Knowledge (XXG)

Geometric function theory

Source 📝

354: 57: 1683:
maximum principle says that the maximum of the function is to be found on the boundary, but may re-occur in the interior as well. Other, even weaker maximum principles exist which merely bound a function in terms of its maximum on the boundary.
379:
The step-wise continuation technique may, however, come up against difficulties. These may have an essentially topological nature, leading to inconsistencies (defining more than one value). They may alternatively have to do with the presence of
2207: 2343: 1060: 1930: 828: 174: 133: 1861: 1042: 587: 1460: 1139: 625: 995: 953: 1300: 548: 1789: 1384: 1240: 1178: 890: 723: 1438: 1411: 1354: 1327: 1267: 1205: 1117: 1090: 917: 855: 777: 249:(i.e., not just the magnitude of the angle). Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or 243: 212: 689: 669: 645: 528: 1059: 449:
may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially
1664: 739:. It is a remarkable fact, fundamental to the theory of univalent functions, that univalence is essentially preserved under uniform convergence. 1660: 388:
is rather different, since singularities then cannot be isolated points, and its investigation was a major reason for the development of
2111: 1679:
maximum principle says that if a function achieves its maximum in the interior of the domain, the function is uniformly a constant. The
2433: 2384: 2344:
Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe
1672: 1656: 2093:
with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics. Then
1048: 2452: 1503:, which it helps to prove. It is however one of the simplest results capturing the rigidity of holomorphic functions. 372:. Analytic continuation often succeeds in defining further values of a function, for example in a new region where an 319: 473:
Topics in this area include "Maximum principle; Schwarz's lemma, Lindelöf principle, analogues and generalizations".
1723: 782: 381: 1876: 283:, is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded 385: 303: 246: 138: 1948: 105: 1693: 1500: 1481: 1142: 31: 262: 77: 1956: 1489: 450: 400:
Topics in this area include Riemann surfaces for algebraic functions and zeros for algebraic functions.
353: 2014: > 1. An equivalent way of thinking about this is that there exists a small neighborhood 1711: 1539: 488: 446: 365: 85: 1828: 1000: 560: 2338: 1799: 648: 89: 1443: 1122: 595: 2048: 1727: 1715: 504: 482: 458: 2105:
different from zero, but fewer than expected vertices. Therefore, we find a "corrected" formula
1730:, in this case. It is a prototype result for many others, and is often applied in the theory of 958: 2429: 2395: 2380: 2310: 1979: 1652: 1646: 922: 462: 369: 27: 1959:. What the Riemann–Hurwitz formula does is to add in a correction to allow for ramification ( 1272: 533: 2410: 2352: 2326: 2318: 2300: 2291: 1764: 1703: 1485: 1359: 1210: 1148: 860: 698: 423: 419: 389: 268: 1416: 1389: 1332: 1305: 1245: 1183: 1095: 1068: 895: 833: 755: 221: 190: 2356: 2330: 2322: 1975: 1735: 1731: 1555: 551: 409: 373: 1532: 674: 654: 630: 513: 430:: locally near every point they look like patches of the complex plane, but the global 2446: 1707: 1471: 1386:, and consequently the composition, is analytic, we then have a conformal mapping of 496: 427: 342: 307: 93: 68:
maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°.
51: 2286: 1819: 1807: 857:
having at least two boundary points. Then there exists a unique analytic function
42:
The following are some of the most important topics in geometric function theory:
492: 454: 1747: 726: 692: 2314: 1528: 1499:
to itself. The lemma is less celebrated than stronger theorems, such as the
1496: 376:
representation in terms of which it is initially defined becomes divergent.
