Knowledge

Fitting subgroup

Source 📝

551:
if every element acts as an inner automorphism on every chief factor. The generalized Fitting subgroup is the unique largest subnormal quasi-nilpotent subgroup, and is equal to the set of all elements which act as inner automorphisms on every chief factor of the whole group
730:
is a finite solvable group, then the Fitting subgroup contains its own centralizer. The centralizer of the Fitting subgroup is the center of the Fitting subgroup. In this case, the generalized Fitting subgroup is equal to the Fitting subgroup. More generally, if
853:-local subgroups usually have components in the generalized Fitting subgroup, though there are many exceptions for groups that have small rank, are defined over small fields, or are sporadic. This is used to classify the finite simple groups, because if a 663: 321: 546:
The generalized Fitting subgroup can also be viewed as a generalized centralizer of chief factors. A nonabelian semisimple group cannot centralize itself, but it does act on itself as inner automorphisms. A group is said to be
382:) of a group is the subgroup generated by all components. Any two components of a group commute, so the layer is a perfect central extension of a product of simple groups, and is the largest normal subgroup of 219:
is centralized by every element. Relaxing the condition somewhat, and taking the subgroup of elements of a general finite group which centralize every chief factor, one simply gets the Fitting subgroup again
394:) is the subgroup generated by the layer and the Fitting subgroup. The layer commutes with the Fitting subgroup, so the generalized Fitting subgroup is a central extension of a product of 864:
The analysis of finite simple groups by means of the structure and embedding of the generalized Fitting subgroups of their maximal subgroups was originated by Helmut Bender (
562: 230: 412:
This definition of the generalized Fitting subgroup can be motivated by some of its intended uses. Consider the problem of trying to identify a normal subgroup
735:
is a finite group, then the generalized Fitting subgroup contains its own centralizer. This means that in some sense the generalized Fitting subgroup controls
543:
contains its own centralizer. The generalized Fitting subgroup is the smallest subgroup that contains the Fitting subgroup and all normal semisimple subgroups.
831: 977: 898: 1014: 834:, this allows one to guess over which field a simple group should be defined. Note that a few groups are of characteristic 1045: 206: 925: 96: 437: 1040: 658:{\displaystyle \operatorname {Fit} ^{*}(G)=\bigcap \{HC_{G}(H/K):H/K{\text{ a chief factor of }}G\}.} 135: 111:, the Fitting subgroup is defined to be the subgroup generated by the nilpotent normal subgroups of 775:). In particular there are only a finite number of groups with given generalized Fitting subgroup. 142:
is again a normal nilpotent subgroup. It may also be explicitly constructed as the product of the
1009:, Grundlehren der Mathematischen Wissenschaften, vol. 243, Berlin-New York: Springer-Verlag, 907: 886: 873: 346: 209: 869: 316:{\displaystyle \operatorname {Fit} (G)=\bigcap \{C_{G}(H/K):H/K{\text{ a chief factor of }}G\}.} 165:
is a finite non-trivial solvable group then the Fitting subgroup is always non-trivial, i.e. if
1010: 991: 973: 942: 894: 823: 349: 934: 32: 17: 1024: 987: 954: 794:
and exert a great deal of control over the structure of the group (allowing what is called
1020: 1002: 983: 969: 961: 950: 360: 202: 131: 61: 58: 857:-local subgroup has a known component, it is often possible to identify the whole group ( 795: 194: 80: 71:. Intuitively, it represents the smallest subgroup which "controls" the structure of 1034: 357: 138:
which says that the product of a finite collection of normal nilpotent subgroups of
476: 399: 216: 143: 119: 54: 47: 36: 405:
The layer is also the maximal normal semisimple subgroup, where a group is called
327: 198: 28: 910:; Seitz, Gary M. (1976), "On groups with a standard component of known type", 946: 872:. It is especially effective in the exceptional cases where components or 995: 845:
If a simple group is not of Lie type over a field of given characteristic
197:. Since the Fitting subgroup of a finite solvable group contains its own 507:) is a product of non-abelian simple groups then the derived subgroup of 64: 527:
contains the Fitting subgroup and all normal semisimple subgroups, then
938: 409:
if it is a perfect central extension of a product of simple groups.
