Knowledge (XXG)

Configuration (geometry)

Source đź“ť

349: 38: 1009: 454:. This configuration describes two quadrilaterals that are simultaneously inscribed and circumscribed in each other. It cannot be constructed in Euclidean plane geometry but the equations defining it have nontrivial solutions in 661:) configuration in which the roles of "point" and "line" are exchanged. Types of configurations therefore come in dual pairs, except when taking the dual results in an isomorphic configuration. These exceptions are called 496:
and the twelve lines determined by pairs of these points. This configuration shares with the Fano plane the property that it contains every line through its points; configurations with this property are known as
161:, but with some additional restrictions: every two points of the incidence structure can be associated with at most one line, and every two lines can be associated with at most one point. That is, the 248: 1024:. In such cases, the restrictions that no two points belong to more than one line may be relaxed, because it is possible for two points to belong to more than one plane. 793:
There are several techniques for constructing configurations, generally starting from known configurations. Some of the simplest of these techniques construct symmetric (
1336: 742: 1480: 579: 1521: 557: 451: 1607: 1067:
Another generalization of the concept of a configuration concerns configurations of points and circles, a notable example being the (8
1562: 1506: 1450: 1348: 1318: 1472: 785:) configurations, and found 228 of them, but the 229th configuration, the Gropp configuration, was not discovered until 1988. 1409: 1306: 1371: 502: 1020:
The concept of a configuration may be generalized to higher dimensions, for instance to points and lines or planes in
781:) configuration. Gropp also points out a long-lasting error in this sequence: an 1895 paper attempted to list all (12 371:), the simplest possible configuration, consisting of a point incident to a line. Often excluded as being trivial. 600: 493: 278: 31: 1202: 131:
Configurations may be studied either as concrete sets of points and lines in a specific geometry, such as the
1032: 1028: 513: 357: 1040: 1013: 543: 220: 1035:, consisting of twelve points and twelve planes, with six points per plane and six planes per point, the 931:
which are powers of primes, these constructions provide infinite families of symmetric configurations.
105: 1292: 1088: 1076: 1052: 749:
These numbers count configurations as abstract incidence structures, regardless of realizability. As
568: 466: 294: 162: 86: 82: 1494: 611: 481: 421: 282: 70: 50: 1235: 1055:
is called topological configuration. For instance, it is known that there exists no point-line (19
1548: 1516: 528: 436: 144: 1464: 1445: 1432: 1091:, a set of 9 points and 9 lines which do not all have equal numbers of incidences to each other 1580: 1558: 1544: 1502: 1476: 1344: 1314: 1287: 1260: 382:. Each of its three sides meets two of its three vertices, and vice versa. More generally any 348: 1530: 1418: 1272: 1021: 806: 485: 136: 78: 1435:(2006), "Configurations of points and lines", in Davis, Chandler; Ellers, Erich W. (eds.), 1358: 1059:) configurations, however, there exists a topological configuration with these parameters. 1043:, a configuration with 30 points, 12 lines, two lines per point, and five points per line. 1354: 1340: 1039:
consisting of a 3Ă—3Ă—3 grid of 27 points and the 27 orthogonal lines through them, and the
624: 440: 158: 155: 132: 1329: 455: 328:
configurations and the notation is often condensed to avoid repetition. For example, (9
109: 93: 17: 1423: 1277: 1201:
This configuration would be a projective plane of order 6 which does not exist by the
1601: 1490: 547: 148: 113: 89:
to the same number of lines and each line is incident to the same number of points.
1584: 986: 732: 97: 92:
Although certain specific configurations had been studied earlier (for instance by
560:, formed by the 15 lines complementary to a double six and their 15 tangent planes 1552: 1231: 728: 724: 489: 117: 66: 1036: 720: 716: 712: 590: 432: 214:
the number of points per line. These numbers necessarily satisfy the equation
166: 151: 1589: 1385:
Gropp, Harald (1990), "On the existence and non-existence of configurations
112:
wrote his dissertation on the subject in 1894, and they were popularized by
37: 379: 30:
This article is about points and lines. For incidences of polytopes, see
1535: 1519:(1986), "A resolution of the Sylvester–Gallai problem of J. P. Serre", 1008: 383: 765:) configurations, are realizable in the Euclidean plane, but for each 1051:
Configuration in the projective plane that is realized by points and
96:
in 1849), the formal study of configurations was first introduced by
1007: 347: 36: 1407:
Gropp, Harald (1997), "Configurations and their realization",
912:, then the construction results in a configuration of type (( 505:
that shows that they cannot be given real-number coordinates.