250: 1440:, proving "any two simply connected regions different from the whole plane 56: 2415: 1493: 431: 311: 23: 2341:(1928), "Über einige Extremalprobleme der konformen Abbildung. I, II.", 2264:
MSC classification for 30CXX, Geometric Function Theory, retrieved from
2305: 1668: 1051:
demonstrates the existence of a mapping function, it does not actually
284: 2265: 435: 330:
at every point maps circles to ellipses with eccentricity bounded by
16:
Study of space and shapes locally given by a convergent power series
2202:{\displaystyle \chi (S')=N\cdot \chi (S)-\sum _{P\in S'}(e_{P}-1)} 439: 352: 215: 81: 55: 1675:
is to be found on the boundary of that domain. Specifically, the
426:. Riemann surfaces can be thought of as deformed versions of the 1955:, as we are entitled to do since the Euler characteristic is a 2403:
International Journal of Mathematics and Mathematical Sciences
60:
A rectangular grid (top) and its image under a conformal map
2377:
Geometric Function Theory: Explorations in Complex Analysis
396:
Geometric properties of polynomials and algebraic functions
357:
Analytic continuation of natural logarithm (imaginary part)
2223:= 1, so this is quite safe). This formula is known as the 434:
can be quite different. For example, they can look like a
2426:
Conformal Invariants: Topics in Geometric Function Theory
2114: 1879: 1831: 1767: 1446: 1419: 1392: 1362: 1335: 1308: 1275: 1248: 1213: 1186: 1151: 1125: 1098: 1071: 1003: 961: 925: 898: 863: 836: 785: 758: 701: 677: 657: 633: 598: 563: 536: 516: 224: 193: 141: 108: 84:
locally. In the most common case the function has a
2394:Bulboacă, T.; Cho, N. E.; Kanas, S. A. R. (2012). 2201: 1924: 1855: 1783: 1454: 1432: 1405: 1378: 1348: 1321: 1294: 1261: 1234: 1199: 1172: 1133: 1111: 1084: 1036: 989: 947: 911: 884: 849: 822: 771: 717: 683: 663: 639: 619: 581: 542: 522: 237: 206: 168: 127: 1994:′ if there exist analytic coordinates near 1947:′ — at least if we use a fine enough 2367:, 1922 (4th ed., appendix by H. Röhrl, vol. 3, 2289:(1935), "Zur Theorie der Überlagerungsflächen", 2251:, 1922 (4th ed., appendix by H. Röhrl, vol. 3, 2365:Vorlesunger über allgemeine Funcktionen Theorie 2249:Vorlesunger über allgemeine Funcktionen Theorie 1119:as two simply connected regions different from 2396:"New Trends in Geometric Function Theory 2011" 2062:. In calculating the Euler characteristic of 2369:Grundlehren der mathematischen Wissenschaften 2253:Grundlehren der mathematischen Wissenschaften 823:{\displaystyle D_{1}(D_{1}\neq \mathbb {C} )} 30:. A fundamental result in the theory is the 8: 1925:{\displaystyle \chi (S')=N\cdot \chi (S).\,} 1462:can be mapped conformally onto each other." 445:The main point of Riemann surfaces is that 169:{\displaystyle U,V\subset \mathbb {C} ^{n}} 1667:types. Roughly speaking, it says that the 1055:this function. An example is given below. 