Knowledge (XXG)

Grötzsch's theorem

Source 📝

20: 264:. They proved that every triangle-free planar graph can be represented by a collection of line segments, with three slopes, such that two vertices of the graph are adjacent if and only if the line segments representing them cross. A 3-coloring of the graph may then be obtained by assigning two vertices the same color whenever their line segments have the same slope. 54:, every graph that can be drawn in the plane without edge crossings can have its vertices colored using at most four different colors, so that the two endpoints of every edge have different colors, but according to Grötzsch's theorem only three colors are needed for planar graphs that do not contain three mutually adjacent vertices. 92:. However, Grötzsch's theorem itself does not extend from coloring to list coloring: there exist triangle-free planar graphs that are not 3-list-colorable. In 2012, Nabiha Asghar gave a new and much simpler proof of the theorem that is inspired by Thomassen's work. 211:, a 4-chromatic graph. By combining these two results, it may be shown that every triangle-free planar graph has a homomorphism to a triangle-free 3-colorable graph, the 468: 511: 240:
are both non-planar; there does not exist a triangle-free planar graph to which every other triangle-free planar graph may be mapped by a homomorphism.
144:
The theorem cannot be generalized to all nonplanar triangle-free graphs: not every nonplanar triangle-free graph is 3-colorable. In particular, the
77:
version of the theorem: a 3-edge-connected planar graph (or more generally a planar graph with no bridges and at most three 3-edge cuts) has a
551: 783: 857: 813: 156:
is a transformation of graphs that can be used to construct triangle-free graphs that require arbitrarily high numbers of colors.
100:
A slightly more general result is true: if a planar graph has at most three triangles then it is 3-colorable. However, the planar
729: 595:
Glebov, A. N.; Kostochka, A. V.; Tashkinov, V. A. (2005), "Smaller planar triangle-free graphs that are not 3-list-colorable",
138: 672: 200:. In the language of homomorphisms, Grötzsch's theorem states that every triangle-free planar graph has a homomorphism to 547: 358: 122: 253: 503: 763: 212: 394: 84:
In 2003, Carsten Thomassen derived an alternative proof from another related theorem: every planar graph with
618:(1959), "Zur Theorie der diskreten Gebilde, VII: Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel", 847: 759: 852: 543: 539: 354: 118: 125:
announced a proof of another generalization, conjectured in 1969 by L. Havel: there exists a constant
570: 376: 223: 85: 615: 578: 63: 40: 716: 560: 366: 257: 186: 51: 638: 363:
Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies
779: 145: 78: 825: 771: 738: 708: 693: 650: 604: 520: 149: 793: 752: 664: 631: 532: 800:
Steinberg, Richard; Younger, D. H. (1989), "Grötzsch's Theorem for the projective plane",
789: 748: 660: 627: 528: 574: 380: 173:. In particular, there exists a planar graph without 4-cycles that cannot be 3-colored. 207:. Naserasr showed that every triangle-free planar graph also has a homomorphism to the 134: 101: 47: 830: 841: 208: 89: 770:, Algorithms and Combinatorics, vol. 28, Heidelberg: Springer, pp. 15–16, 720: 482: 261: 43: 32: 19: 678: 273: 153: 74: 28: 743: 608: 775: 712: 272:
Given a triangle-free planar graph, a 3-coloring of the graph can be found in
166:-free graphs, either: not every planar graph that requires 4 colors contains 727:
Naserasr, Reza (2007), "Homomorphisms and edge-colourings of planar graphs",
655: 222:
with the Clebsch graph. The coloring of the graph may then be recovered by
66:, who published its proof in 1959. Grötzsch's original proof was complex. 226:
this homomorphism with the homomorphism from this tensor product to its
137:
with three colors. This work formed part of the basis for Dvořák's 2015
524: 550:(2009), "Three-coloring triangle-free planar graphs in linear time", 73:
In 1989, Richard Steinberg and Dan Younger formulated and proved a
565: 371: 129:
such that, if a planar graph has no two triangles within distance
18: 233:
factor. However, the Clebsch graph and its tensor product with
502:
de Castro, N.; Cobos, F. J.; Dana, J. C.; Márquez, A. (2002),
620:
Wiss. Z. Martin-Luther-U., Halle-Wittenberg, Math.-Nat. Reihe
485:(1960), "Les problèmes de colaration en théorie des graphs", 504:"Triangle-free planar graphs as segment intersection graphs" 117:, contain four triangles and are not 3-colorable. In 2009, 816:(2003), "A short list color proof of Grötzsch's theorem", 446: 249: 434: 330: 152:
are triangle-free graphs requiring four colors, and the
449:. For earlier work on algorithms for this problem, see 110:, and infinitely many other planar graphs containing 70:
attempted to simplify it but his proof was erroneous.