925:. Since projective planes are known to exist for all orders 1365:
Gévay, Gábor (2014), "Constructions for large point-line (n
1124:) are also used to describe configurations as defined here. 737: 934:
Not all configurations are realizable, for instance, a (43
363:
Notable projective configurations include the following:
863:(but not the points which lie on those lines except for 253:
as this product is the number of point-line incidences (
1396:
Journal of Combinatorics and Information System Science
1309:(1999), "Self-dual configurations and regular graphs", 1189: 1134: 1132: 1130: 356:) configuration that is not incidence-isomorphic to a 223: 692:
The number of nonisomorphic configurations of type (
1031:, consisting of two mutually inscribed tetrahedra, 1328: 1166: 1113: 242: 125: 1439:, American Mathematical Society, pp. 179–225 1027:Notable three-dimensional configurations are the 942:has provided a construction which shows that for 147:. In the latter case they are closely related to 1475:, vol. 103, American Mathematical Society, 1337:Ergebnisse der Mathematik und ihrer Grenzgebiete 1437:The Coxeter Legacy: Reflections and Projections 906:is chosen to be a line which does pass through 285:. For instance, there exist three different (9 1263:(2000), "Counting symmetric configurations", 8: 1448:(2008), "Musing on an example of Danzer's", 1290:(2015), "Danzer's configuration revisited", 260:Configurations having the same symbol, say ( 177:A configuration in the plane is denoted by ( 169:of the configuration) must be at least six. 143:in that geometry), or as a type of abstract 435:. This configuration exists as an abstract 100:in 1876, in the second edition of his book 1501:(2nd ed.), Chelsea, pp. 94–170, 887:. The result is a configuration of type (( 165:of the corresponding bipartite graph (the 1554:Configurations from a Graphical Viewpoint 1534: 1422: 1276: 1121: 938:) configuration does not exist. However, 789:Constructions of symmetric configurations 239: 222: 77:in the plane consists of a finite set of 1162: 1138: 424:and complete quadrilateral respectively. 1247:The Electronic Journal of Combinatorics 1177: 1101: 61:) (a complete quadrilateral, at right). 27:Points and lines with equal incidences 1214: 1190:Betten, Brinkmann & Pisanski 2000 1150: 939: 900:. If, in this construction, the line 772:there is at least one nonrealizable ( 750: 735:, 2036, 21399, 245342, ... (sequence 392:sides forms a configuration of type ( 297:and two less notable configurations. 