725:is also holomorphic. More, one has by the 2414: 2304: 2184: 2160: 2113: 1921: 1878: 1852: 1830: 1780: 1766: 1448: 1447: 1445: 1424: 1418: 1397: 1391: 1367: 1361: 1340: 1334: 1313: 1307: 1280: 1274: 1253: 1247: 1212: 1191: 1185: 1150: 1127: 1126: 1124: 1103: 1097: 1076: 1070: 1019: 1002: 972: 960: 934: 926: 924: 903: 897: 862: 841: 835: 813: 812: 803: 790: 784: 763: 757: 706: 700: 676: 656: 632: 597: 562: 535: 515: 229: 223: 198: 192: 160: 156: 155: 140: 107: 2085:)). Now let us choose triangulations of 779:be a point in a simply-connected region 735:( this is German for plain, simple) and 276: 214:if it preserves oriented angles between 2240: 280: 128:{\displaystyle f:U\rightarrow V\qquad } 2277:MSC80 in the MSC classification system 2081:) (that is, in the inverse image of π( 2030:, but the image of any other point in 1655:is a property of solutions to certain 326:-quasiconformal if the derivative of 7: 1814:, 1, 0, 0, ... . In the case of an ( 1722:of the other. It therefore connects 1710:, describes the relationship of the 1207:onto the unit disk and existence of 919:bijectively into the open unit disk 2266:http://www.ams.org/msc/msc2010.html 477:Univalent and multivalent functions 418:, first studied by and named after 38:Topics in geometric function theory 731:Alternate terms in common use are 614: 592:is a univalent function such that 576: 537: 442:or several sheets glued together. 14: 1866:that is surjective and of degree 1935:That is because each simplex of 1058: 2073: − 1 copies of 2002:) such that π takes the form π( 554:sets in the complex plane, and 124: 2196: 2177: 2150: 2144: 2129: 2118: 2066:′ we notice the loss of 2026:) has exactly one preimage in 1915: 1909: 1894: 1883: 1856:{\displaystyle \pi :S'\to S\,} 1846: 1657:partial differential equations 1229: 1223: 1167: 1161: 1065:In the above figure, consider 1037:{\displaystyle f'(z_{0})>0} 1025: 1012: 978: 965: 935: 927: 879: 873: 817: 796: 608: 602: 582:{\displaystyle f:G\to \Omega } 573: 118: 1: 2097:will have the same number of 1939:should be covered by exactly 1870:, we should have the formula 364:is a technique to extend the 1455:{\displaystyle \mathbb {C} } 1134:{\displaystyle \mathbb {C} } 620:{\displaystyle f(G)=\Omega } 1982:. The map π is said to be 1754:the Euler characteristic χ( 1636:| (necessarily) equal to 1. 1302:is a one-to-one mapping of 341:is 0, then the function is 320:continuously differentiable 2469: 2428:. AMS Chelsea Publishing. 1734:(which is its origin) and 1691: 1644: 1469: 1145:provides the existence of 990:{\displaystyle f(z_{0})=0} 651:), then the derivative of 480: 407: 382:mathematical singularities 260: 64:(bottom). It is seen that 49: 1269:onto the unit disk. Thus 1049:Riemann's mapping theorem 386:several complex variables 20:Geometric function theory 1978:, and that the map π is 948:{\displaystyle |w|<1} 2375:Krantz, Steven (2006). 2225:Riemann–Hurwitz formula 2212:(all but finitely many 2101:-dimensional faces for 1700:Riemann–Hurwitz formula 1694:Riemann-Hurwitz formula 1688:Riemann-Hurwitz formula 1501:Riemann mapping theorem 1482:Hermann Amandus Schwarz 1295:{\displaystyle g^{-1}f} 1143:Riemann mapping theorem 748:Riemann mapping theorem 543:{\displaystyle \Omega } 422:, is a one-dimensional 32:Riemann mapping theorem 2424:Ahlfors, Lars (2010). 