Knowledge (XXG)

Geomagnetic reversal

Source đź“ť

760:. Many such arguments were based on an apparent periodicity in the rate of reversals, but more careful analyses show that the reversal record is not periodic. It may be that the ends of superchrons have caused vigorous convection leading to widespread volcanism, and that the subsequent airborne ash caused extinctions. Tests of correlations between extinctions and reversals are difficult for several reasons. Larger animals are too scarce in the fossil record for good statistics, so paleontologists have analyzed microfossil extinctions. Even microfossil data can be unreliable if there are hiatuses in the fossil record. It can appear that the extinction occurs at the end of a polarity interval when the rest of that polarity interval was simply eroded away. Statistical analysis shows no evidence for a correlation between reversals and extinctions. 212: 740:. Supporters of this hypothesis hold that any of these events could lead to a large scale disruption of the dynamo, effectively turning off the geomagnetic field. Because the magnetic field is stable in either the present north–south orientation or a reversed orientation, they propose that when the field recovers from such a disruption it spontaneously chooses one state or the other, such that half the recoveries become reversals. This proposed mechanism does not appear to work in a quantitative model, and the evidence from 45: 593:. A Poisson process would have, on average, a constant reversal rate, so it is common to use a non-stationary Poisson process. However, compared to a Poisson process, there is a reduced probability of reversal for tens of thousands of years after a reversal. This could be due to an inhibition in the underlying mechanism, or it could just mean that some shorter polarity intervals have been missed. A random reversal pattern with inhibition can be represented by a 293: 113:, occurred 780,000 years ago with widely varying estimates of how quickly it happened. Other sources estimate that the time that it takes for a reversal to complete is on average around 7,000 years for the four most recent reversals. Clement (2004) suggests that this duration is dependent on latitude, with shorter durations at low latitudes and longer durations at mid and high latitudes. The duration of a full reversal varies between 2,000 and 12,000 years. 3347: 3359: 161:. Although it was discovered that some rocks would reverse their magnetic field while cooling, it became apparent that most magnetized volcanic rocks preserved traces of the Earth's magnetic field at the time the rocks had cooled. In the absence of reliable methods for obtaining absolute ages for rocks, it was thought that reversals occurred approximately every million years. 3371: 120:) for several hundred years, these events are classified as excursions rather than full geomagnetic reversals. Stable polarity chrons often show large, rapid directional excursions, which occur more often than reversals, and could be seen as failed reversals. During such an excursion, the field reverses in the liquid 570:
particular, the pattern of reversals is random. There is no correlation between the lengths of polarity intervals. There is no preference for either normal or reversed polarity, and no statistical difference between the distributions of these polarities. This lack of bias is also a robust prediction of
666: 569:
Several studies have analyzed the statistical properties of reversals in the hope of learning something about their underlying mechanism. The discriminating power of statistical tests is limited by the small number of polarity intervals. Nevertheless, some general features are well established. In
622:
Most estimates for the duration of a polarity transition are between 1,000 and 10,000 years, but some estimates are as quick as a human lifetime. During a transition, the magnetic field will not vanish completely, but many poles might form chaotically in different places during reversal, until it
768:
could be liberated and bombard the Earth. Detailed calculations confirm that if the Earth's dipole field disappeared entirely (leaving the quadrupole and higher components), most of the atmosphere would become accessible to high-energy particles but would act as a barrier to them, and cosmic ray
693:
ran a numerical model of the coupling between electromagnetism and fluid dynamics in the Earth's interior. Their simulation reproduced key features of the magnetic field over more than 40,000 years of simulated time, and the computer-generated field reversed itself. Global field reversals at
581:
of reversals, as they are statistically random. The randomness of the reversals is inconsistent with periodicity, but several authors have claimed to find periodicity. However, these results are probably artifacts of an analysis using sliding windows to attempt to determine reversal rates.
2243: 535:
million years ago). Thus far, this possible superchron has only been found in the Moyero river section north of the polar circle in Siberia. Moreover, the best data from elsewhere in the world do not show evidence for this superchron. Certain regions of ocean floor, older than
346:) has been useful in estimating the age of geologic sections elsewhere. While not an independent dating method, it depends on "absolute" age dating methods like radioisotopic systems to derive numeric ages. It has become especially useful when studying 630:, Oregon, indicate that the Earth's magnetic field is capable of shifting at a rate of up to 6 degrees per day. This was initially met with skepticism from paleomagnetists. Even if changes occur that quickly in the core, the mantle—which is a 338:
Because Earth's magnetic field is a global phenomenon, similar patterns of magnetic variations at different sites may be used to help calculate age in different locations. The past four decades of paleomagnetic data about seafloor ages (up to
543:, have low-amplitude magnetic anomalies that are hard to interpret. They are found off the east coast of North America, the northwest coast of Africa, and the western Pacific. They were once thought to represent a superchron called the 234:
with the known time scale of reversals: sea floor rock is magnetized in the direction of the field when it is formed. Thus, sea floor spreading from a central ridge will produce pairs of magnetic stripes parallel to the ridge. Canadian
486:. The frequency of magnetic reversals steadily decreased prior to the period, reaching its low point (no reversals) during the period. Between the Cretaceous Normal and the present, the frequency has generally increased slowly. 203:
During the 1950s and 1960s information about variations in the Earth's magnetic field was gathered largely by means of research vessels, but the complex routes of ocean cruises rendered the association of navigational data with
156:
was better understood, theories were advanced suggesting that the Earth's field might have reversed in the remote past. Most paleomagnetic research in the late 1950s included an examination of the wandering of the poles and
1892:
Mankinen, Edward A.; Prévot, Michel; Grommé, C. Sherman; Coe, Robert S. (1 January 1985). "The Steens Mountain (Oregon) Geomagnetic Polarity Transition 1. Directional History, Duration of Episodes, and Rock Magnetism".
763:
Most proposals tying reversals to extinction events assume that the Earth's magnetic field would be much weaker during reversals. Possibly the first such hypothesis was that high-energy particles trapped in the
3099:
Okada, Makoto; Niitsuma, Nobuaki (July 1989). "Detailed paleomagnetic records during the Brunhes-Matuyama geomagnetic reversal, and a direct determination of depth lag for magnetization in marine sediments".
808:
is still estimated to have been at about three Earth radii during the Brunhes–Matuyama reversal. Even if the internal magnetic field did disappear, the solar wind can induce a magnetic field in the Earth's
140:
first noticed that some volcanic rocks were magnetized opposite to the direction of the local Earth's field. The first systematic evidence for and time-scale estimate of the magnetic reversals were made by
451:
and the Kiaman. A third candidate, the Moyero, is more controversial. The Jurassic Quiet Zone in ocean magnetic anomalies was once thought to represent a superchron but is now attributed to other causes.
709:
every 9–12 years. With the Sun it is observed that the solar magnetic intensity greatly increases during a reversal, whereas reversals on Earth seem to occur during periods of low field strength.
701:
In some simulations, this leads to an instability in which the magnetic field spontaneously flips over into the opposite orientation. This scenario is supported by observations of the
673:, blue when the field points towards the center and yellow when away. The rotation axis of the Earth is centered and vertical. The dense clusters of lines are within the Earth's core. 1856:
Prévot, M.; Mankinen, E.; Coe, R.; Grommé, C. (1985). "The Steens Mountain (Oregon) Geomagnetic Polarity Transition 2. Field Intensity Variations and Discussion of Reversal Models".
431:. Two reversals occurred during a span of 50,000 years. These eras of frequent reversals have been counterbalanced by a few "superchrons": long periods when no reversals took place. 184:
to join their group. They produced the first magnetic-polarity time scale in 1959. As they accumulated data, they continued to refine this scale in competition with Don Tarling and
716:, think that geomagnetic reversals are not spontaneous processes but rather are triggered by external events that directly disrupt the flow in the Earth's core. Proposals include 657:
million years ago. In 2018, researchers reported a reversal lasting only 200 years. A 2019 paper estimates that the most recent reversal, 780,000 years ago, lasted 22,000 years.