7: 1118:tactical configuration of type (1,1) 1063:Configurations of points and circles 881:and all the points that are on line 757:) configurations, and all of the (11 546:, formed by 12 of the 27 lines on a 243:{\displaystyle p\gamma =\ell \pi \,} 104:, in the context of a discussion of 1522:Discrete and Computational Geometry 439:, but cannot be constructed in the 210:the number of lines per point, and 1469:Configurations of Points and Lines 25: 1451:European Journal of Combinatorics 665:configurations and in such cases 1167:Boben, GĂ©vay & Pisanski 2015 126:Hilbert & Cohn-Vossen (1952) 1473:Graduate Studies in Mathematics 958:) configuration exists for all 837:be a projective plane of order 499:Sylvester–Gallai configurations 1114:Hilbert & Cohn-Vossen 1952 753:discusses, nine of the ten (10 558:Cremona–Richmond configuration 1: 1424:10.1016/S0012-365X(96)00327-5 1372:Ars Mathematica Contemporanea 1339:, Band 44, Berlin, New York: 1278:10.1016/S0166-218X(99)00143-2 1108:In the literature, the terms 999:Unconventional configurations 1499:Geometry and the Imagination 1286:Boben, Marko; GĂ©vay, Gábor; 1265:Discrete Applied Mathematics 985:is the length of an optimal 580:GrĂĽnbaum–Rigby configuration 708:, is given by the sequence 452:Möbius–Kantor configuration 1624: 1259:Betten, A; Brinkmann, G.; 1047:Topological configurations 124:, reprinted in English as 85:, such that each point is 29: 1608:Configurations (geometry) 1327:Dembowski, Peter (1968), 619:Duality of configurations 200:is the number of points, 1110:projective configuration 503:Sylvester–Gallai theorem 494:complex projective plane 336:) abbreviates to (9 300:In some configurations, 32:Configuration (polytope) 807:finite projective plane 514:Desargues configuration 358:Desargues configuration 18:Geometric configuration 1311:The Beauty of Geometry 1017: 601:Danzer's configuration 360: 293:) configurations: the 244: 139:(these are said to be 122:Anschauliche Geometrie 62: 1011: 853:and all the lines of 351: 245: 206:the number of lines, 40: 1495:Cohn-Vossen, Stephan 1410:Discrete Mathematics 1293:Advances in Geometry 1089:Perles configuration 1077:Miquel configuration 1033:Reye's configuration 1029:Möbius configuration 875:not passing through 869:) and remove a line 627:of a configuration ( 569:Kummer configuration 467:Pappus configuration 295:Pappus configuration 283:incidence structures 221: 83:arrangement of lines 1549:Servatius, Brigitte 1369:) configurations", 1203:Bruck–Ryser theorem 1041:Schläfli double six 1014:Schläfli double six 857:which pass through 833:configuration. Let 612:Klein configuration 544:Schläfli double six 482:Hesse configuration 422:complete quadrangle 320:. These are called 71:projective geometry 51:complete quadrangle 1581:Weisstein, Eric W. 1536:10.1007/BF02187687 1037:Gray configuration 1018: 802:) configurations. 591:Gray configuration 529:Reye configuration 437:incidence geometry 361: 310:and consequently, 240: 145:incidence geometry 106:Desargues' theorem 102:Geometrie der Lage 63: 1482:978-0-8218-4308-6 1331:Finite geometries 1243:) configurations" 1004:Higher dimensions 486:inflection points 137:projective planes 53:, at left) and (6 41:Configurations (4 16:(Redirected from 1615: 1594: 1593: 1567: 1539: 1538: 1511: 1485: 1465:GrĂĽnbaum, Branko 1459: 1446:GrĂĽnbaum, Branko 