115:. For infinite groups, the Fitting subgroup is not always nilpotent. 923:
Bender, Helmut (1970), "On groups with abelian Sylow 2-subgroups",
201:, this gives a method of understanding finite solvable groups as 420:
that contains its own centralizer and the Fitting group. If
134:
of the Fitting subgroup of a finite group is guaranteed by
193:
is not itself nilpotent, giving rise to the concept of
386:
with this structure. The generalized Fitting subgroup
565: 233: 118:
The remainder of this article deals exclusively with
94:, which is generated by the Fitting subgroup and the 657: 315: 87:is not solvable, a similar role is played by the 553: 107:For an arbitrary (not necessarily finite) group 858: 511:is a normal semisimple subgroup mapping onto 8: 787:-subgroups of a finite group are called the 751:) is contained in the automorphism group of 649: 594: 307: 255: 455:, which is the same as the intersection of 641: 633: 616: 604: 570: 564: 299: 291: 274: 262: 232: 177:)≠1. Similarly the Fitting subgroup of 826:defined over a field of characteristic 479:as it is characteristically simple. If 221: 865: 832:classification of finite simple groups 491:) is a product of cyclic groups then 7: 798:). A finite group is said to be of 495:must be in the Fitting subgroup. If 556:, Chapter X, Theorem 5.4, p. 126): 25: 337:The generalized Fitting subgroup 968:(in German), Berlin, New York: 690:) if and only if there is some 893:, Cambridge University Press, 868:) and has come to be known as 783:The normalizers of nontrivial 624: 610: 585: 579: 282: 268: 246: 240: 1: 822:-local subgroup, because any 643: a chief factor of  301: a chief factor of  1005:; Blackburn, Norman (1982), 554:Huppert & Blackburn 1982 475:) is a product of simple or 224:, Kap.VI, Satz 5.4, p.686): 215:In a nilpotent group, every 169:≠1 is finite solvable, then 89:generalized Fitting subgroup 31:, especially in the area of 18:Generalized Fitting subgroup 859:Aschbacher & Seitz 1976 830:has this property. In the 1062: 759:), and the centralizer of 743:modulo the centralizer of 926:Mathematische Zeitschrift 436:. If not, pick a minimal 363:of a simple group.) The 189:) will be nontrivial if 57:, is the unique largest 838:type for more than one 438:characteristic subgroup 205:of nilpotent groups by 150:over all of the primes 659: 539:) must be trivial, so 428:we want to prove that 424:is the centralizer of 352:subgroup. (A group is 326:The generalization to 317: 154:dividing the order of 660: 318: 212:of nilpotent groups. 1046:Functional subgroups 876:are not applicable. 698:such that for every 563: 231: 126:The Fitting subgroup 1007:Finite groups. III. 908:Aschbacher, Michael 891:Finite Group Theory 887:Aschbacher, Michael 874:signalizer functors 333:groups is similar. 