649:) contains a series of reversals and excursions. In addition, geologists Scott Bogue of Occidental College and Jonathan Glen of the US Geological Survey, sampling lava flows in 1239: 331:, whose orientation is influenced by the ambient magnetic field at the time at which they formed. These rocks can preserve a record of the field if it is not later erased by 109:
Reversal occurrences are statistically random. There have been at least 183 reversals over the last 83 million years (on average once every ~450,000 years). The latest, the
653:, found evidence for a brief, several-year-long interval during a reversal when the field direction changed by over 50 degrees. The reversal was dated to approximately 15 1594:
Carbone, V.; Sorriso-Valvo, L.; Vecchio, A.; Lepreti, F.; Veltri, P.; Harabaglia, P.; Guerra, I. (2006). "Clustering of Polarity Reversals of the Geomagnetic Field".
208:
readings difficult. Only when data were plotted on a map did it become apparent that remarkably regular and continuous magnetic stripes appeared on the ocean floors.
2791:
Raisbeck, G. M.; Yiou, F.; Cattani, O.; Jouzel, J. (2 November 2006). "10Be evidence for the Matuyama–Brunhes geomagnetic reversal in the EPICA Dome C ice core".
2382: 1741: 1663: 745: 638:
mechanisms were proposed that would lead to a false signal. That said, paleomagnetic studies of other sections from the same region (the Oregon Plateau
689:
of planetary dynamos, reversals often emerge spontaneously from the underlying dynamics. For example, Gary Glatzmaier and collaborator Paul Roberts of
785:, which led to the magnetic field strength dropping to an estimated 5% of normal during the reversal. There is evidence that this occurs both during 756:
Shortly after the first geomagnetic polarity time scales were produced, scientists began exploring the possibility that reversals could be linked to
258: 2241:
Coe, Robert S.; Hongré, Lionel; Glatzmaier, Gary A. (2000). "An Examination of Simulated Geomagnetic Reversals from a Palaeomagnetic Perspective".
744:
for a correlation between reversals and impact events is weak. There is no evidence for a reversal connected with the impact event that caused the
3234: 300:. Dark areas denote periods where the polarity matches today's polarity, while light areas denote periods where that polarity is reversed. The 1785:
Coe, R. S.; Prévot, M.; Camps, P. (20 April 1995). "New evidence for extraordinarily rapid change of the geomagnetic field during a reversal".
1700:
Leonardo Sagnotti; Giancarlo Scardia; Biagio Giaccio; Joseph C. Liddicoat; Sebastien Nomade; Paul R. Renne; Courtney J. Sprain (21 July 2014).
969:
Nowaczyk, N.R.; Arz, H.W.; Frank, U.; Kind, J.; Plessen, B. (2012). "Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments".
1840: 1341: 1301: 804:
measurements show that the magnetic field has not disappeared during reversals. Based on paleointensity data for the last 800,000 years, the
561:, and these sections of ocean floor are especially deep, causing the geomagnetic signal to be attenuated between the seabed and the surface. 197: 60:). Dark areas denote periods where the polarity matches today's normal polarity; light areas denote periods where that polarity is reversed. 2224:; Marie, L.; Ravelet, F.; Bourgoin, M.; Odier, P.; Pinton, J.-F.; Volk, R. "Magnetic field reversals in an experimental turbulent dynamo". 1202: 849:"The last magnetic pole flip saw 22,000 years of weirdness – When the Earth's magnetic poles trade places, they take a while to get sorted" 3148: 2157:
Glatzmaier, Gary A.; Roberts, Paul H. (1995). "A three dimensional self-consistent computer simulation of a geomagnetic field reversal".
800:
because it had no magnetic field to protect it. They predict that ions would be stripped away from Earth's atmosphere above 100 km.
2470: 3138: 3089: 3070: 954: 3177: 3013: 1934: 1569: 1429: 1407: 1157:
Cande, S. C.; Kent, D. V. (1995). "Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic".
1098: 1054: 848: 2634:"Ice age polarity reversal was global event: Extremely brief reversal of geomagnetic field, climate variability, and super volcano" 547:, but magnetic anomalies are found on land during this period. The geomagnetic field is known to have low intensity between about 372:
Through analysis of seafloor magnetic anomalies and dating of reversal sequences on land, paleomagnetists have been developing a
609:
with long-ranging correlations between events in time. The data are also consistent with a deterministic, but chaotic, process.
149:
age or older. At the time, the Earth's polarity was poorly understood, and the possibility of reversal aroused little interest.
128:. Diffusion in the outer core is on timescales of 500 years or less while that of the inner core is longer, around 3,000 years. 3259: 1159: 272:
flows on land. Beginning in 1966, Lamont–Doherty Geological Observatory scientists found that the magnetic profiles across the
247: 177: 2664:"Geomagnetic modulation of the late Pleistocene cosmic-ray flux as determined by 10Be from Blake Outer Ridge marine sediments" 1990:
Bogue, S.W. (10 November 2010). "Very rapid geomagnetic field change recorded by the partial remagnetization of a lava flow".
189: 38: 792:
A hypothesis by McCormac and Evans assumes that the Earth's field disappears entirely during reversals. They argue that the
110: 3397: 822: 786: 253: 280:. The same magnetic anomalies were found over most of the world's oceans, which permitted estimates for when most of the 3080:
Ogg, J. G. (2012). "Geomagnetic polarity time scale". In Gradstein, F. M.; Ogg, J. G.; Schmitz, Mark; Ogg, Gabi (eds.).
2333: 2292: 2195: 642:) give consistent results. It appears that the reversed-to-normal polarity transition that marks the end of Chron C5Cr ( 3227: 2034: 3033: 2955: 1329: 239:
independently proposed a similar explanation in January 1963, but his work was rejected by the scientific journals
2468:
Courtillot, V.; Olson, P. (2007). "Mantle plumes link magnetic superchrons to phanerozoic mass depletion events".
1745: 3375: 3254: 1090: 185: 153: 89: 685:
of molten iron in the planetary core generates electric currents which in turn give rise to magnetic fields. In
2701:
Baumgartner, S. (27 February 1998). "Geomagnetic Modulation of the 36Cl Flux in the GRIP Ice Core, Greenland".
1194: 765: 211: 2221: 1930:"Evidence from lava flows for complex polarity transitions: the new composite Steens Mountain reversal record" 878:
Clement, Bradford M. (2004). "Dependence of the duration of geomagnetic polarity reversals on site latitude".
2545:
Glassmeier, Karl-Heinz; Vogt, Joachim (29 May 2010). "Magnetic Polarity Transitions and Biospheric Effects".
2526: 3402: 3351: 2953:
Birk, G. T.; Lesch, H.; Konz, C. (2004). "Solar wind induced magnetic field around the unmagnetized Earth".
2505:
Plotnick, Roy E. (1 January 1980). "Relationship between biological extinctions and geomagnetic reversals".
1596: 650: 273: 3220: 2350: 598: 513: 2668:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
3363: 3277: 686: 2588:
Uffen, Robert J. (13 April 1963). "Influence of the Earth's Core on the Origin and Evolution of Life".
2380:
McFadden, P. L.; Merrill, R. T. (1986). "Geodynamo energy source constraints from paleomagnetic data".
