424: 1365: 1250: 1191: 1134: 1074: 968: 911: 751: 689: 632: 491: 414: 20:
An animated representation of the molecular structure of a simple ion channel
1740: 1627: 549: 269: 75: 67: 2183: 2115: 1993: 1936: 1816: 1767: 1654: 1497: 1432: 1383: 1319: 1209: 1152: 1092: 1035: 986: 929: 859: 824: 769: 707: 650: 568: 509: 482: 432: 383:"Gating Charge Calculations by Computational Electrophysiology Simulations" 2066:"The pore of voltage-gated potassium ion channels is strained when closed" 2050: 1879: 1853: 1700: 681: 16: 1301: 1356: 1338:
Park, Eunyong; MacKinnon, Roderick (2018-05-29). Csanády, László (ed.).
903: 464: 2089: 2009:"Deactivation Retards Recovery from Inactivation in Shaker K+ Channels" 1952:"Mechanisms of closed-state inactivation in voltage-gated ion channels" 1456:"CLC channels and transporters: proteins with borderline personalities" 1289: 728:"Mechanisms of closed-state inactivation in voltage-gated ion channels" 448:"Ion channel gating: A first-passage time analysis of the Kramers type" 1183: 848:"Voltage-Gated Na+ Channels: Structure, Function, and Pathophysiology" 43:
When ion channels are in a 'closed' (non-conducting) state, they are
854:(4th ed.), National Center for Biotechnology Information (US), 1838:"N-type inactivation and the S4-S5 region of the Shaker K+ channel" 1290:"Biophysical and Pharmacological Insights to CLC Chloride Channels" 666:"The hitchhiker's guide to the voltage-gated sodium channel galaxy" 609:"Ion Channels as Drug Targets in Central Nervous System Disorders" 273:
state, blocking the channel domain, and the ball leaves the pore.
255: 199: 113: 94:) becoming more positive with respect to the outside of the cell ( 15: 1288:
Kwon, Hwoi Chan; Fairclough, Robert H.; Chen, Tsung-Yu (2022),
1000:
Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S. (Oct–Dec 2014).
1168:"Complexin and Ca 2+ stimulate SNARE-mediated membrane fusion" 1002:"Mechanisms of Activation of Voltage-Gated Potassium Channels" 197:
to certain membrane potentials, thereby opening the channel.
880:"The complete structure of an activated open sodium channel" 523:
Cesare P, Moriondo A, Vellani V, McNaughton PA (July 1999).
1340:"Structure of the CLC-1 chloride channel from Homo sapiens" 74:), and interaction with other molecules in the cell (e.g., 1836:
Holmgren, M.; Jurman, M. E.; Yellen, G. (September 1996).
1782: 1511:
Alexander, SPH; Mathie, A; Peters, JA (November 2011).
1724:"Overview of the voltage-gated sodium channel family" 1603:"Na channel inactivation from open and closed states" 1454:
Accardi, Alessio; Picollo, Alessandra (August 2010).
811:
Grider, Michael H.; Glaubensklee, Carolyn S. (2019),
2064:
Fowler, Philip W.; Sansom, Mark S. P. (2013-05-21).
