Knowledge

Gauss's law for gravity

Source 📝

2968: 3924: 268: 178: 1265: 1517: 2864: 2466: 2695:
For example, a hollow sphere does not produce any net gravity inside. The gravitational field inside is the same as if the hollow sphere were not there (i.e. the resultant field is that of all masses not including the sphere, which can be inside and outside the sphere).
1388: 615: 1136: 2540: 1979: 1405: 878: 131:) is a vector field – a vector at each point of space (and time). It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point. 2725: 1585: 779: 2357: 2182: 1031: 2950: 1747: 1827: 2699:
Although this follows in one or two lines of algebra from Gauss's law for gravity, it took Isaac Newton several pages of cumbersome calculus to derive it directly using his law of gravity; see the article
255: 931: 480: 1306: 2055: 543: 2299: 2567:
Gauss's law can be used to easily derive the gravitational field in certain cases where a direct application of Newton's law would be more difficult (but not impossible). See the article
1663: 2247: 2471: 2110: 294: 204: 695: 326: 2348: 506: 784: 3164: 1884: 1522: 700: 963: 2873: 3834: 3466: 1761:. It's reasonable to expect the gravitational field from a point mass to be spherically symmetric. (We omit the proof for simplicity.) By making this assumption, 1685: 2351: 1260:{\displaystyle \mathbf {g} (\mathbf {r} )=-G\int \rho (\mathbf {s} ){\frac {(\mathbf {r} -\mathbf {s} )}{|\mathbf {r} -\mathbf {s} |^{3}}}d^{3}\mathbf {s} .} 1892: 3272: 1768: 2116: 3194: 953: 60: 3770: 3443: 3698: 2623:
In particular, a parallel combination of two parallel infinite plates of equal mass per unit area produces no gravitational field between them.
3749: 3257: 1512:{\displaystyle \nabla \cdot \mathbf {g} (\mathbf {r} )=-4\pi G\int \rho (\mathbf {s} )\ \delta (\mathbf {r} -\mathbf {s} )\ d^{3}\mathbf {s} .} 2967: 3775: 3427: 3400: 3242: 3157: 2859:{\displaystyle {\mathcal {L}}(\mathbf {x} ,t)=-\rho (\mathbf {x} ,t)\phi (\mathbf {x} ,t)-{1 \over 8\pi G}(\nabla \phi (\mathbf {x} ,t))^{2}} 887: 410:
of the gravitational field. Note that according to the law it is always negative (or zero), and never positive. This can be contrasted with
3520: 3451: 3574: 2461:{\displaystyle {\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}\left(r^{2}\,{\frac {\partial \phi }{\partial r}}\right)=4\pi G\rho (r)} 3827: 3755: 3303: 3286: 3227: 3408: 3237: 3074: 2256: 3150: 2215: 2593:) of any finite thickness, the gravitational field outside the plate is perpendicular to the plate, towards it, with magnitude 2 3209: 3039: 209: 3515: 3437: 436: 3708: 2651:
times the total mass per unit length at a smaller distance (from the axis), regardless of any masses at a larger distance.
3960: 3928: 3820: 3232: 655: 98:. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to 32:
This article is about Gauss's law concerning the gravitational field. For analogous laws concerning different fields, see
3950: 3909: 2998: 2301:
This provides an alternate means of calculating the gravitational potential and gravitational field. Although computing
37: 3493: 1299:, each of which is integrated from −∞ to +∞.) If we take the divergence of both sides of this equation with respect to 3387: 3377: 3252: 1985: 642: 3335: 939:
Although the two forms are equivalent, one or the other might be more convenient to use in a particular computation.
1672:
are also necessary to prove Newton's law, such as the assumption that the field is zero infinitely far from a mass.
3965: 3693: 128: 1634: 3487: 3482: 2953: 2713: 1621: 3703: 3413: 3955: 3590: 3584: 1383:{\displaystyle \nabla \cdot \left({\frac {\mathbf {r} }{|\mathbf {r} |^{3}}}\right)=4\pi \delta (\mathbf {r} )} 3551: 2061: 274: 184: 3618: 2867: 1613: 1114: 3419: 3329: 3535: 517: 389: 95: 610:{\displaystyle \oint _{\partial V}\mathbf {g} \cdot d\mathbf {A} =\int _{V}\nabla \cdot \mathbf {g} \,dV} 301: 3854: 3667: 3646: 3639: 3579: 2309:
directly from Gauss's law, one or the other approach may be an easier computation in a given situation.
1075:
A proof using vector calculus is shown in the box below. It is mathematically identical to the proof of
936:
It is possible to derive the integral form from the differential form using the reverse of this method.
3204: 2312:
In radially symmetric systems, the gravitational potential is a function of only one variable (namely,
2250: 2315: 3843: 3734: 3653: 3632: 3625: 3500: 3355: 3313: 3115: 2982: 1399: 1068: 64: 697:
we can apply the divergence theorem to the integral form of Gauss's law for gravity, which becomes:
488: 379: 121: 115: 76: 3879: 3796: 3262: 3247: 3219: 2987: 2719: 2535:{\displaystyle \mathbf {g} (\mathbf {r} )=-\mathbf {e_{r}} {\frac {\partial \phi }{\partial r}}.} 2197: 1625: 1605: 537: 353: 103: 41: 2544:
When solving the equation it should be taken into account that in the case of finite densities ∂
1856: 3066: 3059: 2668:
In the case of a spherically symmetric mass distribution we can conclude (by using a spherical
2604:
More generally, for a mass distribution with the density depending on one Cartesian coordinate
3874: 3869: 3780: 3688: 3432: 3360: 3131: 3089: 3070: 414:
for electricity, where the flux can be either positive or negative. The difference is because
3889: 3762: 3456: 3350: 3123: 3018: 2669: 2636: 2598: 2586: 2571:
for more details on how these derivations are done. Three such applications are as follows:
2568: 2209: 2205: 1084: 369: 138: 99: 83:
enclosed. Gauss's law for gravity is often more convenient to work from than Newton's law.
72: 17: 3884: 3461: 3382: 3342: 3308: 3003: 634: 3119: 3106:
Moody, M. V.; Paik, H. J. (1 March 1993). "Gauss's law test of gravity at short range".