2268:on September 16, 2014. 2203: 1961:sheets coming together 1926: 1857: 1785: 1784:{\displaystyle 2-2g\,} 1638: 1527:| < 1} be the open 1456: 1434: 1407: 1380: 1379:{\displaystyle g^{-1}} 1356:. If we can show that 1350: 1323: 1296: 1263: 1236: 1235:{\displaystyle w=g(z)} 1201: 1174: 1173:{\displaystyle w=f(z)} 1135: 1113: 1086: 1038: 991: 949: 913: 886: 885:{\displaystyle w=f(z)} 851: 824: 773: 719: 718:{\displaystyle f^{-1}} 685: 665: 641: 621: 583: 544: 524: 510:One can prove that if 451:multi-valued functions 358: 273:quasiconformal mapping 263:Quasiconformal mapping 245:with respect to their 239: 208: 170: 129: 99:More formally, a map, 69: 2204: 1957:topological invariant 1927: 1858: 1786: 1712:Euler characteristics 1510: 1490:holomorphic functions 1465: 1457: 1435: 1433:{\displaystyle D_{2}} 1408: 1406:{\displaystyle D_{1}} 1381: 1351: 1349:{\displaystyle D_{2}} 1324: 1322:{\displaystyle D_{1}} 1297: 1264: 1262:{\displaystyle D_{2}} 1237: 1202: 1200:{\displaystyle D_{1}} 1175: 1136: 1114: 1112:{\displaystyle D_{2}} 1087: 1085:{\displaystyle D_{1}} 1039: 992: 950: 914: 912:{\displaystyle D_{1}} 887: 852: 850:{\displaystyle D_{1}} 825: 774: 772:{\displaystyle z_{0}} 720: 686: 666: 642: 622: 584: 545: 525: 447:holomorphic functions 362:Analytic continuation 356: 349:Analytic continuation 240: 238:{\displaystyle u_{0}} 209: 207:{\displaystyle u_{0}} 171: 130: 59: 2351:: 367–376, 497–502, 2112: 2053:and also denoted by 1877: 1829: 1765: 1604:| for some non-zero 1444: 1417: 1390: 1360: 1333: 1306: 1273: 1246: 1211: 1184: 1149: 1123: 1096: 1069: 1001: 959: 923: 896: 861: 834: 783: 756: 699: 675: 655: 631: 596: 561: 534: 514: 489:holomorphic function 222: 191: 139: 106: 2416:10.1155/2012/976374 1671:of a function in a 459:algebraic functions 257:Quasiconformal maps 2453:Analytic functions 2371:. Springer, 1964.) 2306:10.1007/BF02420945 2255:. Springer, 1964.) 2199: 2176: 2049:ramification index 1922: 1853: 1781: 1728:algebraic topology 1452: 1430: 1403: 1376: 1346: 1319: 1292: 1259: 1232: 1197: 1170: 1131: 1109: 1082: 1034: 987: 945: 909: 882: 847: 820: 769: 743:Important theorems 715: 695:, and its inverse 681: 661: 637: 617: 579: 540: 520: 483:Univalent function 359: 235: 204: 166: 125: 70: 28:analytic functions 2363:Hurwitz-Courant, 2339:Grötzsch, Herbert 2247:Hurwitz-Courant, 2229:Hurwitz's theorem 2156: 1804:number of handles 1720:ramified covering 1653:maximum principle 1647:Maximum principle 1641:Maximum principle 1484:, is a result in 684:{\displaystyle f} 664:{\displaystyle f} 640:{\displaystyle f} 523:{\displaystyle G} 469:Extremal problems 370:analytic function 314:in the plane. If 290:Intuitively, let 2460: 2439: 2420: 2418: 2400: 2390: 2359: 2333: 2308: 2292:Acta Mathematica 2278: 2275: 2269: 2262: 2256: 2245: 2208: 2206: 2205: 2200: 2189: 2188: 2175: 