448: 424:, 13 reversals occurred. No fewer than 51 reversals occurred in a 12-million-year period, centering on 125: 121: 44: 2129: 2063:"Synchronizing volcanic, sedimentary, and ice core records of Earth's last magnetic polarity reversal" 3109: 2974: 2909: 2857: 2800: 2757: 2745: 2710: 2675: 2599: 2554: 2514: 2479: 2426: 2391: 2342: 2301: 2252: 2168: 2074: 1999: 1943: 1902: 1866: 1794: 1713: 1672: 1615: 1534: 1478: 1438: 1168: 1123: 974: 887: 737: 702: 602: 96:
polarity, in which the predominant direction of the field was the same as the present direction, and
3203: 2355: 665: 3407: 3272: 2417:
Merrill, R. T.; McFadden, P. L. (20 April 1990). "Paleomagnetism and the Nature of the Geodynamo".
2226: 367: 180:, wanted to know whether reversals occurred at regular intervals, and they invited geochronologist 3358: 2244:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
512:. The magnetic field had reversed polarity. The name "Kiaman" derives from the Australian town of 3322: 2990: 2964: 2935: 2875: 2824: 2773: 2633: 2615: 2570: 2450: 2268: 2015: 1810: 1639: 1605: 1550: 1502: 1333: 1317: 1259: 1139: 919: 793: 677:
The magnetic field of the Earth, and of other planets that have magnetic fields, is generated by
606: 231: 227: 165: 292: 17: 3173: 3134: 3085: 3066: 2816: 2726: 2442: 2220:
Berhanu, M.; Monchaux, R.; Fauve, S.; Mordant, N.; Petrelis, F.; Chiffaudel, A.; Daviaud, F.;
2110: 2092: 1836: 1631: 1494: 1403: 1337: 1297: 1251: 1230: 1094: 1050: 950: 911: 903: 713: 223: 158: 142: 1972: 3117: 3045: 2982: 2978: 2925: 2917: 2865: 2848: 2808: 2765: 2718: 2683: 2607: 2590: 2562: 2522: 2487: 2483: 2434: 2399: 2360: 2309: 2260: 2176: 2159: 2100: 2082: 2007: 1951: 1910: 1874: 1858: 1802: 1721: 1680: 1623: 1542: 1525: 1486: 1446: 1371: 1243: 1176: 1131: 1013: 982: 978: 942: 895: 828: 757: 721: 634:—is thought to remove variations with periods less than a few months. A variety of possible 347: 324: 241: 2662:
McHargue, L.R; Donahue, D; Damon, P.E; Sonett, C.P; Biddulph, D; Burr, G (1 October 2000).
1114:
Vine, Frederick J.; Drummond H. Matthews (1963). "Magnetic Anomalies over Oceanic Ridges".
3317: 1702:"Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal" 1376: 1359: 725: 627: 590: 586: 304:
superchron is visible as the broad, uninterrupted black band near the middle of the image.
277: 236: 181: 137: 2061:
Singer, Brad S.; Jicha, Brian R.; Mochizuki, Nobutatsu; Coe, Robert S. (August 7, 2019).
261:
was the first key scientific test of the seafloor spreading theory of continental drift.
200:
showed that the same pattern of reversals was recorded in sediments from deep-sea cores.
3113: 2913: 2894: 2861: 2804: 2761: 2714: 2679: 2603: 2558: 2518: 2430: 2395: 2346: 2305: 2256: 2172: 2078: 2003: 1947: 1906: 1870: 1798: 1717: 1676: 1619: 1538: 1482: 1442: 1172: 1127: 891: 669:
NASA computer simulation using the model of Glatzmaier and Roberts. The tubes represent
395:, the field reversed 5 times in a million years. In a 4-million-year period centered on 388:
The rate of reversals in the Earth's magnetic field has varied widely over time. Around
3194: 2105: 2062: 1451: 1424: 1399: 1322: 1293: 946: 801: 782: 670: 635: 265: 219: 193: 117: 102: 77: 73: 3170:
North Pole, South Pole: The epic quest to solve the great mystery of Earth's magnetism
2687: 3391: 3243: 3121: 2641: 2574: 2403: 2019: 1956: 1929: 1685: 1658: 1263: 1083: 1018: 1001: 717: 678: 631: 594: 571: 494: 281: 173: 69: 31: 2994: 2454: 2272: 1554: 1506: 3327: 3312: 2939: 2895:"Global changes in intensity of the Earth's magnetic field during the past 800 kyr" 2879: 2828: 2777: 2619: 1814: 1643: 1143: 1042: 923: 853: 805: 770: 741: 733: 695: 639: 516:, where some of the first geological evidence of the superchron was found in 1925. 355: 351: 205: 169: 116:
Although there have been periods in which the field reversed globally (such as the
57: 2722: 1627: 1247: 720:
or internal events such as the arrival of continental slabs carried down into the
2986: 2438: 1228:
Banerjee, Subir K. (2001-03-02). "When the Compass Stopped Reversing Its Poles".
251:, and remained unpublished until 1967, when it appeared in the literary magazine 145:
in the late 1920s; he observed that rocks with reversed fields were all of early
3332: 3307: 774: 706: 146: 2491: 986: 937:
Glatzmaier, G.A.; Coe, R.S. (2015), "Magnetic Polarity Reversals in the Core",
3297: 3292: 2566: 1290:
The magnetic field of the earth: paleomagnetism, the core, and the deep mantle
810: 797: 729: 682: 520: 475: 332: 309: 85: 81: 53: 2199: 2096: 907: 3302: 2313: 1914: 1878: 483: 320: 2820: 2746:"Evidence for an increase in cosmogenic 10Be during a geomagnetic reversal" 2446: 2264: 2114: 2087: 1771: 1635: 1498: 1469:
Raup, David M. (28 March 1985). "Magnetic reversals and mass extinctions".
1255: 915: 164:
The next major advance in understanding reversals came when techniques for
3053: 2730: 2969: 2365: 2328: 2039: 2011: 1726: 1701: 778: 507: 297: 49: 2812: 1610: 1288:
Merrill, Ronald T.; McElhinny, Michael W.; McFadden, Phillip L. (1998).
1085:
The Road to Jaramillo: Critical Years of the Revolution in Earth Science
899: 469: 3287: 3282: 1049:. San Francisco, California: W. H. Freeman. pp. 138–145, 222–228. 498: 376:. The current time scale contains 184 polarity intervals in the last 83 328: 323:) old, other methods are necessary for detecting older reversals. Most 269: 3049: 2870: 2843: 1180: 644: 585:
Most statistical models of reversals have analyzed them in terms of a
2930: 2769: 2611: 2180: 1806: 1546: 1490: 1135: 556: 549: 538: 479: 341: 314: 2663: 2287: 1523:
Lutz, T. M. (1985). "The magnetic reversal record is not periodic".
1206: 426: 419: 404: 397: 390: 2744:
Raisbeck, G. M.; Yiou, F.; Bourles, D.; Kent, D. V. (23 May 1985).
30:"Magnetic reversal" redirects here. For switching of a magnet, see 2921: 2130:"Earth's Last Magnetic-Pole Flip Took Much Longer Than We Thought" 291: 210: 43: 1928:
Jarboe, Nicholas A.; Coe, Robert S.; Glen, Jonathan M.G. (2011).
1659:"Analysis of scaling in the geomagnetic polarity reversal record" 276:
were symmetrical and matched the pattern in the north Atlantic's
100:
polarity, in which it was the opposite. These periods are called
3212: 690: 3216: 447:
million years. There are two well-established superchrons, the
37:"Polarity reversal" redirects here. For a seismic anomaly, see 1002:"The distinction between geomagnetic excursions and reversals" 694:
irregular intervals have also been observed in the laboratory
3195:
Is it true that the Earth's magnetic field is about to flip?
3034:"How Are Geomagnetic Reversals Related to Field Intensity?" 813:
sufficient to shield the surface from energetic particles.
523:
is suspected to have hosted another superchron, called the
1324:
Evolutionary Catastrophes: the Science of Mass Extinctions
2842:
McCormac, Billy M.; Evans, John E. (20 September 1969).