1440: 1433:GrĂĽnbaum, Branko 1427: 1426: 1417:(1–3): 137–151, 1403: 1380: 1361: 1334: 1323: 1301: 1281: 1280: 1271:(1–3): 331–338, 1254: 1218: 1212: 1206: 1199: 1193: 1187: 1181: 1175: 1169: 1160: 1154: 1148: 1142: 1136: 1125: 1106: 994: 984: 973: 957: 948: 930: 924: 911: 905: 899: 886: 880: 874: 868: 862: 856: 852: 846: 842: 836: 832: 814: 801: 780: 771: 740: 707: 700: 688:) configurations 687: 674: 660: 652: 643: 641: 400: 391: 319: 318: 309: 276: 274: 249: 247: 246: 241: 213: 209: 205: 199: 193: 191: 159:bipartite graphs 21: 1623: 1622: 1618: 1617: 1616: 1614: 1613: 1612: 1598: 1597: 1585:"Configuration" 1579: 1578: 1575: 1565: 1545:Pisanski, TomaĹľ 1543: 1515: 1509: 1489: 1483: 1463: 1444: 1431: 1406: 1393: 1384: 1368: 1364: 1351: 1341:Springer-Verlag 1326: 1321: 1307:Coxeter, H.S.M. 1305: 1285: 1258: 1242: 1232:Berman, Leah W. 1230: 1227: 1222: 1221: 1213: 1209: 1200: 1196: 1188: 1184: 1176: 1172: 1161: 1157: 1149: 1145: 1137: 1128: 1107: 1103: 1098: 1085: 1074: 1070: 1065: 1058: 1049: 1006: 1001: 990: 983: 975: 971: 959: 956: 950: 943: 937: 926: 922: 913: 907: 901: 897: 888: 882: 876: 870: 864: 858: 854: 848: 844: 838: 834: 830: 816: 810: 800: 794: 791: 784: 779: 773: 766: 764: 760: 756: 736: 702: 701:), starting at 699: 693: 690: 686: 680: 679:The number of ( 666: 659: 653: 650: 645: 642: 639: 634: 628: 625:projective dual 621: 609: 598: 588: 577: 566: 555: 541: 537: 526: 522: 511: 479: 475: 464: 456:complex numbers 449: 441:Euclidean plane 430: 419: 415: 411: 407: 399: 393: 387: 377: 370: 355: 346: 339: 335: 331: 316: 311: 301: 292: 288: 277:), need not be 275: 272: 267: 261: 219: 218: 211: 207: 201: 195: 192: 189: 184: 178: 175: 81:, and a finite 69:, specifically 60: 56: 48: 44: 35: 28: 23: 22: 15: 12: 11: 5: 1621: 1619: 1611: 1610: 1600: 1599: 1596: 1595: 1574: 1573:External links 1571: 1570: 1569: 1563: 1541: 1529:(1): 101–104, 1513: 1507: 1491:Hilbert, David 1487: 1481: 1461: 1442: 1429: 1404: 1389: 1382: 1366: 1362: 1349: 1324: 1319: 1303: 1283: 1256: 1240: 1226: 1223: 1220: 1219: 1207: 1194: 1182: 1170: 1155: 1143: 1126: 1122:Dembowski 1968 1100: 1099: 1097: 1094: 1093: 1092: 1084: 1081: 1072: 1068: 1064: 1061: 1056: 1048: 1045: 1005: 1002: 1000: 997: 979: 967: 954: 935: 918: 893: 843:. Remove from 825: 798: 790: 787: 782: 777: 762: 758: 754: 747: 746: 697: 689: 684: 677: 657: 649: 638: 632: 620: 617: 616: 615: 607: 604: 596: 593: 586: 583: 575: 572: 564: 561: 553: 550: 539: 535: 532: 524: 520: 517: 509: 506: 477: 473: 470: 462: 459: 447: 444: 428: 425: 417: 413: 409: 405: 402: 397: 375: 372: 368: 353: 345: 342: 337: 333: 329: 290: 286: 271: 265: 251: 250: 238: 235: 232: 229: 226: 188: 182: 174: 171: 110:Ernst Steinitz 94:Thomas Kirkman 58: 54: 46: 42: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1620: 1609: 1606: 1605: 1603: 1592: 1591: 1586: 1582: 1577: 1576: 1572: 1566: 1564:9780817683641 1560: 1556: 1555: 1550: 1546: 1542: 1537: 