210:automorphism groups 939:10.1007/BF01109839 767:) is contained in 655: 313: 979:978-3-540-03825-2 900:978-0-521-78675-1 824:group of Lie type 818:-group for every 644: 451:is the center of 361:central extension 302: 136:Fitting's theorem 16:(Redirected from 1053: 1027: 1003:Huppert, Bertram 998: 966:Endliche Gruppen 957: 919: 903: 792:-local subgroups 668:Here an element 664: 662: 661: 656: 645: 642: 637: 620: 609: 608: 575: 574: 432:is contained in 345:of a group is a 322: 320: 319: 314: 303: 300: 295: 278: 267: 266: 41:Fitting subgroup 21: 1061: 1060: 1056: 1055: 1054: 1052: 1051: 1050: 1031: 1030: 1017: 1001: 980: 970:Springer-Verlag 960: 922: 906: 901: 885: 882: 870:Bender's method 800:characteristic 781: 724: 681: 600: 566: 561: 560: 549:quasi-nilpotent 339: 258: 229: 228: 128: 23: 22: 15: 12: 11: 5: 1059: 1057: 1049: 1048: 1043: 1033: 1032: 1029: 1028: 1015: 999: 978: 958: 920: 912:Osaka J. Math. 904: 899: 881: 878: 796:local analysis 780: 777: 723: 720: 677: 666: 665: 654: 651: 648: 640: 636: 632: 629: 626: 623: 619: 615: 612: 607: 603: 599: 596: 593: 590: 587: 584: 581: 578: 573: 569: 338: 335: 324: 323: 312: 309: 306: 298: 294: 290: 287: 284: 281: 277: 273: 270: 265: 261: 257: 254: 251: 248: 245: 242: 239: 236: 195:Fitting length 127: 124: 53:, named after 24: 14: 13: 10: 9: 6: 4: 3: 2: 1058: 1047: 1044: 1042: 1041:Finite groups 1039: 1038: 1036: 1026: 1022: 1018: 1016:3-540-10633-2 1012: 1008: 1004: 1000: 997: 993: 989: 985: 981: 975: 971: 967: 963: 959: 956: 952: 948: 944: 940: 936: 932: 928: 927: 921: 917: 913: 909: 905: 902: 896: 892: 888: 884: 883: 879: 877: 875: 871: 867: 862: 860: 856: 852: 848: 843: 841: 837: 833: 829: 825: 821: 817: 813: 809: 805: 803: 797: 793: 791: 786: 778: 776: 774: 770: 766: 762: 758: 754: 750: 746: 742: 738: 734: 729: 721: 719: 717: 713: 709: 705: 701: 697: 693: 689: 685: 680: 675: 671: 652: 646: 638: 634: 630: 627: 621: 617: 613: 605: 601: 597: 591: 588: 582: 576: 571: 567: 559: 558: 557: 555: 550: 544: 542: 538: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 494: 490: 486: 482: 478: 477:cyclic groups 474: 470: 466: 462: 458: 454: 450: 446: 442: 439: 435: 431: 427: 423: 419: 415: 410: 408: 403: 401: 400:simple groups 397: 393: 389: 385: 381: 377: 373: 369: 366: 362: 359: 355: 351: 348: 344: 336: 334: 332: 330: 310: 304: 296: 292: 288: 285: 279: 275: 271: 263: 259: 252: 249: 243: 237: 234: 227: 226: 225: 223: 218: 213: 211: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 159: 157: 153: 149: 145: 141: 137: 133: 125: 123: 121: 120:finite groups 116: 114: 110: 105: 103: 99: 98: 93: 90: 86: 82: 78: 74: 70: 66: 63: 60: 56: 52: 49: 45: 42: 38: 34: 30: 19: 1006: 965: 930: 924: 918:(3): 439–482 915: 911: 890: 863: 854: 850: 846: 844: 839: 835: 827: 819: 815: 811: 807: 801: 799: 789: 788: 784: 782: 779:Applications 772: 768: 764: 760: 756: 752: 748: 744: 740: 736: 732: 727: 725: 715: 711: 707: 703: 699: 695: 691: 687: 683: 678: 673: 669: 667: 548: 545: 540: 536: 532: 528: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 