1950:Bähring, Robert; Covarrubias, Manuel (2011-01-28). 726:Bähring, Robert; Covarrubias, Manuel (2011-02-01). 1460:Biochimica et Biophysica Acta (BBA) - Biomembranes 344: 151:are a few models of potassium channel activation: 36:) or closing (by deactivation or inactivation) of 1397:Jentsch, Thomas J.; Pusch, Michael (2018-07-01). 1787:Pflügers Archiv - European Journal of Physiology 240:the cell membrane depolarize, and ends when the 1607:Proceedings of the National Academy of Sciences 62:), chemicals interacting with the ion channel ( 1560:Alexander, SPH; Mathie, A; Peters, JA (2011). 1666: 1664: 1111:"Calcium Control of Neurotransmitter Release" 8: 1273:: CS1 maint: DOI inactive as of July 2024 ( 852:Jasper's Basic Mechanisms of the Epilepsies 446:Goychuk, Igor; Hänggi, Peter (2002-03-19). 305:Gating charge can be calculated by solving 1722:Yu, Frank H; Catterall, William A (2003). 1115:Cold Spring Harbor Perspectives in Biology 1055:Cold Spring Harbor Perspectives in Biology 2173: 2105: 2040: 1983: 1926: 1869: 1806: 1757: 1739: 1644: 1626: 1585: 1544: 1487: 1414: 1373: 1355: 1258: 1199: 1172:Nature Structural & Molecular Biology 1142: 1082: 1025: 976: 919: 759: 697: 640: 558: 548: 499: 481: 463: 422: 280: 335: 1266: 85:The voltage-gated ion channels of the 2127: 2125: 1237:(Suppl 1): S130–S134. November 2009. 1221: 1219: 1104: 1102: 1049:Catterall, William A. (August 2011). 841: 839: 787: 785: 783: 781: 779: 7: 943:Catterall, William A. (2013-11-14). 721: 719: 717: 376: 374: 372: 584:Ion channels of excitable membranes 2025:10.1523/JNEUROSCI.17-10-03436.1997 1911:10.1523/JNEUROSCI.19-05-01577.1999 1578:10.1111/j.1476-5381.2011.01649_4.x 1529:10.1111/j.1476-5381.2011.01649_4.x 1243:10.1111/j.1476-5381.2009.00503_6.x 1109:Südhof, Thomas C. (January 2012). 14: 1842:The Journal of General Physiology 1601:Armstrong, Clay M. (2006-11-21). 670:The Journal of General Physiology 1051:"Voltage-Gated Calcium Channels" 1018:10.32607/20758251-2014-6-4-10-26 1517:British Journal of Pharmacology 1294:Anion Channels and Transporters 1231:British Journal of Pharmacology 178:coordinated movement of helices 2007:Kuo, Chung-Chin (1997-05-15). 961:10.1113/expphysiol.2013.071969 813:"Physiology, Action Potential" 351:. New York: Garland. pp.  1: 586:. Sunderland, Mass: Sinauer. 347:Molecular biology of the cell 1968:10.1113/jphysiol.2010.191965 1685:10.1016/0896-6273(94)90335-2 1472:10.1016/j.bbamem.2010.02.022 794:"Voltage-Gated Ion Channels" 744:10.1113/jphysiol.2010.191965 529:Proc. Natl. Acad. Sci. U.S.A 525:"Ion channels gated by heat" 2013:The Journal of Neuroscience 1899:The Journal of Neuroscience 1562:"Ligand-Gated Ion Channels" 1513:"Ligand-Gated Ion Channels" 1127:10.1101/cshperspect.a011353 1067:10.1101/cshperspect.a003947 625:10.2174/0929867311320100005 613:Current Medicinal Chemistry 252:Ball and chain inactivation 2230: 2158:10.1038/s41598-018-35316-4 1416:10.1152/physrev.00047.2017 123:Voltage-gated ion channels 110:Voltage-gated ion channels 70:group to the ion channel ( 60:voltage-gated ion channels 1956:The Journal of Physiology 1799:10.1007/s00424-018-2233-x 819:, StatPearls Publishing, 798:Neuroscience. 