3904: 3894: 3864: 3661: 2992: 2973: 1080: 1076: 411: 365: 154: 91: 87: 33: 1974:{\displaystyle g(r)\oint _{\partial V}(-\mathbf {e_{r}} )\cdot d\mathbf {A} =-4\pi GM} 3944: 3598: 3267: 2701: 2663: 2590: 2580: 873:{\displaystyle \int _{V}(\nabla \cdot \mathbf {g} )\ dV=\int _{V}(-4\pi G\rho )\ dV.} 357: 142: 2635:) cylindrically symmetric mass distribution we can conclude (by using a cylindrical 3556: 3365: 2552:
has to be continuous at boundaries (discontinuities of the density), and zero for
1580:{\displaystyle \nabla \cdot \mathbf {g} (\mathbf {r} )=-4\pi G\rho (\mathbf {r} )} 884:; the only way this can happen is if the integrands are equal. Hence we arrive at 2597:
times the mass per unit area, independent of the distance to the plate (see also
40:. For Gauss's theorem, a mathematical theorem relevant to all of these laws, see 3525: 3127: 1044: 774:{\displaystyle \int _{V}\nabla \cdot \mathbf {g} \ dV=-4\pi G\int _{V}\rho \ dV} 2177:{\displaystyle \mathbf {g} (\mathbf {r} )=-GM{\frac {\mathbf {e_{r}} }{r^{2}}}} 1026:{\displaystyle \mathbf {g} (\mathbf {r} )=-{\frac {GM}{r^{2}}}\mathbf {e_{r}} } 3739: 2963: 1064: 957: 509: 2945:{\displaystyle 4\pi G\rho (\mathbf {x} ,t)=\nabla ^{2}\phi (\mathbf {x} ,t).} 3859: 3744: 3726: 3530: 3507: 2654:
For example, inside an infinite uniform hollow cylinder, the field is zero.
1742:{\displaystyle \oint _{\partial V}\mathbf {g} \cdot d\mathbf {A} =-4\pi GM.} 536:
The two forms of Gauss's law for gravity are mathematically equivalent. The
3135: 3142: 3801: 3611: 3604: 3008: 2201: 2196:
Since the gravitational field has zero curl (equivalently, gravity is a
1133:, where this contribution is calculated by Newton's law. The result is: 3812: 3173: 1596:
It is impossible to mathematically prove Newton's law from Gauss's law
1587:
which is the differential form of Gauss's law for gravity, as desired.
1519:
Using the "sifting property" of the Dirac delta function, we arrive at
525: 48: 141:
of the gravitational field over a closed surface, analogous to how
3393: 3104:
For usage of the term "Gauss's law for gravity" see, for example,
2616:
times the difference in mass per unit area on either side of this
1822:{\displaystyle \mathbf {g} (\mathbf {r} )=-g(r)\,\mathbf {e_{r}} } 2305:
via Poisson's equation is mathematically equivalent to computing
86:
The form of Gauss's law for gravity is mathematically similar to
3013: 1675:
The proof of Newton's law from these assumptions is as follows:
621:
is a closed region bounded by a simple closed oriented surface ∂
407: 158: 102:. This is because both Newton's law and Coulomb's law describe 80: 68: 3816: 3146: 2249:
Then the differential form of Gauss's law for gravity becomes
2731: 2870:
to this Lagrangian, the result is Gauss's law for gravity:
1616:). In addition to Gauss's law, the assumption is used that 933:
which is the differential form of Gauss's law for gravity.
1592:
Deriving Newton's law from Gauss's law and irrotationality
880:
This has to hold simultaneously for every possible volume
2684:
times only the total mass within a smaller distance than
3090:
The mechanics problem solver, by Fogiel, pp 535–536
1591: 430:
The differential form of Gauss's law for gravity states
250:{\displaystyle \mathbf {g} \cdot d\mathbf {A} =-4\pi GM} 926:{\displaystyle \nabla \cdot \mathbf {g} =-4\pi G\rho ,} 475:{\displaystyle \nabla \cdot \mathbf {g} =-4\pi G\rho ,} 1063:
is the mass of the particle, which is assumed to be a
278: 188: 2876: 2728: 2474: 2360: 2318: 2259: 2218: 2119: 2064: 1988: 1895: 1859: 1771: 1688: 1637: 1525: 1408: 1309: 1139: 1105:, can be calculated by adding up the contribution to 966: 956:, which states that the gravitational field due to a 890: 787: 703: 658: 546: 491: 439: 304: 277: 212: 187: 171:
The integral form of Gauss's law for gravity states:
2191: 29:
Restatement of Newton's law of universal gravitation
3789: 3721: 3679: 3565: 3544: 3475: 3322: 3296: 3285: 3218: 3187: 3180: 1604:but does not contain any information regarding the 328:) denotes a surface integral over a closed surface, 3058: 2944: 2858: 2534: 2460: 2342: 2293: 2241: 2176: 2104: 2049: 1973: 1878: 1821: 1741: 1668:Even these are not enough: Boundary conditions on 1657: 1600:, because Gauss's law specifies the divergence of 1579: 1511: 1382: 1259: 1025: 925: 872: 773: 689: 609: 500: 474: 406:The left-hand side of this equation is called the 320: 288: 249: 198: 1841:depends only on the magnitude, not direction, of 1749:Apply this law to the situation where the volume 2050:{\displaystyle g(r)\cdot (-4\pi r^{2})=-4\pi GM} 1113:) due to every bit of mass in the universe (see 2643:from the center is inward with a magnitude of 2 2200:) as mentioned above, it can be written as the 398:is the total mass enclosed within the surface ∂ 79:over any closed surface is proportional to the 3467:Degenerate Higher-Order Scalar-Tensor theories 2676:from the center is inward with a magnitude of 2192:Poisson's equation and gravitational potential 1845:). Plugging this in, and using the fact that ∂ 364:, and whose direction is the outward-pointing 3828: 3158: 2294:{\displaystyle \nabla ^{2}\phi =4\pi G\rho .