2174: 2128: 1980:complex analytic 1976:Riemann surfaces 1966:Now assume that 1931: 1929: 1928: 1923: 1893: 1862: 1860: 1859: 1854: 1845: 1790: 1788: 1787: 1782: 1736:algebraic curves 1732:Riemann surfaces 1704:Bernhard Riemann 1538:centered at the 1486:complex analysis 1461: 1459: 1458: 1453: 1451: 1439: 1437: 1436: 1431: 1429: 1428: 1412: 1410: 1409: 1404: 1402: 1401: 1385: 1383: 1382: 1377: 1375: 1374: 1355: 1353: 1352: 1347: 1345: 1344: 1328: 1326: 1325: 1320: 1318: 1317: 1301: 1299: 1298: 1293: 1288: 1287: 1268: 1266: 1265: 1260: 1258: 1257: 1241: 1239: 1238: 1233: 1206: 1204: 1203: 1198: 1196: 1195: 1179: 1177: 1176: 1171: 1140: 1138: 1137: 1132: 1130: 1118: 1116: 1115: 1110: 1108: 1107: 1091: 1089: 1088: 1083: 1081: 1080: 1062: 1043: 1041: 1040: 1035: 1024: 1023: 1011: 996: 994: 993: 988: 977: 976: 954: 952: 951: 946: 938: 930: 918: 916: 915: 910: 908: 907: 891: 889: 888: 883: 856: 854: 853: 848: 846: 845: 829: 827: 826: 821: 816: 808: 807: 795: 794: 778: 776: 775: 770: 768: 767: 724: 722: 721: 716: 714: 713: 690: 688: 687: 682: 670: 668: 667: 662: 646: 644: 643: 638: 626: 624: 623: 618: 588: 586: 585: 580: 549: 547: 546: 541: 529: 527: 526: 521: 424:complex manifold 420:Bernhard Riemann 390:sheaf cohomology 275:, introduced by 269:complex analysis 267:In mathematical 244: 242: 241: 236: 234: 233: 213: 211: 210: 205: 203: 202: 185:angle-preserving 175: 173: 172: 167: 165: 164: 159: 134: 132: 131: 126: 80:which preserves 22:is the study of 2468: 2467: 2463: 2462: 2461: 2459: 2458: 2457: 2443: 2442: 2436: 2423: 2398: 2393: 2387: 2374: 2337: 2285: 2282: 2281: 2276: 2272: 2263: 2259: 2246: 2242: 2237: 2221: 2180: 2167: 2121: 2110: 2109: 2071: 2061: 1886: 1875: 1874: 1838: 1827: 1826: 1763: 1762: 1744: 1696: 1690: 1649: 1643: 1612:(0)| = 1, then 1592:Moreover, if | 1556:holomorphic map 1509: 1474: 1468: 1466:Schwarz's Lemma 1442: 1441: 1420: 1415: 1414: 1393: 1388: 1387: 1363: 1358: 1357: 1336: 1331: 1330: 1309: 1304: 1303: 1276: 1271: 1270: 1249: 1244: 1243: 1209: 1208: 1187: 1182: 1181: 1147: 1146: 1121: 1120: 1099: 1094: 1093: 1072: 1067: 1066: 1015: 1004: 999: 998: 968: 957: 956: 921: 920: 899: 894: 893: 859: 858: 837: 832: 831: 799: 786: 781: 780: 759: 754: 753: 750: 745: 702: 697: 696: 673: 672: 671:is never zero, 653: 652: 629: 628: 594: 593: 559: 558: 532: 531: 512: 511: 485: 479: 471: 416:Riemann surface 412: 410:Riemann surface 406: 404:Riemann surface 398: 374:infinite series 351: 277:Grötzsch (1928) 265: 259: 225: 220: 219: 194: 189: 188: 154: 137: 136: 104: 103: 54: 48: 40: 17: 12: 11: 5: 2466: 2464: 2456: 2455: 2445: 2444: 2441: 2440: 2435:978-0821852705 2434: 2421: 2391: 2385: 2372: 2361: 2335: 2299:(1): 157–194, 2280: 2279: 2270: 2257: 2239: 2238: 2236: 2233: 2219: 2210: 2209: 2198: 2195: 2192: 2187: 2183: 2179: 2173: 2170: 2166: 2163: 2159: 2155: 2152: 2149: 2146: 2143: 2140: 2137: 2134: 2131: 2127: 2124: 2120: 2117: 2069: 2057: 2046:is called the 2042:. The number 1933: 1932: 1920: 1917: 1914: 1911: 1908: 1905: 1902: 1899: 1896: 1892: 1889: 1885: 1882: 1864: 1863: 1851: 1848: 1844: 1841: 1837: 1834: 1792: 1791: 1779: 1776: 1773: 1770: 1743: 1740: 1718:when one is a 1702:, named after 1692:Main article: 1689: 1686: 1645:Main article: 1642: 1639: 1513:Schwarz Lemma. 