2nd Edition 732:The Journal of Physiology 407:10.1016/j.bpj.2017.02.016 228:Ligand-gated ion channels 223:Ligand-gated ion channels 64:ligand-gated ion channels 1741:10.1186/gb-2003-4-3-207 1628:10.1073/pnas.0607603103 1245:(inactive 2024-07-16). 949:Experimental Physiology 550:10.1073/pnas.96.14.7658 32:refers to the opening ( 1572:(Suppl 1): S115–S135. 1523:(Suppl 1): S115–S135. 582:Hille, Bertil (2001). 483:10.1073/pnas.052015699 286: 261: 206: 119: 21: 2070:Nature Communications 1854:10.1085/jgp.108.3.195 1403:Physiological Reviews 884:Nature Communications 682:10.1085/jgp.201511492 284: 259: 203: 117: 19: 1302:10.1007/164_2022_594 266:ball and chain model 127:electrostatic forces 2150:2018NatSR...817498K 2082:2013NatCo...4.1872F 1619:2006PNAS..10317991A 1613:(47): 17991–17996. 1357:10.7554/eLife.36629 1227:"Chloride channels" 904:10.1038/ncomms14205 896:2017NatCo...814205S 541:1999PNAS...96.7658C 474:2002PNAS...99.3552G 399:2017BpJ...112.1396M 387:Biophysical Journal 324:Synaptic potentials 157:sliding helix model 2204:Cell communication 2138:Scientific Reports 2090:10.1038/ncomms2858 307:Poisson's equation 287: 262: 207: 120: 92:membrane potential 22: 2209:Electrophysiology 2019:(10): 3436–3444. 1311:978-3-031-51345-9 1184:10.1038/nsmb.1446 738:(Pt 3): 461–479. 619:(10): 1241–1285. 593:978-0-87893-321-1 362:978-0-8153-1620-6 242:resting potential 26:electrophysiology 2221: 2188: 2187: 2177: 2129: 2120: 2119: 2109: 2061: 2055: 2054: 2044: 2004: 1998: 1997: 1987: 1947: 1941: 1940: 1930: 1905:(5): 1577–1585. 1890: 1884: 1883: 1873: 1833: 1827: 1826: 1824: 1823: 1810: 1778: 1772: 1771: 1761: 1743: 1719: 1713: 1712: 1668: 1659: 1658: 1648: 1630: 1598: 1592: 1591: 1589: 1557: 1551: 1550: 1548: 1508: 1502: 1501: 1491: 1466:(8): 1457–1464. 1451: 1445: 1444: 1418: 1409:(3): 1493–1590. 1394: 1388: 1387: 1377: 1359: 1335: 1329: 1328: 1327: 1326: 1285: 1279: 1278: 1272: 1264: 1262: 1223: 1214: 1213: 1203: 1163: 1157: 1156: 1146: 1106: 1097: 1096: 1086: 1046: 1040: 1039: 1029: 997: 991: 990: 980: 940: 934: 933: 923: 875: 869: 868: 867: 866: 843: 834: 833: 832: 831: 808: 802: 801: 789: 774: 773: 763: 723: 712: 711: 701: 661: 655: 654: 644: 604: 598: 597: 579: 573: 572: 562: 552: 520: 514: 513: 503: 485: 467: 458:(6): 3552–3556. 443: 437: 436: 426: 393:(7): 1396–1405. 378: 367: 366: 350: 340: 87:action potential 2229: 2228: 2224: 2223: 2222: 2220: 2219: 2218: 2194: 2193: 2192: 2191: 2131: 2130: 2123: 2063: 2062: 2058: 2006: 2005: 2001: 1949: 1948: 1944: 1892: 1891: 1887: 1835: 1834: 1830: 1821: 1819: 1780: 1779: 1775: 1721: 1720: 1716: 1670: 1669: 1662: 1600: 1599: 1595: 1559: 1558: 1554: 1510: 1509: 1505: 1453: 1452: 1448: 1396: 1395: 1391: 1337: 1336: 1332: 1324: 1322: 1312: 1287: 1286: 1282: 1265: 1225: 1224: 1217: 1165: 1164: 1160: 1108: 1107: 1100: 1048: 1047: 1043: 999: 998: 994: 942: 941: 937: 877: 876: 872: 864: 862: 845: 844: 837: 829: 827: 810: 809: 805: 791: 790: 777: 725: 724: 715: 663: 662: 658: 606: 605: 601: 594: 581: 580: 576: 535:(14): 7658–63. 522: 521: 517: 465:physics/0111187 445: 444: 440: 380: 379: 370: 363: 342: 341: 337: 332: 319:Synaptic gating 315: 303: 279: 254: 237: 225: 216: 194: 185:consensus model 171:transport model 148: 139: 112: 107: 72:phosphorylation 49:plasma membrane 12: 11: 5: 2227: 2225: 2217: 2216: 2211: 2206: 2196: 2195: 2190: 2189: 2121: 2056: 1999: 1962:(3): 461–479. 