} 1682:Start with the integral form of Gauss's law: 1117:). To do this, we integrate over every point 145:is a surface integral of the magnetic field. 8: 2352:Del in cylindrical and spherical coordinates 1658:{\displaystyle \nabla \times \mathbf {g} =0} 952:Gauss's law for gravity can be derived from 59:, is a law of physics that is equivalent to 3051: 3049: 2242:{\displaystyle \mathbf {g} =-\nabla \phi .} 637:for more details). The gravitational field 3835: 3821: 3813: 3293: 3184: 3165: 3151: 3143: 2688:. All the mass at a greater distance than 645:vector field defined on a neighborhood of 418:can be either positive or negative, while 2925: 2913: 2892: 2875: 2850: 2832: 2802: 2785: 2765: 2739: 2730: 2729: 2727: 2692:from the center has no resultant effect. 2627:Cylindrically symmetric mass distribution 2509: 2502: 2497: 2483: 2475: 2473: 2409: 2408: 2402: 2378: 2370: 2361: 2359: 2335: 2330: 2325: 2317: 2264: 2258: 2219: 2217: 2166: 2155: 2150: 2148: 2128: 2120: 2118: 2094: 2080: 2063: 2020: 1987: 1948: 1932: 1927: 1912: 1894: 1870: 1858: 1812: 1807: 1806: 1780: 1772: 1770: 1713: 1702: 1693: 1687: 1644: 1636: 1569: 1540: 1532: 1524: 1501: 1495: 1480: 1472: 1455: 1423: 1415: 1407: 1372: 1344: 1339: 1333: 1328: 1322: 1320: 1308: 1249: 1243: 1230: 1225: 1219: 1211: 1206: 1196: 1188: 1182: 1174: 1148: 1140: 1138: 1016: 1011: 1003: 989: 975: 967: 965: 897: 889: 831: 807: 792: 786: 753: 720: 708: 702: 669: 657: 600: 595: 583: 571: 560: 551: 545: 490: 446: 438: 309: 303: 276: 224: 213: 211: 186: 2672:) that the field strength at a distance 2639:) that the field strength at a distance 2105:{\displaystyle g(r)={\frac {GM}{r^{2}}}} 1121:in space, adding up the contribution to 629:is an infinitesimal piece of the volume 3771:Gravitational interaction of antimatter 3065:(3rd ed.). Prentice Hall. p.  3031: 2658:Spherically symmetric mass distribution 2631:In the case of an infinite uniform (in 2350:), and Poisson's equation becomes (see 1129:) associated with the mass (if any) at 289:{\displaystyle \scriptstyle \partial V} 199:{\displaystyle \scriptstyle \partial V} 948:Deriving Gauss's law from Newton's law 106:interaction in a 3-dimensional space. 3776:Physics in the medieval Islamic world 3699:(2+1)-dimensional topological gravity 3195:Newton's law of universal gravitation 2589:") that for an infinite, flat plate ( 1849:is a spherical surface with constant 954:Newton's law of universal gravitation 947: 61:Newton's law of universal gravitation 7: 3521:Asymptotic safety in quantum gravity 1833:is antiparallel to the direction of 690:{\displaystyle M=\int _{V}\rho \ dV} 356:, whose magnitude is the area of an 321:{\displaystyle \oint _{\partial V}} 153:The gravitational flux through any 3273:Gibbons–Hawking–York boundary term 2910: 2823: 2520: 2512: 2468:while the gravitational field is: 2420: 2412: 2384: 2380: 2261: 2230: 1913: 1694: 1638: 1526: 1409: 1310: 891: 801: 714: 589: 552: 492: 440: 310: 279: 189: 25: 3388:Modified Newtonian dynamics, MOND 3304:Classical theories of gravitation 1624:(has zero curl), as gravity is a 3923: 3922: 2966: 2926: 2893: 2833: 2786: 2766: 2740: 2503: 2499: 2484: 2476: 2343:{\displaystyle r=|\mathbf {r} |} 2331: 2220: 2156: 2152: 2129: 2121: 1949: 1933: 1929: 1813: 1809: 1781: 1773: 1714: 1703: 1645: 1570: 1541: 1533: 1502: 1481: 1473: 1456: 1424: 1416: 1373: 1334: 1323: 1250: 1220: 1212: 1197: 1189: 1175: 1149: 1141: 1017: 1013: 976: 968: 898: 808: 721: 596: 572: 561: 447: 266: 225: 214: 176: 157:is proportional to the enclosed 148:Gauss's law for gravity states: 110:Qualitative statement of the law 57:Gauss's flux theorem for gravity 3210:History of gravitational theory 3061:Introduction to Electrodynamics 3516:Causal dynamical triangulation 3205:Poisson's equation for gravity 2936: 2922: 2903: 2889: 2847: 2843: 2829: 2820: 2796: 2782: 2776: 2762: 2750: 2736: 2488: 2480: 2455: 2449: 2336: 2326: 2133: 2125: 2074: 2068: 2026: 2004: 1998: 1992: 1939: 1921: 1905: 1899: 1803: 1797: 1785: 1777: 1574: 1566: 1545: 1537: 1485: 1469: 1460: 1452: 1428: 1420: 1377: 1369: 1340: 1329: 1226: 1207: 1201: 1185: 1179: 1171: 1153: 1145: 1101:), the gravitational field at 980: 972: 855: 837: 812: 798: 1: 2585:We can conclude (by using a " 532:Relation to the integral form 501:{\displaystyle \nabla \cdot } 3057:Griffiths, David J. (1998). 