472: 468: 464: 460: 456: 452: 448: 444: 440: 433: 429: 425: 421: 417: 413: 411: 406: 404: 398:-groups and 395: 391: 387: 383: 379: 375: 371: 367: 364: 353: 342: 340: 328: 325: 222:Huppert 1967 217:chief factor 214: 190: 186: 182: 178: 174: 170: 166: 162: 160: 155: 151: 147: 139: 129: 117: 112: 108: 106: 101: 95: 91: 88: 84: 76: 72: 68: 55:Hans Fitting 50: 48:finite group 43: 40: 37:group theory 26: 962:Huppert, B. 933:: 164–176, 866:Bender 1970 849:, then the 356:if it is a 354:quasisimple 350:quasisimple 199:centralizer 29:mathematics 1035:Categories 880:References 739:, because 722:Properties 407:semisimple 331:-nilpotent 203:extensions 132:nilpotency 97:components 947:0025-5874 592:⋂ 577:⁡ 572:∗ 523:). So if 347:subnormal 343:component 253:⋂ 238:⁡ 62:nilpotent 35:known as 964:(1967), 889:(2000), 463:. Then 447:, where 207:faithful 81:solvable 65:subgroup 1025:0650245 988:0224703 955:0288180 814:) is a 358:perfect 144:p-cores 83:. When 33:algebra 1023:  1013:  996:527050 994:  986:  976:  953:  945:  897:  672:is in 445:C/Z(H) 441:M/Z(H) 59:normal 39:, the 374:) or 365:layer 75:when 46:of a 1011:ISBN 992:OCLC 974:ISBN 943:ISSN 895:ISBN 804:type 714:mod 459:and 449:Z(H) 130:The 935:doi 931:117 861:). 806:if 726:If 702:in 694:in 568:Fit 443:of 416:of 235:Fit 161:If 146:of 104:. 100:of 79:is 67:of 27:In 1037:: 1021:MR 1019:, 990:, 984:MR 982:, 972:, 951:MR 949:, 941:, 929:, 916:13 914:, 842:. 718:. 710:≡ 706:, 402:. 341:A 158:. 122:. 937:: 855:p 851:p 847:p 840:p 836:p 828:p 820:p 816:p 812:G 810:( 808:F 802:p 790:p 785:p 773:G 771:( 769:F 765:G 763:( 761:F 757:G 755:( 753:F 749:G 747:( 745:F 741:G 737:G 733:G 728:G 716:K 712:x 708:x 704:H 700:x 696:H 692:h 688:K 686:/ 684:H 682:( 679:G 676:C 674:H 670:g 653:. 650:} 647:G 639:K 635:/ 631:H 628:: 625:) 622:K 618:/ 614:H 611:( 606:G 602:C 598:H 595:{ 589:= 586:) 583:G 580:( 552:( 541:H 537:H 535:( 533:Z 531:/ 529:M 525:H 521:H 519:( 517:Z 515:/ 513:M 509:M 505:H 503:( 501:Z 499:/ 497:M 493:M 489:H 487:( 485:Z 483:/ 481:M 473:H 471:( 469:Z 467:/ 465:M 461:H 457:C 453:H 434:H 430:C 426:H 422:C 418:G 414:H 396:p 392:G 390:( 388:F 384:G 380:G 378:( 376:L 372:G 370:( 368:E 329:p 311:. 308:} 305:G 297:K 293:/ 289:H 286:: 283:) 280:K 276:/ 272:H 269:( 264:G 260:C 256:{ 250:= 247:) 244:G 241:( 220:( 191:G 187:G 185:( 183:F 181:/ 179:G 175:G 173:( 171:F 167:G 163:G 156:G 152:p 148:G 140:G 113:G 109:G 102:G 92:F 85:G 77:G 73:G 69:G 51:G 44:F 20:)

Index

Generalized Fitting subgroup
mathematics
algebra
group theory
finite group
Hans Fitting
normal
nilpotent
subgroup
solvable
components
finite groups
nilpotency
Fitting's theorem
p-cores
Fitting length
centralizer
extensions
faithful
automorphism groups
chief factor
Huppert 1967
p-nilpotent
subnormal
quasisimple
perfect
central extension
simple groups
characteristic subgroup
cyclic groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.