1942: 1885: 1848:(3): 195–206. 1828: 1793:(4): 557–571. 1773: 1728:Genome Biology 1714: 1679:(4): 819–829. 1660: 1593: 1566:Br J Pharmacol 1552: 1503: 1446: 1389: 1330: 1310: 1280: 1215: 1178:(7): 707–713. 1158: 1121:(1): a011353. 1098: 1061:(8): a003947. 1041: 992: 935: 870: 835: 803: 775: 713: 656: 599: 592: 574: 515: 438: 368: 361: 334: 333: 331: 328: 327: 326: 321: 314: 311: 302: 301:Quantification 299: 278: 275: 253: 250: 236: 233: 224: 221: 215: 212: 193: 190: 189: 188: 181: 174: 167: 160: 147: 144: 138: 135: 111: 108: 106: 103: 96:depolarization 13: 10: 9: 6: 4: 3: 2: 2226: 2215: 2212: 2210: 2207: 2205: 2202: 2201: 2199: 2185: 2181: 2176: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2128: 2126: 2122: 2117: 2113: 2108: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2060: 2057: 2052: 2048: 2043: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2003: 2000: 1995: 1991: 1986: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1946: 1943: 1938: 1934: 1929: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1889: 1886: 1881: 1877: 1872: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1832: 1829: 1818: 1814: 1809: 1804: 1800: 1796: 1792: 1788: 1784: 1777: 1774: 1769: 1765: 1760: 1755: 1751: 1747: 1742: 1737: 1733: 1729: 1725: 1718: 1715: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1667: 1665: 1661: 1656: 1652: 1647: 1642: 1638: 1634: 1629: 1624: 1620: 1616: 1612: 1608: 1604: 1597: 1594: 1588: 1583: 1579: 1575: 1571: 1567: 1563: 1556: 1553: 1547: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1507: 1504: 1499: 1495: 1490: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1450: 1447: 1442: 1438: 1434: 1430: 1426: 1422: 1417: 1412: 1408: 1404: 1400: 1393: 1390: 1385: 1381: 1376: 1371: 1367: 1363: 1358: 1353: 1349: 1345: 1341: 1334: 1331: 1321: 1317: 1313: 1307: 1303: 1299: 1295: 1291: 1284: 1281: 1276: 1270: 1261: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1222: 1220: 1216: 1211: 1207: 1202: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1162: 1159: 1154: 1150: 1145: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1105: 1103: 1099: 1094: 1090: 1085: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1045: 1042: 1037: 1033: 1028: 1023: 1019: 1015: 1011: 1007: 1003: 996: 993: 988: 984: 979: 974: 970: 966: 962: 958: 954: 950: 946: 939: 936: 931: 927: 922: 917: 913: 909: 905: 901: 897: 893: 889: 885: 881: 874: 871: 861: 857: 853: 849: 842: 840: 836: 826: 822: 818: 814: 807: 804: 799: 795: 788: 786: 784: 782: 780: 776: 771: 767: 762: 757: 753: 749: 745: 741: 737: 733: 729: 722: 720: 718: 714: 709: 705: 700: 695: 691: 687: 683: 679: 675: 671: 667: 660: 657: 652: 648: 643: 638: 634: 630: 626: 622: 618: 614: 610: 603: 600: 595: 589: 585: 578: 575: 570: 566: 561: 556: 551: 546: 542: 538: 534: 530: 526: 519: 516: 511: 507: 502: 497: 493: 489: 484: 479: 475: 471: 466: 461: 457: 453: 449: 442: 439: 434: 430: 425: 420: 416: 412: 408: 404: 400: 396: 392: 388: 384: 377: 375: 373: 369: 364: 358: 354: 349: 348: 339: 336: 329: 325: 322: 320: 317: 316: 312: 310: 308: 300: 298: 294: 291: 283: 276: 274: 271: 267: 258: 251: 249: 245: 244:is restored. 