2527:
10.1130/0091-7613(1980)8<578:RBBEAG>2.0.CO;2
1370:(2). International Union of Geological Sciences: 78–84. 268:
minerals of consolidated sedimentary deposits or cooled
2844:"Consequences of Very Small Planetary Magnetic Moments" 1425:"Spectral analysis of geomagnetic reversal time scales" 2035:"Researchers find fast flip in Earth's magnetic field" 781:
showed a peak of beryllium-10 during a brief complete
48:
Geomagnetic polarity during the last 5 million years (
1833:
Our magnetic Earth : the science of geomagnetism
1430:
Geophysical Journal of the Royal Astronomical Society
3014:"Ships' logs give clues to Earth's magnetic decline" 1394:
McElhinny, Michael W.; McFadden, Phillip L. (2000).
264:
Past field reversals are recorded in the solidified
1240:
American Association for the Advancement of Science
1321: 1082: 2893:Guyodo, Yohan; Valet, Jean-Pierre (20 May 1999). 2540: 2538: 2536: 2288:"Geomagnetic reversals from impacts on the Earth" 2152: 2150: 769:collisions would produce secondary radiation of 1360:"A third superchron during the Early Paleozoic" 626:Studies of 16.7-million-year-old lava flows on 226:provided a simple explanation by combining the 27:Reversal of direction of Earth's magnetic field 2286:Muller, Richard A.; Morris, Donald E. (1986). 1826: 1824: 1570:"Geomagnetic flip may not be random after all" 308:Because no existing unsubducted sea floor (or 136:In the early 20th century, geologists such as 3228: 3204:Pole Reversal Happens All The (Geologic) Time 1765: 1763: 380:million years (and therefore 183 reversals). 8: 3102:Physics of the Earth and Planetary Interiors 3065:(2nd ed.). Cambridge University Press. 2383:Physics of the Earth and Planetary Interiors 1835:. Chicago: The University of Chicago Press. 1664:Physics of the Earth and Planetary Interiors 1389: 1387: 1348:Translated from the French by Joe McClinton. 3084:(1st ed.). Elsevier. pp. 85–114. 1464: 1462: 601:found that the reversals also conform to a 3235: 3221: 3213: 2128:Science, Passant; Rabie (August 7, 2019). 1973:"Earth's Magnetic Field Flipped Superfast" 1283: 1281: 1279: 1277: 1275: 1273: 443:is a polarity interval lasting at least 10 409:, 17 reversals took place in the span of 3 80:are interchanged (not to be confused with 2968: 2929: 2869: 2364: 2354: 2104: 2086: 1955: 1725: 1684: 1609: 1450: 1375: 1037: 1035: 1033: 1031: 1029: 1017: 2329:"Avalanches at the core-mantle boundary" 1047:Plate tectonics and geomagnetic reversal 664: 327:incorporate minute amounts of iron-rich 310:sea floor thrust onto continental plates 3063:Reversals of the Earth's magnetic field 1518: 1516: 839: 597:. In 2006, a team of physicists at the 333:chemical, physical or biological change 3082:The geologic time scale 2012. Volume 2 1971:Witze, Alexandra (September 2, 2010). 1076: 1074: 1072: 1070: 1068: 1066: 296:Geomagnetic polarity since the middle 1396:Paleomagnetism: Continents and Oceans 746:Cretaceous–Paleogene extinction event 402:, there were 10 reversals; at around 7: 3370: 3032:Hoffman, Kenneth A. (18 July 1995). 1203:Woods Hole Oceanographic Institution 1199:Ocean Bottom Magnetometry Laboratory 873: 871: 847:Johnson, Scott K. (11 August 2019). 2471:Earth and Planetary Science Letters 1742:"Earth's Inconstant Magnetic Field" 971:Earth and Planetary Science Letters 777:. A 2012 German study of Greenland 493:lasted from approximately the late 1452:10.1111/j.1365-246X.1976.tb00311.x 947:10.1016/b978-0-444-53802-4.00146-9 92:has alternated between periods of 25: 2194:Glatzmaier, Gary; Roberts, Paul. 1935:Geophysical Journal International 1423:Phillips, J. D.; Cox, A. (1976). 1006:Geophysical Journal International 796:may have been eroded away by the 3369: 3357: 3346: 3345: 3172:. New York, NY: The Experiment. 2033:Byrd, Deborah (21 August 2018). 1957:10.1111/j.1365-246X.2011.05086.x 1195:"Geomagnetic Polarity Timescale" 1019:10.1046/j.1365-246x.1999.00810.x 198:Lamont–Doherty Earth Observatory 3149:"Look down, look up, look out!" 1895:Journal of Geophysical Research 1377:10.18814/epiiugs/2005/v28i2/001 1358:Pavlov, V.; Gallet, Y. (2005). 1160:Journal of Geophysical Research 413:million years. In a period of 3 374:Geomagnetic Polarity Time Scale 362:Geomagnetic polarity time scale 259:Morley–Vine–Matthews hypothesis 248:Journal of Geophysical Research 178:United States Geological Survey 18:Geomagnetic polarity time scale 3012:Barry, Patrick (11 May 2006). 2230:. Vol. 77. p. 59001. 1568:DumĂ©, Belle (March 21, 2006). 941:, Elsevier, pp. 279–295, 705:, which undergoes spontaneous 190:Australian National University 39:Polarity reversal (seismology) 1: 2723:10.1126/science.279.5355.1330 2688:10.1016/S0168-583X(00)00092-6 1628:10.1103/PhysRevLett.96.128501 1248:10.1126/science.291.5509.1714 823:List of geomagnetic reversals 3122:10.1016/0031-9201(89)90043-5 2956:Astronomy & Astrophysics 2439:10.1126/science.248.4953.345 2404:10.1016/0031-9201(86)90118-4 2334:Geophysical Research Letters 2293:Geophysical Research Letters 1686:10.1016/0031-9201(89)90117-9 463:or C34) lasted for almost 40 384:Changing frequency over time 168:were improved in the 1950s. 1831:Merrill, Ronald T. (2010). 505:million years, from around 417:million years centering on 72:such that the positions of 3424: 2987:10.1051/0004-6361:20040154 2492:10.1016/j.epsl.2007.06.003 1330:Cambridge University Press 987:10.1016/j.epsl.2012.06.050 474:, including stages of the 467:million years, from about 365: 152:Three decades later, when 68:is a change in a planet's 36: 29: 3341: 3268: 3250: 3200:, accessed 8 January 2019 2567:10.1007/s11214-010-9659-6 1091:Stanford University Press 783:reversal 41,000 years ago 732:or the initiation of new 712:Some scientists, such as 531:million years (485 to 463 525:Moyero Reverse Superchron 491:Kiaman Reverse Superchron 111:Brunhes–Matuyama reversal 3168:Turner, Gillian (2011). 