2704:for this direct derivation. 1303:, and use the known theorem 3378:Infinite derivative gravity 3128:10.1103/PhysRevLett.70.1195 643:continuously differentiable 335:is any closed surface (the 18:Gauss' law for gravity 3982: 3566:Unified-field-theoric and 2711: 2708:Derivation from Lagrangian 2661: 2578: 1879:{\displaystyle 4\pi r^{2}} 1765:takes the following form: 129:gravitational acceleration 113: 31: 3918: 3910:Gauss's law for magnetism 3850: 3709:Jackiw–Teitelboim gravity 3488:Canonical quantum gravity 3483:Euclidean quantum gravity 3040:"Gauss's law and gravity" 2999:Gauss's law for magnetism 2954:Lagrangian (field theory) 2722:for Newtonian gravity is 2714:Lagrangian (field theory) 1757:centered on a point-mass 38:Gauss's law for magnetism 3585:Superfluid vacuum theory 3409:Nonsymmetric gravitation 3258:Post-Newtonian formalism 1829:(i.e., the direction of 943:Relation to Newton's law 781:which can be rewritten: 3900:Gauss's law for gravity 3750:Mechanical explanations 3619:Heterotic string theory 3575:Noncommutative geometry 3494:Wheeler–DeWitt equation 3220:General relativity (GR) 3200:Gauss's law for gravity 3174:Theories of gravitation 3108:Physical Review Letters 2210:gravitational potential 2187:which is Newton's law. 1837:, and the magnitude of 1614:Helmholtz decomposition 1115:superposition principle 339:of an arbitrary volume 53:Gauss's law for gravity 3591:Logarithmic BEC vacuum 3536:Rainbow gravity theory 3414:Scalar–tensor theories 3188:Newtonian gravity (NG) 2946: 2860: 2608:only, gravity for any 2536: 2462: 2344: 2295: 2243: 2178: 2106: 2051: 1975: 1880: 1823: 1753:is a sphere of radius 1743: 1659: 1581: 1513: 1384: 1261: 1027: 927: 874: 775: 691: 611: 518:gravitational constant 502: 476: 422:can only be positive. 390:gravitational constant 360:piece of the surface ∂ 322: 290: 251: 200: 3855:Gauss composition law 3668:Twistor string theory 3647:Type II string theory 3640:Bosonic string theory 3580:Semiclassical gravity 3545:Unified-field-theoric 3330:PoincarĂ© gauge theory 2947: 2861: 2537: 2463: 2345: 2296: 2244: 2179: 2107: 2052: 1976: 1881: 1824: 1744: 1660: 1582: 1514: 1385: 1262: 1028: 928: 875: 776: 692: 612: 503: 477: 323: 291: 252: 201: 67:. It states that the 3961:Carl Friedrich Gauss 3844:Carl Friedrich Gauss 3735:Aristotelian physics 3704:Gauss–Bonnet gravity 3654:Little string theory 3633:Type 0 string theory 3626:Type I string theory 3501:Loop quantum gravity 3428:Scalar–tensor–vector 3401:Tensor–vector–scalar 3356:Gauge theory gravity 3314:Theory of everything 2983:Carl Friedrich Gauss 2874: 2868:Hamilton's principle 2726: 2472: 2358: 2316: 2257: 2216: 2117: 2062: 1986: 1893: 1857: 1769: 1686: 1635: 1523: 1406: 1400:Dirac delta function 1307: 1137: 964: 888: 785: 701: 656: 544: 489: 437: 302: 275: 210: 185: 65:Carl Friedrich Gauss 63:. It is named after 3951:Theories of gravity 3552:Kaluza–Klein theory 3120:1993PhRvL..70.1195M 942: 380:gravitational field 122:gravitational field 116:Gravitational field 96:Maxwell's equations 77:gravitational field 3880:Gaussian curvature 3797:Gravitational wave 3680:Generalisations / 3568:quantum-mechanical 3476:Quantum-mechanical 3289:general relativity 3263:Linearized gravity 3055:See, for example, 2988:Divergence theorem 2942: 2856: 2720:Lagrangian density 2532: 2458: 2340: 2291: 2251:Poisson's equation 2239: 2198:conservative force 2174: 2102: 2047: 1971: 1876: 1819: 1739: 1680: 1655: 1626:conservative force 1577: 1509: 1380: 1257: 1092: 1023: 923: 870: 771: 687: 607: 538:divergence theorem 498: 472: 372:for more details), 318: 286: 285: 247: 196: 195: 135:Gravitational flux 42:Divergence theorem 3966:Newtonian gravity 3938: 3937: 3875:Gaussian brackets 3810: 3809: 3781:Theory of impetus 3717: 3716: 3689:Liouville gravity 3433:Conformal gravity 3361:Composite gravity 3351:Bimetric theories 3281: 3280: 2818: 2599:gravity anomalies 2527: 2427: 2391: 2376: 2172: 2100: 1678: 1490: 1465: 1351: 1237: 1090: 1009: 860: 817: 764: 727: 680: 516:is the universal 426:Differential form 388:is the universal 16:(Redirected from 3973: 3926: 3925: 3890:Gaussian surface 3837: 3830: 3823: 3814: 3765: 3763:Entropic gravity 3758: 3682:extensions of GR 3670: 3656: 3649: 3642: 3635: 3628: 3621: 3614: 3607: 3593: 3510: 3503: 3496: 3457:Geometrodynamics 3446: 3422: 3403: 3396: 3345: 3338: 3294: 3185: 3167: 3160: 3153: 3144: 3139: 3114:(9): 1195–1198. 