1532: 1528: 1524: 1523: 1518: 1514: 1510: 1508:0-8284-1087-9 1504: 1500: 1496: 1492: 1488: 1484: 1478: 1474: 1470: 1466: 1462: 1457: 1453: 1452: 1447: 1443: 1438: 1434: 1430: 1425: 1420: 1416: 1412: 1411: 1405: 1401: 1397: 1392: 1388: 1383: 1378: 1374: 1373: 1363: 1360: 1356: 1352: 1350:3-540-61786-8 1346: 1342: 1338: 1333: 1332: 1325: 1322: 1320:0-486-40919-8 1316: 1312: 1308: 1304: 1299: 1295: 1294: 1289: 1284: 1279: 1274: 1270: 1266: 1262: 1257: 1252: 1248: 1244: 1239: 1233: 1229: 1228: 1224: 1216: 1211: 1208: 1204: 1198: 1195: 1191: 1186: 1183: 1180:, pp. 106–149 1179: 1174: 1171: 1168: 1164: 1163:GrĂĽnbaum 2008 1159: 1156: 1152: 1147: 1144: 1140: 1139:GrĂĽnbaum 2009 1135: 1133: 1131: 1127: 1123: 1119: 1115: 1111: 1105: 1102: 1095: 1090: 1087: 1086: 1082: 1080: 1078: 1062: 1060: 1054: 1046: 1044: 1042: 1038: 1034: 1030: 1025: 1023: 1015: 1010: 1003: 998: 996: 993: 988: 982: 978: 970: 966: 962: 953: 946: 941: 932: 929: 921: 916: 910: 904: 896: 891: 885: 879: 873: 867: 861: 851: 841: 828: 823: 819: 813: 808: 803: 797: 788: 786: 776: 769: 752: 744: 739: 734: 730: 726: 722: 718: 714: 711: 710: 709: 705: 696: 683: 678: 676: 673: 669: 664: 656: 648: 637: 631: 626: 618: 613: 605: 602: 594: 592: 584: 581: 573: 570: 562: 559: 551: 549: 548:cubic surface 545: 533: 530: 518: 515: 507: 504: 500: 495: 491: 487: 483: 471: 468: 460: 457: 453: 445: 442: 438: 434: 426: 423: 403: 396: 390: 385: 381: 373: 366: 365: 364: 359: 350: 343: 341: 327: 323: 314: 308: 304: 298: 296: 284: 280: 270: 264: 258: 256: 236: 233: 230: 227: 224: 217: 216: 215: 204: 198: 187: 181: 172: 170: 168: 164: 160: 157: 153: 150: 146: 142: 138: 134: 129: 127: 123: 120:'s 1932 book 119: 115: 111: 107: 103: 99: 95: 90: 88: 84: 80: 76: 75:configuration 72: 68: 52: 39: 33: 19: 1588: 1557:, Springer, 1553: 1526: 1520: 1517:Kelly, L. M. 1498: 1468: 1455: 1449: 1436: 1414: 1408: 1399: 1395: 1390: 1386: 1376: 1370: 1330: 1310: 1300:(4): 393–408 1297: 1291: 1288:Pisanski, T. 1268: 1264: 1261:Pisanski, T. 1250: 1246: 1237: 1210: 1197: 1185: 1178:Coxeter 1999 1173: 1158: 1146: 1117: 1109: 1104: 1066: 1050: 1026: 1019: 991: 987:Golomb ruler 980: 976: 968: 964: 960: 951: 944: 940:Gropp (1990) 933: 927: 919: 914: 908: 902: 894: 889: 883: 877: 871: 865: 859: 849: 839: 826: 821: 817: 811: 804: 795: 792: 774: 767: 751:Gropp (1997) 748: 703: 694: 691: 681: 671: 667: 662: 654: 646: 635: 629: 622: 498: 394: 388: 362: 325: 321: 312: 306: 302: 299: 268: 262: 259: 254: 252: 202: 196: 185: 179: 176: 140: 130: 121: 101: 98:Theodor Reye 91: 74: 64: 1458:: 1910-1918 1053:pseudolines 501:due to the 490:cubic curve 152:hypergraphs 118:Cohn-Vossen 67:mathematics 1236:"Movable ( 1225:References 1215:GĂ©vay 2014 1151:Kelly 1986 433:Fano plane 279:isomorphic 167:Levi graph 141:realizable 1590:MathWorld 1379:: 175-199 1313:, Dover, 1253:(1): R104 989:of order 809:of order 761:) and (12 663:self-dual 322:symmetric 237:π 234:ℓ 228:γ 194:), where 