553:
Proc. 20th ACM-SIAM Symposium on Discrete Algorithms
307: 159:The theorem cannot be generalized to all planar 62:The theorem is named after German mathematician 16:Every triangle-free planar graph is 3-colorable 694:"Fast 3-coloring triangle-free planar graphs" 641:(1963), "Grötzsch's theorem on 3-colorings", 8: 512:Journal of Graph Algorithms and Applications 23:A 3-coloring of a triangle-free planar graph 256:on the representation of planar graphs as 829: 818:Journal of Combinatorial Theory, Series B 742: 654: 564: 447:Dvořák, Kawarabayashi & Thomas (2009) 370: 319: 50:with only three colors. According to the 496: 430: 331:Glebov, Kostochka & Tashkinov (2005) 295: 476:Master's Thesis, University of Waterloo 450: 418: 285: 766:(2012), "2.5 Homomorphism Dualities", 435:Nešetřil & Ossona de Mendez (2012) 401:, University of Bergen, September 2015 342: 395:"The European Prize in Combinatorics" 291: 289: 67: 7: 674:Progress on Steinberg's Conjecture 671:Heckman, Christopher Carl (2007), 14: 252:combines Grötzsch's theorem with 487:Publ. Inst. Statist. Univ. Paris 177:Factoring through a homomorphism 730:Journal of Combinatorial Theory 139:European Prize in Combinatorics 308:Steinberg & Younger (1989) 133:of each other, then it can be 1: 831:10.1016/S0095-8956(03)00029-7 39:is the statement that every 874: 744:10.1016/j.jctb.2006.07.001 609:10.1016/j.disc.2004.10.015 776:10.1007/978-3-642-27875-4 764:Ossona de Mendez, Patrice 713:10.1007/s00453-009-9295-2 858:Theorems in graph theory 692:Kowalik, Łukasz (2010), 268:Computational complexity 254:Scheinerman's conjecture 244:Geometric representation 181:A 3-coloring of a graph 96:Larger classes of graphs 544:Kawarabayashi, Ken-ichi 467:Asghar, Nabiha (2012), 250:de Castro et al. (2002) 656:10.1307/mmj/1028998916 559:, pp. 1176–1182, 185:may be described by a 24: 22: 597:Discrete Mathematics 469:"Grötzsch's Theorem" 575:2013arXiv1302.5121D 381:2009arXiv0911.0885D 258:intersection graphs 79:nowhere-zero 3-flow 814:Thomassen, Carsten 760:Nešetřil, Jaroslav 525:10.7155/jgaa.00043 187:graph homomorphism 52:four-color theorem 37:Grötzsch's theorem 25: 785:978-3-642-27874-7 643:Michigan Math. J. 616:Grötzsch, Herbert 88:at least five is 865: 834: 833: 809: 802:Ars Combinatoria 796: 755: 746: 723: 698: 688: 687: 686: 677:, archived from 667: 658: 639:Grünbaum, Branko 634: 611: 603:(2–3): 269–274, 591: 590: 589: 583: 577:, archived from 568: 558: 535: 508: 494: 478: 473: 454: 444: 438: 428: 422: 416: 410: 408: 407: 406: 391: 385: 383: 374: 357:; Kráľ, Daniel; 351: 345: 340: 334: 328: 322: 320:Thomassen (2003) 317: 311: 305: 299: 293: 90:3-list-colorable 64:Herbert Grötzsch 873: 872: 868: 867: 866: 864: 863: 862: 838: 837: 812: 799: 786: 758: 726: 696: 691: 684: 682: 670: 637: 614: 594: 587: 585: 581: 556: 538: 506: 501: 497:Grünbaum (1963) 481: 471: 466: 463: 458: 457: 445: 441: 431:Naserasr (2007) 429: 425: 417: 413: 404: 402: 393: 392: 388: 353: 352: 348: 341: 337: 329: 325: 318: 314: 306: 302: 296:Grünbaum (1963) 294: 287: 282: 270: 