1508: 1505: 1480:, named after 1470:Main article: 1467: 1464: 1450: 1427: 1423: 1400: 1396: 1373: 1370: 1366: 1343: 1339: 1316: 1312: 1291: 1286: 1283: 1279: 1256: 1252: 1231: 1228: 1225: 1222: 1219: 1216: 1194: 1190: 1169: 1166: 1163: 1160: 1157: 1154: 1129: 1106: 1102: 1079: 1075: 1033: 1030: 1027: 1022: 1018: 1014: 1010: 1007: 986: 983: 980: 975: 971: 967: 964: 944: 941: 937: 933: 929: 906: 902: 881: 878: 875: 872: 869: 866: 844: 840: 819: 815: 811: 806: 802: 798: 793: 789: 766: 762: 749: 746: 744: 741: 712: 709: 705: 680: 660: 636: 616: 613: 610: 607: 604: 601: 590: 589: 578: 575: 572: 569: 566: 539: 519: 481:Main article: 478: 475: 470: 467: 408:Main article: 405: 402: 397: 394: 384:. The case of 350: 347: 281:Ahlfors (1935) 261:Main article: 258: 255: 232: 228: 201: 197: 177: 176: 163: 158: 153: 150: 147: 144: 123: 120: 117: 114: 111: 50:Main article: 47: 46:Conformal maps 44: 39: 36: 26:properties of 15: 13: 10: 9: 6: 4: 3: 2: 2465: 2454: 2451: 2450: 2448: 2437: 2431: 2427: 2422: 2417: 2412: 2408: 2404: 2397: 2392: 2388: 2386:0-8176-4339-7 2382: 2378: 2373: 2370: 2366: 2362: 2358: 2354: 2350: 2347:(in German), 2346: 2345: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2307: 2302: 2298: 2295:(in German), 2294: 2293: 2288: 2287:Ahlfors, Lars 2284: 2283: 2274: 2271: 2267: 2261: 2258: 2254: 2250: 2244: 2241: 2234: 2232: 2230: 2226: 2222: 2215: 2193: 2190: 2185: 2181: 2171: 2168: 2164: 2161: 2157: 2153: 2147: 2141: 2138: 2135: 2132: 2125: 2122: 2115: 2108: 2107: 2106: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2065: 2060: 2056: 2052: 2050: 2045: 2041: 2038:preimages in 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1964: 1962: 1958: 1954: 1950: 1949:triangulation 1946: 1942: 1938: 1918: 1912: 1906: 1903: 1900: 1897: 1890: 1887: 1880: 1873: 1872: 1871: 1869: 1849: 1842: 1839: 1835: 1832: 1825: 1824: 1823: 1821: 1817: 1813: 1809: 1808:Betti numbers 1806:), since the 1805: 1801: 1797: 1777: 1774: 1771: 1768: 1761: 1760: 1759: 1757: 1753: 1749: 1741: 1739: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1708:Adolf Hurwitz 1705: 1701: 1695: 1687: 1685: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1648: 1640: 1637: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1590: 1588: 1584: 1580: 1576: 1572: 1568: 1563: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1534: 1533:complex plane 1530: 1526: 1522: 1518: 1514: 1506: 1504: 1502: 1498: 1495: 1491: 1487: 1483: 1479: 1478:Schwarz lemma 1473: 1472:Schwarz lemma 1463: 1425: 1421: 1398: 1394: 1371: 1368: 1364: 1341: 1337: 1314: 1310: 1289: 1284: 1281: 1277: 1254: 1250: 1226: 1220: 1217: 1214: 1192: 1188: 1164: 1158: 1155: 1152: 1144: 1104: 1100: 1077: 1073: 1063: 1061: 1056: 1054: 1050: 1045: 1031: 1028: 1020: 1016: 1008: 1005: 