3129:Opdyke, Neil D. (1996). 766:Van Allen radiation belt 613:Character of transitions 3209:, accessed 1 March 2022 2979:2004A&A...420L..15B 2484:2007E&PSL.260..495C 2314:10.1029/GL013i011p01177 2196:"When North goes South" 1915:10.1029/JB090iB12p10393 1879:10.1029/JB090iB12p10417 1597:Physical Review Letters 1000:Gubbins, David (1999). 979:2012E&PSL.351...54N 651:Battle Mountain, Nevada 647: million years ago 274:Pacific-Antarctic Ridge 3061:Jacobs, J. A. (1994). 2265:10.1098/rsta.2000.0578 2088:10.1126/sciadv.aaw4621 1081:Glen, William (1982). 939:Treatise on Geophysics 789:and during reversals. 674: 599:University of Calabria 565:Statistical properties 527:, lasting more than 20 358:are seldom available. 305: 215: 154:Earth's magnetic field 90:Earth's magnetic field 61: 32:Magnetization reversal 3278:Environmental science 3131:Magnetic stratigraphy 2547:Space Science Reviews 668: 501:, or for more than 50 461:Cretaceous Superchron 366:Further information: 312:) is more than about 295: 288:Observing past fields 214: 124:but not in the solid 70:dipole magnetic field 47: 3398:Geomagnetic reversal 2366:10.1029/2002GL015938 2327:Muller, RA. (2002). 2012:10.1029/2010GL044286 1865:(B12): 10417–10448. 752:Effects on biosphere 738:core-mantle boundary 703:solar magnetic field 671:magnetic field lines 607:stochastic processes 508:312 to 262 66:geomagnetic reversal 3273:Atmospheric science 3114:1989PEPI...56..133O 2914:1999Natur.399..249G 2862:1969Natur.223.1255M 2813:10.1038/nature05266 2805:2006Natur.444...82R 2762:1985Natur.315..315R 2715:1998Sci...279.1330B 2709:(5355): 1330–1332. 2680:2000NIMPB.172..555M 2604:1963Natur.198..143U 2559:2010SSRv..155..387G 2519:1980Geo.....8..578P 2431:1990Sci...248..345M 2396:1986PEPI...43...22M 2347:2002GeoRL..29.1935M 2306:1986GeoRL..13.1177M 2257:2000RSPTA.358.1141C 2251:(1768): 1141–1170. 2173:1995Natur.377..203G 2079:2019SciA....5.4621S 2004:2010GeoRL..3721308B 1948:2011GeoJI.186..580J 1907:1985JGR....9010393M 1871:1985JGR....9010417P 1799:1995Natur.374..687C 1718:2014GeoJI.199.1110S 1677:1989PEPI...57..284G 1657:Gaffin, S. (1989). 1620:2006PhRvL..96l8501C 1539:1985Natur.317..404L 1483:1985Natur.314..341R 1443:1976GeoJ...45...19P 1318:Courtillot, Vincent 1173:1995JGR...100.6093C 1128:1963Natur.199..947V 900:10.1038/nature02459 892:2004Natur.428..637C 698:experiment "VKS2". 545:Jurassic Quiet Zone 470:120 to 83 368:Magnetostratigraphy 3323:Physical geography 3133:. Academic Press. 1992:Geophys. Res. Lett 1770:Glatzmaier, Gary. 1748:on 1 November 2022 1727:10.1093/gji/ggu287 973:. 351–352: 54–69. 794:atmosphere of Mars 675: 623:stabilizes again. 605:, which describes 589:or other kinds of 306: 228:seafloor spreading 216: 166:radiometric dating 118:Laschamp excursion 62: 3385: 3384: 3056:on 16 March 2009. 3050:10.1029/95EO00172 2908:(6733): 249–252. 2871:10.1038/2231255a0 2756:(6017): 315–317. 2598:(4876): 143–144. 2425:(4953): 345–350. 2300:(11): 1177–1180. 2167:(6546): 203–209. 1842:978-0-226-52050-6 1533:(6036): 404–407. 1477:(6009): 341–343. 1343:978-0-521-58392-3 1303:978-0-12-491246-5 1209:on August 9, 2016 1181:10.1029/94JB03098 1167:(B4): 6093–6095. 1122:(4897): 947–949. 886:(6983): 637–640. 787:secular variation 758:extinction events 724:by the action of 714:Richard A. Muller 603:LĂ©vy distribution 510:million years ago 472:million years ago 459:(also called the 457:Cretaceous Normal 449:Cretaceous Normal 354:formations where 325:sedimentary rocks 302:Cretaceous Normal 224:Drummond Matthews 192:. A group led by 159:continental drift 143:Motonori Matuyama 16:(Redirected from 3415: 3373: 3372: 3361: 3349: 3348: 3237: 3230: 3223: 3214: 3183: 3164: 3162: 3160: 3144: 3125: 3108:(1–2): 133–150. 3095: 3076: 3057: 3052:. Archived from 3028: 3026: 3024: 2999: 2998: 2972: 2970:astro-ph/0404580 2950: 2944: 2943: 2933: 2899: 2890: 2884: 2883: 2873: 2839: 2833: 2832: 2788: 2782: 2781: 2770:10.1038/315315a0 2741: 2735: 2734: 2698: 2692: 2691: 2674:(1–4): 555–561. 2659: 2653: 2652: 2650: 2649: 2638:Sciencedaily.com 2630: 2624: 2623: 2612:10.1038/198143b0 2585: 2579: 2578: 2553:(1–4): 387–410. 2542: 2531: 2530: 2502: 2496: 2495: 2478:(3–4): 495–504. 2465: 2459: 2458: 2414: 2408: 2407: 2377: 2371: 2370: 2368: 2358: 2324: 2318: 2317: 2283: 2277: 2276: 2238: 2232: 2231: 2217: 2211: 2210: 2208: 2207: 2198:. Archived from 2191: 2185: 2184: 2181:10.1038/377203a0 2154: 2145: 2144: 2142: 2140: 2125: 2119: 2118: 2108: 2090: 2067:Science Advances 2058: 2052: 2051: 2049: 2047: 2030: 2024: 2023: 1987: 1981: 1980: 1968: 1962: 1961: 1959: 1925: 1919: 1918: 1889: 1883: 1882: 1859:J. Geophys. Res. 1853: 1847: 1846: 1828: 1819: 1818: 1807:10.1038/374687a0 1782: 1776: 1775: 1767: 1758: 1757: 1755: 1753: 1744:. Archived from 1738: 1732: 1731: 1729: 1712:(2): 1110–1124. 1697: 1691: 1690: 1688: 1671:(3–4): 284–289. 