3092: 3087: 3081: 3080: 3064: 3053: 3044: 3043: 3036: 3019:Gaussian surface 2976: 2971: 2970: 2951: 2949: 2948: 2943: 2929: 2918: 2917: 2896: 2865: 2863: 2862: 2857: 2855: 2854: 2836: 2819: 2817: 2803: 2789: 2769: 2743: 2735: 2734: 2670:Gaussian surface 2637:Gaussian surface 2587:Gaussian pillbox 2569:Gaussian surface 2558: 2541: 2539: 2538: 2533: 2528: 2526: 2518: 2510: 2508: 2507: 2506: 2487: 2479: 2467: 2465: 2464: 2459: 2433: 2429: 2428: 2426: 2418: 2410: 2407: 2406: 2392: 2390: 2379: 2377: 2375: 2374: 2362: 2349: 2347: 2346: 2341: 2339: 2334: 2329: 2300: 2298: 2297: 2292: 2269: 2268: 2248: 2246: 2245: 2240: 2223: 2206:scalar potential 2183: 2181: 2180: 2175: 2173: 2171: 2170: 2161: 2160: 2159: 2149: 2132: 2124: 2111: 2109: 2108: 2103: 2101: 2099: 2098: 2089: 2081: 2056: 2054: 2053: 2048: 2025: 2024: 1980: 1978: 1977: 1972: 1952: 1938: 1937: 1936: 1920: 1919: 1885: 1883: 1882: 1877: 1875: 1874: 1828: 1826: 1825: 1820: 1818: 1817: 1816: 1784: 1776: 1748: 1746: 1745: 1740: 1717: 1706: 1701: 1700: 1679:Outline of proof 1664: 1662: 1661: 1656: 1648: 1586: 1584: 1583: 1578: 1573: 1544: 1536: 1518: 1516: 1515: 1510: 1505: 1500: 1499: 1488: 1484: 1476: 1463: 1459: 1427: 1419: 1402:, the result is 1389: 1387: 1386: 1381: 1376: 1356: 1352: 1350: 1349: 1348: 1343: 1337: 1332: 1326: 1321: 1266: 1264: 1263: 1258: 1253: 1248: 1247: 1238: 1236: 1235: 1234: 1229: 1223: 1215: 1210: 1204: 1200: 1192: 1183: 1178: 1152: 1144: 1091:Outline of proof 1083:) starting from 1053:is the radius, | 1032: 1030: 1029: 1024: 1022: 1021: 1020: 1010: 1008: 1007: 998: 990: 979: 971: 932: 930: 929: 924: 901: 879: 877: 876: 871: 858: 836: 835: 815: 811: 797: 796: 780: 778: 777: 772: 762: 758: 757: 725: 724: 713: 712: 696: 694: 693: 688: 678: 674: 673: 652:Given also that 616: 614: 613: 608: 599: 588: 587: 575: 564: 559: 558: 507: 505: 504: 499: 481: 479: 478: 473: 450: 370:surface integral 327: 325: 324: 319: 317: 316: 297: 296: 295: 293: 292: 287: 270: 269: 257: 256: 254: 253: 248: 228: 217: 206: 205: 203: 202: 197: 180: 179: 139:surface integral 73:surface integral 55:, also known as 21: 3981: 3980: 3976: 3975: 3974: 3972: 3971: 3970: 3956:Vector calculus 3941: 3940: 3939: 3934: 3914: 3885:Gaussian period 3846: 3841: 3811: 3806: 3785: 3761: 3754: 3725: 3723: 3713: 3694:Lovelock theory 3681: 3675: 3666: 3652: 3645: 3638: 3631: 3624: 3617: 3610: 3603: 3589: 3567: 3561: 3540: 3506: 3499: 3492: 3471: 3462:Induced gravity 3442: 3438:Scalar theories 3418: 3399: 3392: 3383:Massive gravity 3343:Teleparallelism 3341: 3336:Einstein–Cartan 3334: 3318: 3309:Quantum gravity 3288: 3287:Alternatives to 3277: 3243:Exact solutions 3214: 3176: 3171: 3105: 3101: 3099:Further reading 3096: 3095: 3088: 3084: 3077: 3056: 3054: 3047: 3038: 3037: 3033: 3028: 3023: 3004:Vector calculus 2995:for electricity 2972: 2965: 2962: 2909: 2872: 2871: 2846: 2807: 2724: 2723: 2716: 2710: 2666: 2660: 2629: 2583: 2577: 2565: 2553: 2519: 2511: 2498: 2470: 2469: 2419: 2411: 2398: 2397: 2393: 2383: 2366: 2356: 2355: 2314: 2313: 2260: 2255: 2254: 2214: 2213: 2194: 2189: 2162: 2151: 2115: 2114: 2090: 2082: 2060: 2059: 2016: 1984: 1983: 1928: 1908: 1891: 1890: 1866: 1855: 1854: 1808: 1767: 1766: 1689: 1684: 1683: 1633: 1632: 1594: 1589: 1521: 1520: 1491: 1404: 1403: 1338: 1327: 1316: 1305: 1304: 1298: 1290: 1282: 1239: 1224: 1205: 1184: 1135: 1134: 1067:located at the 1041: 1012: 999: 991: 962: 961: 950: 945: 886: 885: 827: 788: 783: 782: 749: 704: 699: 698: 665: 654: 653: 635:volume integral 579: 547: 542: 541: 534: 528:at each point. 487: 486: 483: 435: 434: 428: 305: 300: 299: 273: 272: 271: 267: 265: 259: 208: 207: 183: 182: 181: 177: 175: 169: 118: 112: 45: 30: 23: 22: 15: 12: 11: 5: 3979: 3977: 3969: 3968: 3963: 3958: 3953: 3943: 3942: 3936: 3935: 3933: 3932: 3919: 3916: 3915: 3913: 3912: 3907: 3902: 3897: 3895:Gaussian units 3892: 3887: 3882: 3877: 3872: 3870:Gauss's method 3867: 3865:Gauss notation 3862: 3857: 3851: 3848: 3847: 3842: 3840: 3839: 3832: 3825: 3817: 3808: 3807: 3805: 3804: 3799: 3793: 3791: 3790:Related topics 3787: 3786: 3784: 3783: 3778: 3773: 3768: 3767: 3766: 3759: 3747: 3742: 3737: 3731: 3729: 3719: 3718: 3715: 3714: 3712: 3711: 3706: 3701: 3696: 3691: 3685: 3683: 3677: 3676: 3674: 3673: 3672: 3671: 3662:Twistor theory 3659: 3658: 3657: 3650: 3643: 3636: 3629: 3622: 3615: 3608: 3596: 3595: 3594: 3582: 3577: 3571: 3569: 3563: 3562: 3560: 3559: 3554: 3548: 3546: 3542: 3541: 3539: 3538: 3533: 3528: 3523: 3518: 3513: 3512: 3511: 3504: 3497: 3485: 3479: 3477: 3473: 3472: 3470: 3469: 3464: 3459: 3454: 3449: 3448: 3447: 3435: 3430: 3425: 3424: 3423: 3411: 3406: 3405: 3404: 3397: 3385: 3380: 3375: 3363: 3358: 3353: 3348: 3347: 3346: 3339: 3326: 3324: 3320: 3319: 3317: 3316: 3311: 3306: 3300: 3298: 3291: 3283: 3282: 3279: 3278: 3276: 3275: 3270: 3265: 3260: 3255: 3250: 3245: 3240: 3235: 3230: 3224: 3222: 3216: 3215: 3213: 3212: 3207: 3202: 3197: 3191: 3189: 3182: 3178: 3177: 3172: 3170: 3169: 3162: 3155: 3147: 3141: 3140: 3100: 