243: 234: 232: 229: 222: 220: 213: 211: 202: 198: 191: 186: 182: 179: 176:The model of 175: 172: 168: 165: 161: 158: 154: 153: 152: 145: 143: 136: 134: 130: 128: 124: 116: 109: 104: 102: 99: 97: 93: 88: 83: 81: 77: 73: 69: 65: 61: 56: 54: 50: 46: 41: 39: 35: 31: 27: 18: 2214:Ion channels 2144:(1): 17498. 2141: 2137: 2073: 2069: 2059: 2016: 2012: 2002: 1959: 1955: 1945: 1902: 1898: 1888: 1845: 1841: 1831: 1820:. Retrieved 1790: 1786: 1776: 1731: 1727: 1717: 1676: 1672: 1610: 1606: 1596: 1569: 1565: 1555: 1520: 1516: 1506: 1463: 1459: 1449: 1406: 1402: 1392: 1347: 1343: 1333: 1323:, retrieved 1293: 1283: 1269:cite journal 1234: 1230: 1175: 1171: 1161: 1118: 1114: 1058: 1054: 1044: 1012:(4): 10–26. 1009: 1006:Acta Naturae 1005: 995: 955:(1): 35–51. 952: 948: 938: 890:(1): 14205. 887: 883: 873: 863:, retrieved 851: 828:, retrieved 816: 806: 797: 735: 731: 673: 669: 659: 616: 612: 602: 583: 577: 532: 528: 518: 455: 451: 441: 390: 386: 346: 338: 304: 295: 292: 288: 277:Deactivation 263: 246: 238: 235:Inactivation 226: 217: 208: 195: 184: 177: 170: 164:paddle model 163: 156: 149: 140: 131: 121: 100: 84: 57: 42: 38:ion channels 29: 23: 2076:(1): 1872. 676:(1): 1–24. 270:cytoplasmic 214:Cl Channels 192:Ca Channels 137:Na Channels 45:impermeable 28:, the term 2198:Categories 1822:2018-11-22 1734:(3): 207. 1350:: e36629. 1325:2023-04-27 865:2019-11-03 830:2019-10-29 817:StatPearls 330:References 146:K Channels 105:Activation 76:G proteins 34:activation 2166:2045-2322 2098:2041-1723 2033:0270-6474 1976:0022-3751 1919:0270-6474 1862:0022-1295 1750:1465-6906 1693:0896-6273 1637:0027-8424 1537:0007-1188 1480:0006-3002 1425:0031-9333 1366:2050-084X 1251:0007-1188 1192:1545-9985 1135:1943-0264 1075:1943-0264 969:0958-0670 912:2041-1723 752:0022-3751 690:0022-1295 633:0929-8673 492:0027-8424 415:0006-3495 68:phosphate 2184:30504856 2116:23695666 1994:21098008 1937:10024345 1817:30415410 1768:12620097 1709:41285799 1655:17101981 1498:20188062 1441:44165561 1433:29845874 1384:29809153 1320:35768555 1210:18552825 1153:22068972 1093:21746798 1036:25558391 987:24097157 930:28205548 860:22787615 825:30844170 770:21098008 708:26712848 651:23409712 569:10393876 510:11891285 433:28402882 313:See also 80:kinetics 2175:6269590 2146:Bibcode 2107:3674235 2078:Bibcode 2051:9133369 2042:6573675 1985:3055536 1928:6782169 1880:8882863 1871:2229322 1808:7086210 1701:8161454 1646:1693860 1615:Bibcode 1587:3315629 1546:3315629 1489:2885512 1375:6019066 1260:2884561 1201:2493294 1144:3249630 1084:3140680 1027:4273088 978:3885250 921:5316852 892:Bibcode 761:3055536 699:4692491 642:3706965 537:Bibcode 470:Bibcode 424:5389965 395:Bibcode 353:523–547 51:of the 2182:  2172:  2164:  2114:  2104:  2096:  2049:  2039:  2031:  1992:  1982:  1974:  1935:  1925:  1917:  1878:  1868:  1860:  1815:  1805:  1766:  1759:153452 1756:  1748:  1707:  1699:  1691:  1673:Neuron 1653:  1643:  1635:  1584:  1543:  1535:  1496:  1486:  1478:  1439:  1431:  1423:  1382:  1372:  1364:  1318:  1308:  1257:  1249:  1208:  1198:  1190:  1151:  1141:  1133:  1091:  1081:  1073:  1034:  1024:  985:  975:  967:  928:  918:  910:  858:  823:  768:  758:  750:  706:  696:  688:  649:  639:  631:  590:  567:  557:  508:  501:122561 498:  490:  431:  421:  413:  359:  30:gating 1705:S2CID 1437:S2CID 1344:eLife 560:33597 460:arXiv 205:cleft 2180:PMID 2162:ISSN 2112:PMID 2094:ISSN 2047:PMID 