1654: 1648: 1647: 1613: 1591: 1585: 1584: 1582: 1580: 1574:physicsworld.com 1565: 1559: 1558: 1547:10.1038/317404a0 1520: 1511: 1510: 1491:10.1038/314341a0 1466: 1457: 1456: 1454: 1420: 1414: 1413: 1391: 1382: 1381: 1379: 1355: 1349: 1347: 1327: 1314: 1308: 1307: 1285: 1268: 1267: 1225: 1219: 1218: 1216: 1214: 1205:. Archived from 1191: 1185: 1184: 1154: 1148: 1147: 1136:10.1038/199947a0 1111: 1105: 1104: 1088: 1078: 1061: 1060: 1039: 1024: 1023: 1021: 997: 991: 990: 966: 960: 959: 934: 928: 927: 875: 866: 865: 863: 861: 844: 829:Magnetic anomaly 825:, including ages 730:subduction zones 656: 648: 560: 553: 542: 534: 530: 511: 504: 478:period from the 473: 466: 446: 430: 423: 416: 412: 408: 401: 394: 379: 345: 318: 86:geographic south 82:geographic north 21: 3423: 3422: 3418: 3417: 3416: 3414: 3413: 3412: 3388: 3387: 3386: 3381: 3337: 3318:Paleogeoscience 3264: 3246: 3241: 3191: 3186: 3180: 3167: 3158: 3156: 3147: 3141: 3128: 3098: 3092: 3079: 3073: 3060: 3031: 3022: 3020: 3011: 3007: 3005:Further reading 3002: 2952: 2951: 2947: 2897: 2892: 2891: 2887: 2841: 2840: 2836: 2799:(7115): 82–84. 2790: 2789: 2785: 2743: 2742: 2738: 2700: 2699: 2695: 2661: 2660: 2656: 2647: 2645: 2632: 2631: 2627: 2587: 2586: 2582: 2544: 2543: 2534: 2504: 2503: 2499: 2467: 2466: 2462: 2416: 2415: 2411: 2379: 2378: 2374: 2356:10.1.1.508.8308 2326: 2325: 2321: 2285: 2284: 2280: 2240: 2239: 2235: 2219: 2218: 2214: 2205: 2203: 2193: 2192: 2188: 2156: 2155: 2148: 2138: 2136: 2127: 2126: 2122: 2073:(8): eaaw4621. 2060: 2059: 2055: 2045: 2043: 2032: 2031: 2027: 1989: 1988: 1984: 1970: 1969: 1965: 1927: 1926: 1922: 1891: 1890: 1886: 1855: 1854: 1850: 1843: 1830: 1829: 1822: 1784: 1783: 1779: 1772:"The Geodynamo" 1769: 1768: 1761: 1751: 1749: 1740: 1739: 1735: 1706:Geophys. J. Int 1699: 1698: 1694: 1656: 1655: 1651: 1611:physics/0603086 1593: 1592: 1588: 1578: 1576: 1567: 1566: 1562: 1522: 1521: 1514: 1468: 1467: 1460: 1422: 1421: 1417: 1410: 1393: 1392: 1385: 1357: 1356: 1352: 1344: 1316: 1315: 1311: 1304: 1287: 1286: 1271: 1227: 1226: 1222: 1212: 1210: 1193: 1192: 1188: 1156: 1155: 1151: 1113: 1112: 1108: 1101: 1080: 1079: 1064: 1057: 1041: 1040: 1027: 999: 998: 994: 968: 967: 963: 957: 936: 935: 931: 877: 876: 869: 859: 857: 846: 845: 841: 837: 819: 754: 726:plate tectonics 663: 654: 643: 628:Steens Mountain 620: 615: 591:renewal process 587:Poisson process 567: 555: 548: 537: 532: 528: 506: 502: 468: 464: 444: 437: 425: 418: 414: 410: 403: 396: 389: 386: 377: 370: 364: 340: 313: 290: 284:had developed. 278:Reykjanes ridge 254:Saturday Review 182:Brent Dalrymple 138:Bernard Brunhes 134: 42: 35: 28: 23: 22: 15: 12: 11: 5: 3421: 3419: 3411: 3410: 3405: 3403:Paleomagnetism 3400: 3390: 3389: 3383: 3382: 3380: 3379: 3367: 3355: 3342: 3339: 3338: 3336: 3335: 3330: 3325: 3320: 3315: 3310: 3305: 3300: 3295: 3290: 3285: 3280: 3275: 3269: 3266: 3265: 3263: 3262: 3257: 3251: 3248: 3247: 3242: 3240: 3239: 3232: 3225: 3217: 3211: 3210: 3201: 3190: 3189:External links 3187: 3185: 3184: 3178: 3165: 3145: 3140:978-0080535722 3139: 3126: 3096: 3091:978-0444594259 3090: 3077: 3072:978-0521450720 3071: 3058: 3029: 3008: 3006: 3003: 3001: 3000: 2963:(2): L15–L18. 2945: 2885: 2856:(5212): 1255. 2834: 2783: 2736: 2693: 2654: 2625: 2580: 2532: 2497: 2460: 2409: 2372: 2319: 2278: 2233: 2212: 2186: 2146: 2120: 2053: 2025: 1998:(21): L21308. 1982: 1963: 1942:(2): 580–602. 1920: 1901:(B12): 10393. 1884: 1848: 1841: 1820: 1777: 1759: 1733: 1692: 1649: 1604:(12): 128501. 1586: 1560: 1512: 1458: 1415: 1408: 1400:Academic Press 1383: 1350: 1342: 1309: 1302: 1294:Academic Press 1269: 1220: 1186: 1149: 1106: 1099: 1062: 1055: 1025: 992: 961: 956:978-0444538031 955: 929: 867: 838: 836: 833: 832: 831: 826: 818: 815: 802:Paleointensity 753: 750: 662: 659: 619: 616: 614: 611: 566: 563: 436: 433: 385: 382: 363: 360: 289: 286: 220:Frederick Vine 133: 130: 78:magnetic south 74:magnetic north 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3420: 3409: 3406: 3404: 3401: 3399: 3396: 3395: 3393: 3378: 3377: 3368: 3366: 3365: 3360: 3356: 3354: 3353: 3344: 3343: 3340: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3289: 3286: 3284: 3281: 3279: 3276: 3274: 3271: 3270: 3267: 3261: 3258: 3256: 3253: 3252: 3249: 3245: 3244:Earth science 3238: 3233: 3231: 3226: 3224: 3219: 3218: 3215: 3208: 3205: 3202: 3199: 3196: 3193: 3192: 3188: 3181: 3179:9781615190317 3175: 3171: 3166: 3155:. 10 May 2007 3154: 3153:The Economist 3150: 3146: 3142: 3136: 3132: 3127: 3123: 3119: 3115: 3111: 3107: 3103: 3097: 3093: 3087: 3083: 3078: 3074: 3068: 3064: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3030: 3019: 3018:New Scientist 3015: 3010: 3009: 3004: 2996: 2992: 2988: 2984: 2980: 2976: 2971: 2966: 2962: 2958: 2957: 2949: 2946: 2941: 2937: 2932: 2927: 2923: 2922:10.1038/20420 2919: 2915: 2911: 2907: 2903: 2896: 2889: 2886: 2881: 2877: 2872: 2867: 2863: 2859: 2855: 2851: 2850: 2845: 2838: 2835: 2830: 2826: 2822: 2818: 2814: 2810: 2806: 2802: 2798: 2794: 2787: 2784: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2740: 2737: 2732: 2728: 2724: 2720: 2716: 2712: 2708: 2704: 2697: 2694: 2689: 2685: 2681: 2677: 2673: 2669: 2665: 2658: 2655: 2643: 2642:Science Daily 2639: 2635: 2629: 2626: 2621: 2617: 2613: 2609: 2605: 2601: 2597: 2593: 2592: 2584: 2581: 2576: 2572: 2568: 2564: 2560: 2556: 2552: 2548: 2541: 2539: 2537: 2533: 2528: 2524: 2520: 2516: 2512: 2508: 2501: 2498: 2493: 2489: 2485: 2481: 2477: 2473: 2472: 2464: 2461: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2428: 2424: 2420: 2413: 2410: 2405: 2401: 2397: 2393: 2389: 2385: 2384: 2376: 2373: 2367: 2362: 2357: 2352: 2348: 2344: 2340: 2336: 2335: 2330: 2323: 2320: 2315: 2311: 2307: 2303: 2299: 2295: 2294: 2289: 2282: 2279: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2245: 2237: 2234: 2229: 2228: 2223: 2216: 2213: 2202:on 2007-02-07 2201: 2197: 2190: 2187: 2182: 2178: 2174: 2170: 2166: 2162: 2161: 2153: 2151: 2147: 2135: 2131: 2124: 2121: 2116: 2112: 2107: 2102: 2098: 2094: 2089: 2084: 2080: 2076: 2072: 2068: 2064: 2057: 2054: 2042: 2041: 2036: 2029: 2026: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1986: 1983: 1978: 1974: 1967: 1964: 1958: 1953: 1949: 1945: 1941: 1937: 1936: 1931: 1924: 1921: 1916: 1912: 1908: 1904: 1900: 1896: 1888: 1885: 1880: 1876: 1872: 1868: 1864: 1861: 1860: 1852: 1849: 1844: 1838: 1834: 1827: 1825: 1821: 1816: 1812: 1808: 1804: 1800: 1796: 1793:(6524): 687. 