3097: 3094: 3093: 3082: 3075: 3045: 3030: 3029: 3027: 3024: 3022: 3021: 3016: 3011: 3006: 3001: 2996: 2990: 2985: 2979: 2978: 2977: 2974:Physics portal 2961: 2958: 2941: 2938: 2935: 2932: 2928: 2924: 2921: 2916: 2912: 2908: 2905: 2902: 2899: 2895: 2891: 2888: 2885: 2882: 2879: 2853: 2849: 2845: 2842: 2839: 2835: 2831: 2828: 2825: 2822: 2816: 2813: 2810: 2806: 2801: 2798: 2795: 2792: 2788: 2784: 2781: 2778: 2775: 2772: 2768: 2764: 2761: 2758: 2755: 2752: 2749: 2746: 2742: 2738: 2733: 2712:Main article: 2709: 2706: 2662:Main article: 2659: 2656: 2628: 2625: 2579:Main article: 2576: 2573: 2564: 2561: 2531: 2525: 2522: 2517: 2514: 2505: 2501: 2496: 2493: 2490: 2486: 2482: 2478: 2457: 2454: 2451: 2448: 2445: 2442: 2439: 2436: 2432: 2425: 2422: 2417: 2414: 2405: 2401: 2396: 2389: 2386: 2382: 2373: 2369: 2365: 2338: 2333: 2328: 2324: 2321: 2290: 2287: 2284: 2281: 2278: 2275: 2272: 2267: 2263: 2238: 2235: 2232: 2229: 2226: 2222: 2193: 2190: 2185: 2184: 2169: 2165: 2158: 2154: 2147: 2144: 2141: 2138: 2135: 2131: 2127: 2123: 2112: 2097: 2093: 2088: 2085: 2079: 2076: 2073: 2070: 2067: 2057: 2046: 2043: 2040: 2037: 2034: 2031: 2028: 2023: 2019: 2015: 2012: 2009: 2006: 2003: 2000: 1997: 1994: 1991: 1981: 1970: 1967: 1964: 1961: 1958: 1955: 1951: 1947: 1944: 1941: 1935: 1931: 1926: 1923: 1918: 1915: 1911: 1907: 1904: 1901: 1898: 1873: 1869: 1865: 1862: 1815: 1811: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1783: 1779: 1775: 1738: 1735: 1732: 1729: 1726: 1723: 1720: 1716: 1712: 1709: 1705: 1699: 1696: 1692: 1677: 1666: 1665: 1654: 1651: 1647: 1643: 1640: 1593: 1590: 1576: 1572: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1543: 1539: 1535: 1531: 1528: 1508: 1504: 1498: 1494: 1487: 1483: 1479: 1475: 1471: 1468: 1462: 1458: 1454: 1451: 1448: 1445: 1442: 1439: 1436: 1433: 1430: 1426: 1422: 1418: 1414: 1411: 1379: 1375: 1371: 1368: 1365: 1362: 1359: 1355: 1347: 1342: 1336: 1331: 1325: 1319: 1315: 1312: 1294: 1286: 1278: 1256: 1252: 1246: 1242: 1233: 1228: 1222: 1218: 1214: 1209: 1203: 1199: 1195: 1191: 1187: 1181: 1177: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1151: 1147: 1143: 1089: 1081:electrostatics 1073: 1072: 1058: 1048: 1043:is the radial 1039: 1019: 1015: 1006: 1002: 997: 994: 988: 985: 982: 978: 974: 970: 949: 946: 944: 941: 922: 919: 916: 913: 910: 907: 904: 900: 896: 893: 869: 866: 863: 857: 854: 851: 848: 845: 842: 839: 834: 830: 826: 823: 820: 814: 810: 806: 803: 800: 795: 791: 770: 767: 761: 756: 752: 748: 745: 742: 739: 736: 733: 730: 723: 719: 716: 711: 707: 686: 683: 677: 672: 668: 664: 661: 606: 603: 598: 594: 591: 586: 582: 578: 574: 570: 567: 563: 557: 554: 550: 533: 530: 497: 494: 471: 468: 465: 462: 459: 456: 453: 449: 445: 442: 432: 427: 424: 404: 403: 393: 383: 373: 366:surface normal 344: 329: 315: 312: 308: 298:(also written 284: 281: 246: 243: 240: 237: 234: 231: 227: 223: 220: 216: 194: 191: 173: 168: 165: 164: 163: 155:closed surface 114:Main article: 111: 108: 104:inverse-square 92:electrostatics 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3978: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3948: 3946: 3931: 3930: 3921: 3920: 3917: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3891: 3888: 3886: 3883: 3881: 3878: 3876: 3873: 3871: 3868: 3866: 3863: 3861: 3858: 3856: 3853: 3852: 3849: 3845: 3838: 3833: 3831: 3826: 3824: 3819: 3818: 3815: 3803: 3800: 3798: 3795: 3794: 3792: 3788: 3782: 3779: 3777: 3774: 3772: 3769: 3764: 3760: 3757: 3756:Fatio–Le Sage 3753: 3752: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3732: 3730: 3728: 3722:Pre-Newtonian 3720: 3710: 3707: 3705: 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3686: 3684: 3678: 3669: 3665: 3664: 3663: 3660: 3655: 3651: 3648: 3644: 3641: 3637: 3634: 3630: 3627: 3623: 3620: 3616: 3613: 3609: 3606: 3602: 3601: 3600: 3599:String theory 3597: 3592: 3588: 3587: 3586: 3583: 3581: 3578: 3576: 3573: 3572: 3570: 3564: 3558: 3555: 3553: 3550: 3549: 3547: 3543: 3537: 3534: 3532: 3529: 3527: 3524: 3522: 3519: 3517: 3514: 3509: 3505: 3502: 3498: 3495: 3491: 3490: 3489: 3486: 3484: 3481: 3480: 3478: 3474: 3468: 3465: 3463: 3460: 3458: 3455: 3453: 3450: 3445: 3441: 3440: 3439: 3436: 3434: 3431: 3429: 3426: 3421: 3417: 3416: 3415: 3412: 3410: 3407: 3402: 3398: 3395: 3391: 3390: 3389: 3386: 3384: 3381: 3379: 3376: 3374: 3372: 3368: 3364: 3362: 3359: 3357: 3354: 3352: 3349: 3344: 3340: 3337: 3333: 3332: 3331: 3328: 3327: 3325: 3321: 3315: 3312: 3310: 3307: 3305: 3302: 3301: 3299: 3295: 3292: 3290: 3284: 3274: 3271: 3269: 3268:ADM formalism 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3229: 3226: 3225: 3223: 3221: 3217: 3211: 3208: 3206: 3203: 3201: 3198: 3196: 3193: 3192: 3190: 3186: 3183: 3179: 3175: 3168: 3163: 3161: 3156: 3154: 3149: 3148: 3145: 3137: 3133: 3129: 3125: 3121: 3117: 3113: 3109: 3103: 3102: 3098: 3091: 3086: 3083: 3078: 3076:0-13-805326-X 3072: 3068: 3063: 3062: 3052: 3050: 3046: 3041: 3035: 3032: 3025: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2994: 2991: 2989: 2986: 2984: 2981: 2980: 2975: 2969: 2964: 2959: 2957: 2956:for details. 