2029:ISSN 1990:PMID 1972:ISSN 1933:PMID 1915:ISSN 1876:PMID 1858:ISSN 1813:PMID 1764:PMID 1746:ISSN 1697:PMID 1689:ISSN 1651:PMID 1633:ISSN 1533:ISSN 1494:PMID 1476:ISSN 1464:1798 1429:PMID 1421:ISSN 1380:PMID 1362:ISSN 1316:PMID 1306:ISBN 1275:link 1247:ISSN 1206:PMID 1188:ISSN 1149:PMID 1131:ISSN 1089:PMID 1071:ISSN 1032:PMID 983:PMID 965:ISSN 926:PMID 908:ISSN 856:PMID 821:PMID 766:PMID 748:ISSN 704:PMID 686:ISSN 647:PMID 629:ISSN 588:ISBN 565:PMID 506:PMID 488:ISSN 429:PMID 411:ISSN 357:ISBN 264:The 183:The 169:The 162:The 155:The 53:cell 2170:PMC 2154:doi 2102:PMC 2086:doi 2037:PMC 2021:doi 1980:PMC 1964:doi 1960:589 1923:PMC 1907:doi 1866:PMC 1850:doi 1846:108 1803:PMC 1795:doi 1791:471 1754:PMC 1736:doi 1681:doi 1641:PMC 1623:doi 1611:103 1582:PMC 1574:doi 1570:164 1541:PMC 1525:doi 1521:164 1484:PMC 1468:doi 1411:doi 1370:PMC 1352:doi 1298:doi 1255:PMC 1239:doi 1235:158 1196:PMC 1180:doi 1139:PMC 1123:doi 1079:PMC 1063:doi 1022:PMC 1014:doi 973:PMC 957:doi 916:PMC 900:doi 756:PMC 740:doi 736:589 694:PMC 678:doi 674:147 637:PMC 621:doi 555:PMC 545:doi 496:PMC 478:doi 419:PMC 403:doi 391:112 24:In 2200:: 2178:. 2168:. 2160:. 2152:. 2140:. 2136:. 2124:^ 2110:. 2100:. 2092:. 2084:. 2072:. 2068:. 2045:. 2035:. 2027:. 2017:17 2015:. 2011:. 1988:. 1978:. 1970:. 1958:. 1954:. 1931:. 1921:. 1913:. 1903:19 1901:. 1897:. 1874:. 1864:. 1856:. 1844:. 1840:. 1811:. 1801:. 1789:. 1785:. 1762:. 1752:. 1744:. 1730:. 1726:. 1703:. 1695:. 1687:. 1677:12 1675:. 1663:^ 1649:. 1639:. 1631:. 1621:. 1609:. 1605:. 1580:. 1568:. 1564:. 1539:. 1531:. 1519:. 1515:. 1492:. 1482:. 1474:. 1462:. 1458:. 1435:. 1427:. 1419:. 1407:98 1405:. 1401:. 1378:. 1368:. 1360:. 1346:. 1342:. 1314:, 1304:, 1292:, 1271:}} 1267:{{ 1253:. 1233:. 1229:. 1218:^ 1204:. 1194:. 1186:. 1176:15 1174:. 1170:. 1147:. 1137:. 1129:. 1117:. 1113:. 1101:^ 1087:. 1077:. 1069:. 1057:. 1053:. 1030:. 1020:. 1008:. 1004:. 981:. 971:. 963:. 953:99 951:. 947:. 924:. 914:. 906:. 898:. 886:. 882:. 850:, 838:^ 815:, 796:. 778:^ 764:. 754:. 746:. 734:. 730:. 716:^ 702:. 692:. 684:. 672:. 668:. 645:. 635:. 627:. 617:20 615:. 611:. 563:. 553:. 543:. 533:96 531:. 527:. 504:. 494:. 486:. 476:. 468:. 456:99 454:. 450:. 427:. 417:. 409:. 401:. 389:. 385:. 371:^ 355:. 2186:. 2156:: 2148:: 2142:8 2118:. 2088:: 2080:: 2074:4 2053:. 2023:: 1996:. 1966:: 1939:. 1909:: 1882:. 1852:: 1825:. 1797:: 1770:. 1738:: 1732:4 1711:. 1683:: 1657:. 1625:: 1617:: 1590:. 1576:: 1549:. 1527:: 1500:. 1470:: 1443:. 1413:: 1386:. 1354:: 1348:7 1300:: 1277:) 1263:. 1241:: 1212:. 1182:: 1155:. 1125:: 1119:4 1095:. 1065:: 1059:3 1038:. 1016:: 1010:6 989:. 959:: 932:. 902:: 894:: 888:8 800:. 772:. 742:: 710:. 680:: 653:. 623:: 596:. 571:. 547:: 539:: 512:. 480:: 472:: 462:: 435:. 405:: 397:: 365:.

Index


electrophysiology
activation
ion channels
impermeable
plasma membrane
cell
voltage-gated ion channels
ligand-gated ion channels
phosphate
phosphorylation
G proteins
kinetics
action potential
membrane potential
depolarization

Voltage-gated ion channels
electrostatic forces

Ligand-gated ion channels
resting potential

ball and chain model
cytoplasmic

Poisson's equation
Synaptic gating
Synaptic potentials
Molecular biology of the cell

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.