1792: 1788: 1781: 1778: 1773: 1766: 1764: 1760: 1747: 1743: 1737: 1734: 1728: 1723: 1719: 1715: 1711: 1707: 1703: 1696: 1693: 1687: 1682: 1678: 1674: 1670: 1666: 1665: 1660: 1653: 1650: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1617: 1612: 1607: 1603: 1599: 1598: 1590: 1587: 1575: 1571: 1564: 1561: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1527: 1519: 1517: 1513: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1472: 1465: 1463: 1459: 1453: 1448: 1444: 1440: 1436: 1432: 1431: 1426: 1419: 1416: 1411: 1409:0-12-483355-1 1405: 1401: 1397: 1390: 1388: 1384: 1378: 1373: 1369: 1365: 1361: 1354: 1351: 1345: 1339: 1335: 1331: 1328:. Cambridge: 1326: 1325: 1319: 1313: 1310: 1305: 1299: 1295: 1291: 1284: 1282: 1280: 1278: 1276: 1274: 1270: 1265: 1261: 1257: 1253: 1249: 1245: 1242:: 1714–1715. 1241: 1237: 1233: 1232: 1224: 1221: 1208: 1204: 1200: 1196: 1190: 1187: 1182: 1178: 1174: 1170: 1166: 1162: 1161: 1153: 1150: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1110: 1107: 1102: 1100:0-8047-1119-4 1096: 1092: 1087: 1086: 1077: 1075: 1073: 1071: 1069: 1067: 1063: 1058: 1056:0-7167-0258-4 1052: 1048: 1044: 1038: 1036: 1034: 1032: 1030: 1026: 1020: 1015: 1011: 1007: 1003: 996: 993: 988: 984: 980: 976: 972: 965: 962: 958: 952: 948: 944: 940: 933: 930: 925: 921: 917: 913: 909: 905: 901: 897: 893: 889: 885: 881: 874: 872: 868: 856: 855: 850: 843: 840: 834: 830: 827: 824: 821: 820: 816: 814: 812: 807: 803: 799: 795: 790: 788: 784: 780: 776: 772: 767: 761: 759: 751: 749: 747: 743: 739: 735: 734:mantle plumes 731: 727: 723: 719: 718:impact events 715: 710: 708: 704: 699: 697: 692: 688: 684: 680: 679:dynamo action 672: 667: 660: 658: 652: 646: 641: 640:flood basalts 637: 636:rock magnetic 633: 632:semiconductor 629: 624: 617: 612: 610: 608: 604: 600: 596: 595:gamma process 592: 588: 583: 580: 575: 573: 572:dynamo theory 564: 562: 558: 551: 546: 540: 526: 522: 517: 515: 509: 500: 496: 495:Carboniferous 492: 487: 485: 481: 477: 471: 462: 458: 453: 450: 442: 434: 432: 428: 421: 406: 399: 392: 383: 381: 375: 369: 361: 359: 357: 356:index fossils 353: 349: 343: 336: 334: 330: 326: 322: 317:million years 316: 311: 303: 299: 294: 287: 285: 283: 282:oceanic crust 279: 275: 271: 267: 266:ferrimagnetic 262: 260: 256: 255: 250: 249: 244: 243: 238: 233: 229: 225: 221: 213: 209: 207: 201: 199: 195: 191: 187: 186:Ian McDougall 183: 179: 175: 174:Richard Doell 171: 167: 162: 160: 155: 150: 148: 144: 139: 131: 129: 127: 123: 119: 114: 112: 107: 105: 104: 99: 95: 91: 87: 83: 79: 75: 71: 67: 59: 55: 51: 46: 40: 33: 19: 3374: 3362: 3350: 3328:Soil science 3313:Oceanography 3206: 3197: 3169: 3157:. Retrieved 3152: 3130: 3105: 3101: 3081: 3062: 3054:the original 3041: 3037: 3021:. Retrieved 3017: 2960: 2954: 2948: 2905: 2901: 2888: 2853: 2847: 2837: 2796: 2792: 2786: 2753: 2749: 2739: 2706: 2702: 2696: 2671: 2667: 2657: 2646:. Retrieved 2644:. 2012-10-16 2637: 2628: 2595: 2589: 2583: 2550: 2546: 2510: 2506: 2500: 2475: 2469: 2463: 2422: 2418: 2412: 2390:(1): 22–33. 2387: 2381: 2375: 2341:(19): 1935. 2338: 2332: 2322: 2297: 2291: 2281: 2248: 2242: 2236: 2225: 2222:Dubrulle, B. 2215: 2204:. Retrieved 2200:the original 2189: 2164: 2158: 2137:. Retrieved 2133: 2123: 2070: 2066: 2056: 2044:. Retrieved 2038: 2028: 1995: 1991: 1985: 1976: 1966: 1939: 1933: 1923: 1898: 1894: 1887: 1862: 1857: 1851: 1832: 1790: 1786: 1780: 1750:. Retrieved 1746:the original 1736: 1709: 1705: 1695: 1668: 1662: 1652: 1601: 1595: 1589: 1579:December 27, 1577:. Retrieved 1573: 1563: 1530: 1524: 1474: 1470: 1434: 1428: 1418: 1395: 1367: 1363: 1353: 1323: 1312: 1289: 1235: 1229: 1223: 1211:. Retrieved 1207:the original 1198: 1189: 1164: 1158: 1152: 1119: 1115: 1109: 1084: 1046: 1012:(1): F1–F4. 1009: 1005: 995: 970: 964: 938: 932: 883: 879: 858:. Retrieved 854:Ars Technica 852: 842: 806:magnetopause 791: 771:beryllium-10 762: 755: 742:stratigraphy 711: 700: 696:liquid metal 676: 625: 621: 584: 578: 577:There is no 576: 568: 544: 524: 518: 497:to the late 490: 488: 482:through the 460: 456: 454: 440: 438: 387: 373: 371: 352:igneous rock 337: 307: 301: 263: 252: 246: 240: 237:L. W. Morley 217: 206:magnetometer 202: 163: 151: 135: 115: 108: 101: 97: 93: 65: 63: 58:Cenozoic Era 3333:Volcanology 3308:Meteorology 3198:physics.org 2513:(12): 578. 1332:. pp.  775:chlorine-36 687:simulations 435:Superchrons 348:metamorphic 194:Neil Opdyke 147:Pleistocene 3408:Geophysics 3392:Categories 3298:Glaciology 3293:Geophysics 2648:2013-07-28 2206:2006-04-09 1043:Cox, Allan 835:References 811:ionosphere 798:solar wind 683:convection 521:Ordovician 476:Cretaceous 441:superchron 232:Harry Hess 230:theory of 126:inner core 122:outer core 54:Quaternary 3303:Hydrology 3159:8 January 3023:8 January 2931:1874/1501 2575:121837096 2351:CiteSeerX 2139:August 8, 2134:Space.com 2097:2375-2548 2046:22 August 2020:129896450 1437:: 19–33. 1264:140556706 1213:March 23, 908:0028-0836 860:11 August 779:ice cores 736:from the 707:reversals 681:in which 484:Santonian 218:In 1963, 176:, at the 170:Allan Cox 3352:Category 2995:15352610 2821:17080088 2455:11945905 2447:17784488 2273:16224793 2115:31457087 2040:EarthSky 1636:16605965 1555:32756319 1507:28977097 1499:11541995 1364:Episodes 1320:(1999). 1256:11253196 1238:(5509). 1045:(1973). 