2955: 2939: 2933: 2930: 2919: 2914: 2906: 2900: 2897: 2886: 2883: 2880: 2877: 2869: 2851: 2840: 2837: 2826: 2814: 2811: 2808: 2804: 2799: 2793: 2790: 2779: 2773: 2770: 2759: 2756: 2753: 2747: 2744: 2721: 2715: 2707: 2705: 2703: 2702:shell theorem 2697: 2693: 2691: 2687: 2683: 2679: 2675: 2671: 2665: 2664:Shell theorem 2657: 2655: 2652: 2650: 2646: 2642: 2638: 2634: 2626: 2624: 2621: 2619: 2615: 2611: 2607: 2602: 2600: 2596: 2592: 2591:Bouguer plate 2588: 2582: 2581:Bouguer plate 2575:Bouguer plate 2574: 2572: 2570: 2562: 2560: 2556: 2551: 2547: 2542: 2529: 2523: 2515: 2494: 2491: 2452: 2446: 2443: 2440: 2437: 2434: 2430: 2423: 2415: 2403: 2399: 2394: 2387: 2371: 2367: 2363: 2353: 2322: 2319: 2310: 2308: 2304: 2288: 2285: 2282: 2279: 2276: 2273: 2270: 2265: 2252: 2236: 2233: 2227: 2224: 2211: 2208:, called the 2207: 2203: 2199: 2188: 2167: 2163: 2145: 2142: 2139: 2136: 2113: 2095: 2091: 2086: 2083: 2077: 2071: 2065: 2058: 2044: 2041: 2038: 2035: 2032: 2029: 2021: 2017: 2013: 2010: 2007: 2001: 1995: 1989: 1982: 1968: 1965: 1962: 1959: 1956: 1953: 1945: 1942: 1924: 1916: 1909: 1902: 1896: 1889: 1888: 1887: 1871: 1867: 1863: 1860: 1852: 1848: 1844: 1840: 1836: 1832: 1800: 1794: 1791: 1788: 1764: 1760: 1756: 1752: 1736: 1733: 1730: 1727: 1724: 1721: 1718: 1710: 1707: 1697: 1690: 1676: 1673: 1671: 1652: 1649: 1641: 1631: 1630: 1629: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1588: 1563: 1560: 1557: 1554: 1551: 1548: 1529: 1506: 1496: 1492: 1477: 1466: 1449: 1446: 1443: 1440: 1437: 1434: 1431: 1412: 1401: 1397: 1393: 1366: 1363: 1360: 1357: 1353: 1345: 1317: 1313: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1270: 1254: 1244: 1240: 1231: 1216: 1193: 1168: 1165: 1162: 1159: 1156: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1088: 1086: 1085:Coulomb's law 1082: 1078: 1070: 1066: 1062: 1059: 1056: 1052: 1049: 1046: 1042: 1036: 1035: 1034: 1004: 1000: 995: 992: 986: 983: 959: 955: 940: 937: 934: 920: 917: 914: 911: 908: 905: 902: 894: 883: 867: 864: 861: 852: 849: 846: 843: 840: 832: 828: 824: 821: 818: 804: 793: 789: 768: 765: 759: 754: 750: 746: 743: 740: 737: 734: 731: 728: 717: 709: 705: 684: 681: 675: 670: 666: 662: 659: 650: 648: 644: 640: 636: 632: 628: 624: 620: 604: 601: 592: 584: 580: 576: 568: 565: 555: 548: 539: 531: 529: 527: 523: 519: 515: 511: 495: 482: 469: 466: 463: 460: 457: 454: 451: 443: 431: 425: 423: 421: 417: 413: 409: 401: 397: 394: 391: 387: 384: 381: 377: 374: 371: 367: 363: 359: 358:infinitesimal 355: 351: 348: 345: 342: 338: 334: 330: 313: 306: 282: 264: 263: 262: 258: 244: 241: 238: 235: 232: 229: 221: 218: 192: 172: 167:Integral form 166: 162: 160: 156: 151: 150: 149: 146: 144: 143:magnetic flux 140: 136: 132: 130: 127:(also called 126: 123: 117: 109: 107: 105: 101: 100:Coulomb's law 97: 93: 89: 84: 82: 78: 74: 70: 66: 62: 58: 54: 50: 43: 39: 35: 27: 19: 3927: 3899: 3724:theories and 3557:Supergravity 3370: 3366: 3228:Introduction 3199: 3111: 3107: 3085: 3060: 3034: 2717: 2698: 2694: 2689: 2685: 2681: 2677: 2673: 2667: 2653: 2648: 2644: 2640: 2632: 2630: 2622: 2617: 2613: 2609: 2605: 2603: 2594: 2584: 2566: 2563:Applications 2554: 2549: 2545: 2543: 2311: 2306: 2302: 2195: 2186: 1850: 1846: 1842: 1838: 1834: 1830: 1762: 1758: 1754: 1750: 1681: 1674: 1669: 1667: 1622:irrotational 1617: 1609: 1601: 1597: 1595: 1395: 1391: 1300: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1268: 1130: 1126: 1122: 1118: 1110: 1106: 1102: 1098: 1094: 1093: 1074: 1060: 1054: 1050: 1037: 951: 938: 935: 881: 651: 646: 638: 630: 626: 622: 618: 535: 526:mass density 521: 513: 484: 433: 429: 419: 415: 405: 399: 395: 385: 375: 361: 349: 346: 340: 336: 332: 260: 174: 170: 152: 147: 134: 133: 124: 119: 85: 56: 52: 46: 26: 3905:Gauss's law 3526:Causal sets 3420:Brans–Dicke 3238:Mathematics 2993:Gauss's law 1274:stands for 1077:Gauss's law 1045:unit vector 412:Gauss's law 88:Gauss's law 34:Gauss's law 3945:Categories 3740:CGHS model 3727:toy models 3026:References 1065:point mass 958:point mass 641:must be a 510:divergence 3860:Gauss map 3745:RST model 3531:DGP model 3508:Spin foam 3452:Whitehead 3444:Nordström 3373:) gravity 3323:Classical 3297:Paradigms 3248:Resources 2920:ϕ 2911:∇ 2887:ρ 2881:π 2866:Applying 2827:ϕ 2824:∇ 2812:π 2800:− 2780:ϕ 2760:ρ 2757:− 2521:∂ 2516:ϕ 2513:∂ 2495:− 2447:ρ 2441:π 2421:∂ 2416:ϕ 2413:∂ 2385:∂ 2381:∂ 2286:ρ 