156:biregular 133:Euclidean 1602:Category 1551:(2013), 1497:(1952), 1467:(2009), 1083:See also 974:, where 847:a point 815:is an (( 644:) is a ( 527:), the 484:of nine 412:) and (6 380:triangle 344:Examples 326:balanced 173:Notation 87:incident 1402:: 34–48 1359:0233275 741:in the 738:A001403 610:), the 589:), the 578:), the 567:), the 556:), the 542:), the 512:), the 492:in the 480:), the 465:), the 450:), the 431:), the 420:), the 384:polygon 378:), the 332: 9 289: 9 149:regular 114:Hilbert 1561:  1505:  1479:  1357:  1347:  1317:  1116:) and 79:points 1096:Notes 1022:space 949:, a ( 488:of a 352:A (10 255:flags 163:girth 49:) (a 1559:ISBN 1503:ISBN 1477:ISBN 1345:ISBN 1315:ISBN 1012:The 963:≥ 2 892:– 1) 824:+ 1) 805:Any 770:≥ 16 743:OEIS 623:The 154:and 116:and 73:, a 1531:doi 1419:doi 1415:174 1394:", 1273:doi 972:+ 1 947:≥ 3 829:+ 1 733:229 706:= 7 606:(60 599:), 595:(35 585:(27 574:(21 563:(16 552:(15 534:(12 519:(12 508:(10 386:of 340:). 324:or 281:as 257:). 135:or 65:In 1604:: 1587:, 1583:, 1547:; 1525:, 1493:; 1471:, 1456:29 1454:, 1413:, 1400:15 1398:, 1375:, 1355:MR 1353:, 1343:, 1335:, 1298:15 1296:, 1269:99 1267:, 1251:13 1249:, 1245:, 1234:, 1165:, 1129:^ 1079:. 1075:) 995:. 820:+ 731:, 729:31 727:, 725:10 723:, 719:, 715:, 675:. 670:= 608:15 538:30 523:16 476:12 472:(9 461:(9 446:(8 427:(7 404:(4 374:(3 367:(1 315:= 305:= 128:. 108:. 1568:. 1540:. 1533:: 1527:1 1512:. 1486:. 1460:. 1441:. 1428:. 1421:: 1391:k 1387:n 1381:. 1377:7 1367:k 1302:. 1282:. 1275:: 1255:. 1241:4 1238:n 1217:. 1205:. 1192:. 1153:. 1141:. 1120:( 1112:( 1073:4 1071:6 1069:3 1057:4 1016:. 992:k 981:k 977:â„“ 969:k 965:â„“ 961:p 955:k 952:p 945:k 936:7 928:n 923:) 920:n 917:) 915:n 909:P 903:â„“ 898:) 895:n 890:n 884:â„“ 878:P 872:â„“ 866:P 860:P 855:Π 850:P 845:Π 840:n 835:Π 831:) 827:n 822:n 818:n 812:n 799:Îł 796:p 783:3 778:3 775:n 768:n 763:3 759:3 755:3 745:) 721:3 717:1 713:1 704:n 698:3 695:n 685:3 682:n 672:â„“ 668:p 658:Îł 655:p 651:Ď€ 647:â„“ 640:Ď€ 636:â„“ 633:Îł 630:p 614:. 603:. 597:4 587:3 582:. 576:4 571:. 565:6 554:3 540:2 536:5 531:. 525:3 521:4 516:. 510:3 478:3 474:4 469:. 463:3 458:. 448:3 443:. 429:3 418:3 416:4 414:2 410:2 408:6 406:3 401:) 398:2 395:n 389:n 376:2 369:1 354:3 338:3 334:3 330:3 317:Ď€ 313:Îł 307:â„“ 303:p 291:3 287:3 273:Ď€ 269:â„“ 266:Îł 263:p 231:= 225:p 212:Ď€ 208:Îł 203:â„“ 197:p 190:Ď€ 186:â„“ 183:Îł 180:p 59:3 57:4 55:2 47:2 45:6 43:3 34:. 20:)

Index

Geometric configuration
Configuration (polytope)

complete quadrangle
mathematics
projective geometry
points
arrangement of lines
incident
Thomas Kirkman
Theodor Reye
Desargues' theorem
Ernst Steinitz
Hilbert
Cohn-Vossen
Hilbert & Cohn-Vossen (1952)
Euclidean
projective planes
incidence geometry
regular
hypergraphs
biregular
bipartite graphs
girth
Levi graph
isomorphic
incidence structures
Pappus configuration

Desargues configuration

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