916:15071591 817:See also 618:Duration 329:minerals 298:Jurassic 270:volcanic 50:Pliocene 3376:Commons 3288:Geology 3283:Geodesy 3255:Outline 3110:Bibcode 3044:: 289. 2975:Bibcode 2940:4426319 2910:Bibcode 2880:4295498 2858:Bibcode 2829:4425406 2801:Bibcode 2778:4324833 2758:Bibcode 2731:9478888 2711:Bibcode 2703:Science 2676:Bibcode 2620:4192617 2600:Bibcode 2555:Bibcode 2515:Bibcode 2507:Geology 2480:Bibcode 2427:Bibcode 2419:Science 2392:Bibcode 2343:Bibcode 2302:Bibcode 2253:Bibcode 2169:Bibcode 2106:6685714 2075:Bibcode 2000:Bibcode 1944:Bibcode 1903:Bibcode 1867:Bibcode 1815:4247637 1795:Bibcode 1714:Bibcode 1673:Bibcode 1644:6521371 1616:Bibcode 1535:Bibcode 1479:Bibcode 1439:Bibcode 1231:Science 1169:Bibcode 1144:4296143 1124:Bibcode 975:Bibcode 924:4356044 888:Bibcode 499:Permian 196:at the 188:at the 132:History 98:reverse 88:). The 56:, late 3364:Portal 3176:  3137:  3088:  3069:  2993:  2938:  2902:Nature 2878:  2849:Nature 2827:  2819:  2793:Nature 2776:  2750:Nature 2729:  2618:  2591:Nature 2573:  2453:  2445:  2353:  2271:  2160:Nature 2113:  2103:  2095:  2018:  1839:  1813:  1787:Nature 1752:25 Oct 1642:  1634:  1553:  1526:Nature 1505:  1497:  1471:Nature 1406:  1340:  1336:–111. 1300:  1262:  1254:  1142:  1116:Nature 1097:  1053:  953:  922:  914:  906:  880:Nature 722:mantle 661:Causes 655:  533:  529:  503:  480:Aptian 465:  445:  415:  411:  378:  257:. The 242:Nature 103:chrons 94:normal 3260:Index 2991:S2CID 2965:arXiv 2936:S2CID 2898:(PDF) 2876:S2CID 2825:S2CID 2774:S2CID 2616:S2CID 2571:S2CID 2451:S2CID 2269:S2CID 2016:S2CID 1977:Wired 1811:S2CID 1640:S2CID 1606:arXiv 1551:S2CID 1503:S2CID 1260:S2CID 1140:S2CID 920:S2CID 514:Kiama 3207:NASA 3174:ISBN 3161:2019 3135:ISBN 3086:ISBN 3067:ISBN 3025:2019 2817:PMID 2727:PMID 2443:PMID 2141:2019 2111:PMID 2093:ISSN 2048:2018 1837:ISBN 1754:2014 1632:PMID 1581:2009 1495:PMID 1404:ISBN 1338:ISBN 1298:ISBN 1252:PMID 1215:2011 1095:ISBN 1051:ISBN 951:ISBN 912:PMID 904:ISSN 862:2019 691:UCLA 645:16.7 579:rate 554:and 519:The 489:The 455:The 350:and 245:and 222:and 172:and 84:and 76:and 52:and 3118:doi 3046:doi 3038:EOS 2983:doi 2961:420 2926:hdl 2918:doi 2906:399 2866:doi 2854:223 2809:doi 2797:444 2766:doi 2754:315 2719:doi 2707:279 2684:doi 2672:172 2608:doi 2596:198 2563:doi 2551:155 2523:doi 2488:doi 2476:260 2435:doi 2423:248 2400:doi 2361:doi 2310:doi 2261:doi 2249:358 2227:EPL 2177:doi 2165:377 2101:PMC 2083:doi 2008:doi 1952:doi 1940:186 1911:doi 1875:doi 1803:doi 1791:374 1722:doi 1710:199 1681:doi 1624:doi 1543:doi 1531:317 1487:doi 1475:314 1447:doi 1372:doi 1334:110 1244:doi 1236:291 1177:doi 1165:100 1132:doi 1120:199 1014:doi 1010:137 983:doi 943:doi 896:doi 884:428 773:or 728:at 557:170 550:130 539:160 342:250 315:180 3394:: 3151:. 3116:. 3106:56 3104:. 3042:76 3040:. 3036:. 3016:. 2989:. 2981:. 2973:. 2959:. 2934:. 2924:. 2916:. 2904:. 2900:. 2874:. 2864:. 2852:. 2846:. 2823:. 2815:. 2807:. 2795:. 2772:. 2764:. 2752:. 2748:. 2725:. 2717:. 2705:. 2682:. 2670:. 2666:. 2640:. 2636:. 2614:. 2606:. 2594:. 2569:. 2561:. 2549:. 2535:^ 2521:. 2509:. 2486:. 2474:. 2449:. 2441:. 2433:. 2421:. 2398:. 2388:43 2386:. 2359:. 2349:. 2339:29 2337:. 2331:. 2308:. 2298:13 2296:. 2290:. 2267:. 2259:. 2247:. 2175:. 2163:. 2149:^ 2132:. 2109:. 2099:. 2091:. 2081:. 2069:. 2065:. 2037:. 2014:. 2006:. 1996:37 1994:. 1975:. 1950:. 1938:. 1932:. 1909:. 1899:90 1897:. 1873:. 1863:90 1823:^ 1809:. 1801:. 1789:. 1762:^ 1720:. 1708:. 1704:. 1679:. 1669:57 1667:. 1661:. 1638:. 1630:. 1622:. 1614:. 1602:96 1600:. 1572:. 1549:. 1541:. 1529:. 1515:^ 1501:. 1493:. 1485:. 1473:. 1461:^ 1445:. 1435:45 1433:. 1427:. 1402:. 1398:. 1386:^ 1368:28 1366:. 1362:. 1296:. 1292:. 1272:^ 1258:. 1250:. 1234:. 1201:. 1197:. 1175:. 1163:. 1138:. 1130:. 1118:. 1093:. 1089:. 1065:^ 1028:^ 1008:. 1004:. 981:. 949:, 918:. 910:. 902:. 894:. 882:. 870:^ 851:. 748:. 574:. 559:Ma 552:Ma 541:Ma 439:A 429:Ma 427:15 422:Ma 420:24 407:Ma 405:42 400:Ma 398:54 393:Ma 391:72 344:Ma 335:. 321:Ma 106:. 64:A 3236:e 3229:t 3222:v 3182:. 3163:. 3143:. 3124:. 3120:: 3112:: 3094:. 3075:. 3048:: 3027:. 2997:. 2985:: 2977:: 2967:: 2942:. 2928:: 2920:: 2912:: 2882:. 2868:: 2860:: 2831:. 2811:: 2803:: 2780:. 2768:: 2760:: 2733:. 2721:: 2713:: 2690:. 2686:: 2678:: 2651:. 2622:. 2610:: 2602:: 2577:. 2565:: 2557:: 2529:. 2525:: 2517:: 2511:8 2494:. 2490:: 2482:: 2457:. 2437:: 2429:: 2406:. 2402:: 2394:: 2369:. 2363:: 2345:: 2316:. 2312:: 2304:: 2275:. 2263:: 2255:: 2209:. 2183:. 2179:: 2171:: 2143:. 2117:. 2085:: 2077:: 2071:5 2050:. 2022:. 2010:: 2002:: 1979:. 1960:. 1954:: 1946:: 1917:. 1913:: 1905:: 1881:. 1877:: 1869:: 1845:. 1817:. 1805:: 1797:: 1774:. 1756:. 1730:. 1724:: 1716:: 1689:. 1683:: 1675:: 1646:. 1626:: 1618:: 1608:: 1583:. 1557:. 1545:: 1537:: 1509:. 1489:: 1481:: 1455:. 1449:: 1441:: 1412:. 1380:. 1374:: 1346:. 1306:. 1266:. 1246:: 1217:. 1183:. 1179:: 1171:: 1146:. 1134:: 1126:: 1103:. 1059:. 1022:. 1016:: 989:. 985:: 977:: 945:: 926:. 898:: 890:: 864:. 339:~ 319:( 41:. 34:. 20:)

Index

Geomagnetic polarity time scale
Magnetization reversal
Polarity reversal (seismology)

Pliocene
Quaternary
Cenozoic Era
dipole magnetic field
magnetic north
magnetic south
geographic north
geographic south
Earth's magnetic field
chrons
Brunhes–Matuyama reversal
Laschamp excursion
outer core
inner core
Bernard Brunhes
Motonori Matuyama
Pleistocene
Earth's magnetic field
continental drift
radiometric dating
Allan Cox
Richard Doell
United States Geological Survey
Brent Dalrymple
Ian McDougall
Australian National University

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