2280:π 2271:ϕ 2262:∇ 2234:ϕ 2231:∇ 2228:− 2140:− 2039:π 2033:− 2014:π 2008:− 2002:⋅ 1963:π 1957:− 1943:⋅ 1925:− 1914:∂ 1910:∮ 1864:π 1853:and area 1792:− 1728:π 1722:− 1708:⋅ 1695:∂ 1691:∮ 1642:× 1639:∇ 1564:ρ 1558:π 1552:− 1530:⋅ 1527:∇ 1478:− 1467:δ 1450:ρ 1447:∫ 1441:π 1435:− 1413:⋅ 1410:∇ 1398:) is the 1367:δ 1364:π 1314:⋅ 1311:∇ 1217:− 1194:− 1169:ρ 1166:∫ 1160:− 987:− 918:ρ 912:π 906:− 895:⋅ 892:∇ 853:ρ 847:π 841:− 829:∫ 805:⋅ 802:∇ 790:∫ 760:ρ 751:∫ 744:π 738:− 718:⋅ 715:∇ 706:∫ 676:ρ 667:∫ 593:⋅ 590:∇ 581:∫ 566:⋅ 553:∂ 549:∮ 496:⋅ 493:∇ 467:ρ 461:π 455:− 444:⋅ 441:∇ 311:∂ 307:∮ 280:∂ 239:π 233:− 219:⋅ 190:∂ 94:, one of 75:) of the 3929:Category 3802:Graviton 3612:F-theory 3605:M-theory 3181:Standard 3136:10054315 3009:Integral 2960:See also 2202:gradient 540:states: 508:denotes 337:boundary 3233:History 3116:Bibcode 2620:value. 524:is the 378:is the 49:physics 3134:  3073:  1489:  1464:  1390:where 1069:origin 1033:where 859:  816:  763:  726:  679:  617:where 520:, and 485:where 416:charge 354:vector 261:where 3394:AQUAL 3253:Tests 2204:of a 1612:(see 1598:alone 633:(see 392:, and 368:(see 352:is a 137:is a 3132:PMID 3071:ISBN 3014:Flux 2952:See 2718:The 2612:is 2 1606:curl 1079:(in 960:is: 625:and 420:mass 408:flux 159:mass 120:The 90:for 81:mass 69:flux 36:and 3124:doi 2601:). 2557:= 0 2354:): 1620:is 1608:of 47:In 3947:: 3130:. 3122:. 3112:70 3110:. 3069:. 3067:50 3048:^ 2614:πG 2595:πG 2559:. 2548:/∂ 2253:: 2212:: 1886:, 1628:: 1292:ds 1284:ds 1276:ds 1087:. 1057:|. 649:. 627:dV 512:, 343:), 51:, 3836:e 3829:t 3822:v 3371:R 3369:( 3367:f 3166:e 3159:t 3152:v 3138:. 3126:: 3118:: 3079:. 3042:. 2940:. 2937:) 2934:t 2931:, 2927:x 2923:( 2915:2 2907:= 2904:) 2901:t 2898:, 2894:x 2890:( 2884:G 2878:4 2852:2 2848:) 2844:) 2841:t 2838:, 2834:x 2830:( 2821:( 2815:G 2809:8 2805:1 2797:) 2794:t 2791:, 2787:x 2783:( 2777:) 2774:t 2771:, 2767:x 2763:( 2754:= 2751:) 2748:t 2745:, 2741:x 2737:( 2732:L 2690:r 2686:r 2682:r 2680:/ 2678:G 2674:r 2649:r 2647:/ 2645:G 2641:r 2633:z 2618:z 2610:z 2606:z 2555:r 2550:r 2546:ϕ 2530:. 2524:r 2504:r 2500:e 2492:= 2489:) 2485:r 2481:( 2477:g 2456:) 2453:r 2450:( 2444:G 2438:4 2435:= 2431:) 2424:r 2404:2 2400:r 2395:( 2388:r 2372:2 2368:r 2364:1 2337:| 2332:r 2327:| 2323:= 2320:r 2307:g 2303:g 2289:. 2283:G 2277:4 2274:= 2266:2 2237:. 2225:= 2221:g 2168:2 2164:r 2157:r 2153:e 2146:M 2143:G 2137:= 2134:) 2130:r 2126:( 2122:g 2096:2 2092:r 2087:M 2084:G 2078:= 2075:) 2072:r 2069:( 2066:g 2045:M 2042:G 2036:4 2030:= 2027:) 2022:2 2018:r 2011:4 2005:( 1999:) 1996:r 1993:( 1990:g 1969:M 1966:G 1960:4 1954:= 1950:A 1946:d 1940:) 1934:r 1930:e 1922:( 1917:V 1906:) 1903:r 1900:( 1897:g 1872:2 1868:r 1861:4 1851:r 1847:V 1843:r 1839:g 1835:r 1831:g 1814:r 1810:e 1804:) 1801:r 1798:( 1795:g 1789:= 1786:) 1782:r 1778:( 1774:g 1763:g 1759:M 1755:r 1751:V 1737:. 1734:M 1731:G 1725:4 1719:= 1715:A 1711:d 1704:g 1698:V 1670:g 1653:0 1650:= 1646:g 1618:g 1610:g 1602:g 1575:) 1571:r 1567:( 1561:G 1555:4 1549:= 1546:) 1542:r 1538:( 1534:g 1507:. 1503:s 1497:3 1493:d 1486:) 1482:s 1474:r 1470:( 1461:) 1457:s 1453:( 1444:G 1438:4 1432:= 1429:) 1425:r 1421:( 1417:g 1396:r 1394:( 1392:ÎŽ 1378:) 1374:r 1370:( 1361:4 1358:= 1354:) 1346:3 1341:| 1335:r 1330:| 1324:r 1318:( 1301:r 1296:z 1288:y 1280:x 1272:s 1269:d 1267:( 1255:. 1251:s 1245:3 1241:d 1232:3 1227:| 1221:s 1213:r 1208:| 1202:) 1198:s 1190:r 1186:( 1180:) 1176:s 1172:( 1163:G 1157:= 1154:) 1150:r 1146:( 1142:g 1131:s 1127:r 1125:( 1123:g 1119:s 1111:r 1109:( 1107:g 1103:r 1099:r 1097:( 1095:g 1071:. 1061:M 1055:r 1051:r 1047:, 1040:r 1038:e 1018:r 1014:e 1005:2 1001:r 996:M 993:G 984:= 981:) 977:r 973:( 969:g 921:, 915:G 909:4 903:= 899:g 882:V 868:. 865:V 862:d 856:) 850:G 844:4 838:( 833:V 825:= 822:V 819:d 813:) 809:g 799:( 794:V 769:V 766:d 755:V 747:G 741:4 735:= 732:V 729:d 722:g 710:V 685:V 682:d 671:V 663:= 660:M 647:V 639:g 631:V 623:V 619:V 605:V 602:d 597:g 585:V 577:= 573:A 569:d 562:g 556:V 522:ρ 514:G 470:, 464:G 458:4 452:= 448:g 402:. 400:V 396:M 386:G 382:, 376:g 362:V 350:A 347:d 341:V 333:V 331:∂ 314:V 283:V 245:M 242:G 236:4 230:= 226:A 222:d 215:g 193:V 161:. 125:g 71:( 44:. 20:)

Index

Gauss' law for gravity
Gauss's law
Gauss's law for magnetism
Divergence theorem
physics
Newton's law of universal gravitation
Carl Friedrich Gauss
flux
surface integral
gravitational field
mass
Gauss's law
electrostatics
Maxwell's equations
Coulomb's law
inverse-square
Gravitational field
gravitational field
gravitational acceleration
surface integral
magnetic flux
closed surface
mass
vector
infinitesimal
surface normal
surface integral
gravitational field
gravitational constant
flux

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