984: 981: 973: 969: 962: 942: 939: 931: 904: 900: 876: 870: 867: 864: 842: 838: 809: 804: 800: 791: 787: 764: 760: 747: 742: 740: 738: 734: 729: 728: 710: 707: 703: 694: 678: 658: 650: 634: 611: 605: 599: 570: 567: 564: 557: 556: 555: 553: 550:are two open 517: 508: 506: 502: 498: 497:complex plane 494: 490: 484: 476: 474: 468: 466: 464: 460: 456: 452: 448: 443: 441: 437: 433: 429: 428:complex plane 425: 421: 417: 411: 403: 401: 395: 393: 391: 387: 383: 377: 375: 371: 367: 363: 355: 348: 346: 344: 340: 335: 333: 329: 325: 322:, then it is 321: 317: 313: 309: 308:homeomorphism 305: 301: 298: →  297: 293: 288: 286: 282: 279:and named by 278: 274: 270: 264: 256: 254: 252: 248: 230: 226: 217: 199: 195: 187:) at a point 186: 182: 161: 151: 148: 145: 142: 121: 115: 112: 109: 102: 101: 100: 97: 95: 94:complex plane 91: 87: 83: 79: 75: 74:conformal map 67: 63: 58: 53: 52:Conformal map 45: 43: 37: 35: 33: 29: 25: 21: 2425: 2406: 2402: 2379:. Springer. 2376: 2368: 2364: 2348: 2342: 2296: 2290: 2273: 2260: 2252: 2248: 2243: 2228: 2227:and also as 2224: 2217: 2213: 2211: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2067: 2063: 2058: 2054: 2047: 2043: 2039: 2035: 2034:has exactly 2031: 2027: 2023: 2022:such that π( 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1971: 1967: 1965: 1960: 1952: 1944: 1940: 1936: 1934: 1867: 1865: 1822:of surfaces 1820:covering map 1815: 1811: 1803: 1795: 1793: 1755: 1751: 1745: 1724:ramification 1719: 1699: 1697: 1680: 1676: 1650: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1591: 1586: 1582: 1578: 1574: 1570: 1566: 1564: 1559: 1551: 1547: 1543: 1535: 1524: 1520: 1516: 1512: 1511: 1477: 1475: 1064: 1057: 1052: 1046: 751: 736: 732: 730: 591: 509: 500: 486: 472: 453:such as the 444: 415: 413: 399: 378: 361: 360: 338: 336: 331: 327: 323: 315: 306:-preserving 299: 295: 291: 289: 285:eccentricity 272: 266: 184: 180: 178: 98: 73: 71: 65: 61: 41: 19: 18: 1986:at a point 493:open subset 455:square root 368:of a given 304:orientation 247:orientation 2357:54.0378.01 2331:0012.17204 2323:61.0365.03 2235:References 1816:unramified 1748:orientable 1589:(0)| ≤ 1. 1577:| for all 1558:such that 955:such that 727:chain rule 693:invertible 649:surjective 627:(that is, 499:is called 457:and other 179:is called 2315:0001-5962 2191:− 2165:∈ 2158:∑ 2154:− 2142:χ 2139:⋅ 2116:χ 1907:χ 1904:⋅ 1881:χ 1847:→ 1833:π 1772:− 1742:Statement 1665:parabolic 1659:, of the 1624:for some 1562:(0) = 0. 1529:unit disk 1523: : | 1507:Statement 1497:unit disk 1492:from the 1369:− 1282:− 1047:Although 810:≠ 708:− 615:Ω 577:Ω 574:→ 552:connected 538:Ω 505:injective 503:if it is 501:univalent 463:logarithm 461:, or the 343:conformal 312:open sets 251:curvature 181:conformal 152:⊂ 119:→ 24:geometric 2447:Category 2172:′ 2126:′ 2095:S′ 2091:S′ 2077:above π( 1984:ramified 1972:S′ 1891:′ 1843:′ 1810:are 1, 2 1750:surface 1716:surfaces 1661:elliptic 1546: : 1542:and let 1242:mapping 1180:mapping 1009:′ 892:mapping 733:schlicht 432:topology 310:between 302:′ be an 294: : 218:through 78:function 2409:: 1–2. 