Knowledge (XXG)

Gigantothermy

Source 📝

32: 235:
influx of food to meet energy demands. Although lions are much smaller than crocodiles, the lions must eat more often than crocodiles because of the higher metabolic output necessary to maintain the lion's heat and energy. The crocodile needs only to lie in the sun to digest more quickly and synthesize
225:
as reptiles, necessitating larger energy demands, and consequently producing more heat to use in thermoregulation. An ectotherm the same size of an endotherm would not be able to remain as active as the endotherm, as heat is modulated behaviorally rather than biochemically. More time is dedicated to
234:
Large ectotherms displaying the same body size as large endotherms have the advantage of a slow metabolic rate, meaning that it takes reptiles longer to digest their food. Consequently gigantothermic ectotherms would not have to eat as often as large endotherms that need to maintain a constant
220:
Gigantothermy allows animals to maintain body temperature, but is most likely detrimental to endurance and muscle power as compared with endotherms due to decreased anaerobic efficiency. Mammals' bodies have roughly four times as much surface area occupied by
181:. A bigger animal has proportionately less of its body close to the outside environment than a smaller animal of otherwise similar shape, and so it gains heat from, or loses heat to, the environment much more slowly. 433: 315: 137: 130: 323: 123: 300: 373:"Maximal Aerobic and Anaerobic Power Generation in Large Crocodiles versus Mammals: Implications for Dinosaur Gigantothermy" 178: 452: 462: 268: 236: 200:. Gigantotherms, though almost always ectothermic, generally have a body temperature similar to that of 457: 384: 253: 412: 437: 402: 392: 319: 174: 22: 296:
Thermoregulatory adaptations of Acrocanthosaurus atokensis - evidence from oxygen isotopes
263: 101: 86: 248: 388: 344: 407: 372: 446: 111: 273: 258: 222: 166: 106: 96: 81: 71: 66: 56: 397: 294: 193: 61: 209: 205: 201: 185: 170: 76: 51: 46: 41: 416: 31: 349: 197: 162: 189: 173:
animals are more easily able to maintain a constant, relatively high
184:
The phenomenon is important in the biology of ectothermic
208:
would have been gigantothermic, rendering them virtually
177:than smaller animals by virtue of their smaller 131: 8: 138: 124: 18: 406: 396: 204:. It has been suggested that the larger 285: 161:) is a phenomenon with significance in 21: 293:Missell, Christine Ann (2004-04-07). 16:Form of thermoregulation by body size 7: 345:"Big dinosaurs 'had warmer blood'" 14: 371:Seymour, Roger S. (2013-07-05). 30: 301:North Carolina State University 1: 398:10.1371/journal.pone.0069361 192:, and aquatic reptiles like 179:surface-area-to-volume ratio 314:Fitzpatrick, Katie (2005). 479: 269:Physiology of dinosaurs 169:, whereby large, bulky 155:ectothermic homeothermy 226:basking than eating. 159:inertial homeothermy 389:2013PLoSO...869361S 153:(sometimes called 453:Animal physiology 148: 147: 470: 463:Thermoregulation 421: 420: 410: 400: 368: 362: 361: 359: 358: 341: 335: 334: 332: 331: 322:. Archived from 320:Davidson College 311: 305: 304: 290: 188:, such as large 175:body temperature 140: 133: 126: 34: 23:Thermoregulation 19: 478: 477: 473: 472: 471: 469: 468: 467: 443: 442: 430: 425: 424: 370: 369: 365: 356: 354: 343: 342: 338: 329: 327: 316:"Gigantothermy" 313: 312: 308: 292: 291: 287: 282: 264:Bradymetabolism 254:Bergmann's rule 245: 232: 218: 144: 107:Tachymetabolism 102:Bradymetabolism 87:Thermostability 17: 12: 11: 5: 476: 474: 466: 465: 460: 455: 445: 444: 441: 440: 429: 428:External links 426: 423: 422: 363: 336: 306: 284: 283: 281: 278: 277: 276: 271: 266: 261: 256: 251: 244: 241: 231: 228: 217: 214: 146: 145: 143: 142: 135: 128: 120: 117: 116: 115: 114: 109: 104: 99: 94: 89: 84: 79: 74: 69: 64: 59: 54: 49: 44: 36: 35: 27: 26: 15: 13: 10: 9: 6: 4: 3: 2: 475: 464: 461: 459: 456: 454: 451: 450: 448: 439: 435: 434:Gigantothermy 432: 431: 427: 418: 414: 409: 404: 399: 394: 390: 386: 383:(7): e69361. 382: 378: 374: 367: 364: 352: 351: 346: 340: 337: 326:on 2012-06-30 325: 321: 317: 310: 307: 302: 299:(MS thesis). 298: 297: 289: 286: 279: 275: 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 246: 242: 240: 238: 229: 227: 224: 216:Disadvantages 215: 213: 211: 207: 203: 199: 195: 191: 187: 182: 180: 176: 172: 168: 164: 160: 156: 152: 151:Gigantothermy 141: 136: 134: 129: 127: 122: 121: 119: 118: 113: 112:Thermogenesis 110: 108: 105: 103: 100: 98: 95: 93: 92:Gigantothermy 90: 88: 85: 83: 80: 78: 75: 73: 70: 68: 65: 63: 60: 58: 55: 53: 50: 48: 45: 43: 40: 39: 38: 37: 33: 29: 28: 24: 20: 380: 376: 366: 355:. Retrieved 353:. 2006-07-11 348: 339: 328:. Retrieved 324:the original 309: 295: 288: 274:Tachyaerobic 259:Bradyaerobic 249:Allen's rule 233: 223:mitochondria 219: 210:homeothermic 194:ichthyosaurs 183: 167:paleontology 158: 154: 150: 149: 97:Kleptothermy 91: 82:Thermolabile 67:Heterothermy 57:Poikilotherm 458:Animal size 171:ectothermic 62:Homeothermy 447:Categories 357:2011-12-21 330:2011-12-21 280:References 230:Advantages 202:endotherms 72:Stenotherm 25:in animals 206:dinosaurs 198:mosasaurs 186:megafauna 77:Eurytherm 52:Mesotherm 47:Endotherm 42:Ectotherm 438:Davidson 417:23861968 377:PLOS ONE 350:BBC News 243:See also 408:3702618 385:Bibcode 190:turtles 163:biology 415:  405:  413:PMID 196:and 165:and 436:at 403:PMC 393:doi 237:ATP 157:or 449:: 411:. 401:. 391:. 379:. 375:. 347:. 318:. 239:. 212:. 419:. 395:: 387:: 381:8 360:. 333:. 303:. 139:e 132:t 125:v

Index

Thermoregulation

Ectotherm
Endotherm
Mesotherm
Poikilotherm
Homeothermy
Heterothermy
Stenotherm
Eurytherm
Thermolabile
Thermostability
Gigantothermy
Kleptothermy
Bradymetabolism
Tachymetabolism
Thermogenesis
v
t
e
biology
paleontology
ectothermic
body temperature
surface-area-to-volume ratio
megafauna
turtles
ichthyosaurs
mosasaurs
endotherms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.