1798:is the 1746:For an 1714:of two 1669:maximum 1608:or if | 1565:Then, | 1531:in the 1053:exhibit 495:of the 92:in the 2432:  2383:  2355:  2329:  2321:  2313:  2010:, and 1998:and π( 1794:where 1677:strong 1673:domain 1632:with | 1600:)| = | 1573:)| ≤ | 1540:origin 1488:about 1141:. The 737:simple 491:on an 436:sphere 366:domain 216:curves 86:domain 82:angles 2399:(PDF) 2216:have 1802:(the 1800:genus 1758:) is 1726:with 1585:and | 1554:be a 1413:onto 1329:onto 440:torus 438:or a 135:with 90:range 76:is a 2430:ISBN 2407:2012 2381:ISBN 2311:ISSN 2089:and 2051:at P 2006:) = 1974:are 1970:and 1706:and 1698:the 1681:weak 1663:and 1651:The 1620:) = 1515:Let 1494:open 1476:The 1092:and 1029:> 997:and 940:< 830:and 752:Let 530:and 271:, a 183:(or 88:and 2411:doi 2353:JFM 2327:Zbl 2319:JFM 2301:doi 2018:of 1990:in 1963:). 1951:of 1943:in 1628:in 1581:in 1519:= { 691:is 647:is 337:If 318:is 2449:: 2405:. 2401:. 2349:80 2325:, 2317:, 2309:, 2297:65 2231:. 1818:) 1738:. 1622:az 1610:f′ 1587:f′ 1550:→ 1044:. 507:. 487:A 465:. 414:A 392:. 345:. 334:. 287:. 253:. 96:. 72:A 34:. 2438:. 2419:. 2413:: 2389:. 2360:. 2334:. 2303:: 2220:P 2218:e 2214:P 2197:) 2194:1 2186:P 2182:e 2178:( 2169:S 2162:P 2151:) 2148:S 2145:( 2136:N 2133:= 2130:) 2123:S 2119:( 2103:d 2099:d 2087:S 2083:P 2079:P 2075:P 2070:P 2068:e 2064:S 2059:P 2055:e 2044:n 2040:U 2036:n 2032:U 2028:U 2024:P 2020:P 2016:U 2012:n 2008:z 2004:z 2000:P 1996:P 1992:S 1988:P 1968:S 1953:S 1945:S 1941:N 1937:S 1919:. 1916:) 1913:S 1910:( 1901:N 1898:= 1895:) 1888:S 1884:( 1868:N 1850:S 1840:S 1836:: 1812:g 1796:g 1778:g 1775:2 1769:2 1756:S 1752:S 1634:a 1630:C 1626:a 1618:z 1616:( 1614:f 1606:z 1602:z 1598:z 1596:( 1594:f 1583:D 1579:z 1575:z 1571:z 1569:( 1567:f 1560:f 1552:D 1548:D 1544:f 1536:C 1525:z 1521:z 1517:D 1449:C 1426:2 1422:D 1399:1 1395:D 1372:1 1365:g 1342:2 1338:D 1315:1 1311:D 1290:f 1285:1 1278:g 1255:2 1251:D 1230:) 1227:z 1224:( 1221:g 1218:= 1215:w 1193:1 1189:D 1168:) 1165:z 1162:( 1159:f 1156:= 1153:w 1128:C 1105:2 1101:D 1078:1 1074:D 1032:0 1026:) 1021:0 1017:z 1013:( 1006:f 985:0 982:= 979:) 974:0 970:z 966:( 963:f 943:1 936:| 932:w 928:| 905:1 901:D 880:) 877:z 874:( 871:f 868:= 865:w 843:1 839:D 818:) 814:C 805:1 801:D 797:( 792:1 788:D 765:0 761:z 711:1 704:f 679:f 659:f 635:f 612:= 609:) 606:G 603:( 600:f 571:G 568:: 565:f 518:G 339:K 332:K 328:f 324:K 316:f 300:D 296:D 292:f 231:0 227:u 200:0 196:u 162:n 157:C 149:V 146:, 143:U 122:V 116:U 113:: 110:f 66:f 62:f

Index

geometric
analytic functions
Riemann mapping theorem
Conformal map

function
angles
domain
range
complex plane
curves
orientation
curvature
Quasiconformal mapping
complex analysis
Grötzsch (1928)
Ahlfors (1935)
eccentricity
orientation
homeomorphism
open sets
continuously differentiable
conformal

domain
analytic function
infinite series
mathematical singularities
several complex variables
sheaf cohomology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.