246: 239: 232: 221: 206: 199: 179: 172: 165: 116: 109: 98: 60: 17: 12: 11: 5: 871: 869: 861: 860: 855: 850: 848:Graph coloring 840: 839: 836: 835: 824:(1): 189–192, 810: 797: 784: 756: 737:(3): 394–400, 724: 707:(3): 770–789, 689: 668: 649:(3): 303–310, 635: 612: 592: 540:Dvořák, Zdeněk 536: 499: 495:, as cited by 479: 462: 459: 456: 455: 451:Kowalik (2010) 439: 433:, Theorem 11; 423: 419:Heckman (2007) 411: 386: 355:Dvořák, Zdeněk 346: 335: 323: 312: 300: 284: 283: 281: 278: 269: 266: 245: 242: 237: 230: 219: 213:tensor product 204: 197: 193:to a triangle 178: 175: 170: 163: 146:Grötzsch graph 114: 107: 102:complete graph 97: 94: 59: 56: 15: 13: 10: 9: 6: 4: 3: 2: 870: 859: 856: 854: 853:Planar graphs 851: 849: 846: 845: 843: 832: 827: 823: 819: 815: 811: 807: 803: 798: 795: 791: 787: 781: 777: 773: 769: 765: 761: 757: 754: 750: 745: 740: 736: 732: 731: 725: 722: 718: 714: 710: 706: 702: 695: 690: 681:on 2012-07-22 680: 676: 675: 669: 666: 662: 657: 652: 648: 644: 640: 636: 633: 629: 625: 621: 617: 613: 610: 606: 602: 598: 593: 584:on 2012-10-18 580: 576: 572: 567: 562: 555: 554: 549: 548:Thomas, Robin 545: 541: 537: 534: 530: 526: 522: 518: 514: 513: 505: 500: 498: 492: 488: 484: 483:Berge, Claude 480: 477: 470: 465: 464: 460: 452: 448: 443: 440: 436: 432: 427: 424: 420: 415: 412: 400: 399:EuroComb 2015 396: 390: 387: 382: 378: 373: 368: 364: 360: 359:Thomas, Robin 356: 350: 347: 344: 343:Asghar (2012) 339: 336: 332: 327: 324: 321: 316: 313: 309: 304: 301: 297: 292: 290: 286: 279: 277: 275: 267: 265: 263: 262:line segments 259: 255: 251: 243: 241: 236: 229: 225: 218: 214: 210: 209:Clebsch graph 203: 196: 192: 188: 184: 176: 174: 169: 162: 157: 155: 151: 150:Chvátal graph 147: 142: 140: 136: 132: 128: 124: 120: 113: 106: 103: 95: 93: 91: 87: 82: 80: 76: 71: 69: 65: 57: 55: 53: 49: 45: 42: 41:triangle-free 38: 34: 30: 21: 821: 817: 805: 801: 767: 734: 733:, Series B, 728: 704: 701:Algorithmica 700: 683:, retrieved 679:the original 673: 646: 642: 623: 619: 600: 596: 586:, retrieved 579:the original 552: 516: 510: 490: 486: 475: 442: 426: 414: 403:, retrieved 398: 389: 362: 349: 338: 326: 315: 303: 271: 248:A result of 247: 234: 227: 216: 201: 194: 190: 182: 180: 167: 160: 158: 143: 130: 126: 121:, Kráľ, and 111: 104: 99: 83: 72: 68:Berge (1960) 61: 44:planar graph 36: 33:graph theory 29:mathematical 26: 626:: 109–120, 519:(1): 7–26, 274:linear time 154:Mycielskian 75:planar dual 842:Categories 685:2012-07-27 588:2013-02-22 461:References 405:2015-09-16 566:1302.5121 493:: 123–160 372:0911.0885 224:composing 31:field of 768:Sparsity 361:(2009), 148:and the 808:: 15–31 794:2920058 753:2305893 721:7152581 665:0154274 632:0116320 571:Bibcode 533:1898201 377:Bibcode 135:colored 58:History 48:colored 46:can be 27:In the 792:  782:  751:  719:  663:  630:  531:  123:Thomas 119:Dvořák 717:S2CID 697:(PDF) 582:(PDF) 561:arXiv 557:(PDF) 507:(PDF) 472:(PDF) 367:arXiv 280:Notes 189:from 86:girth 780:ISBN 826:doi 772:doi 739:doi 709:doi 651:doi 605:doi 601:290 521:doi 260:of 215:of 844:: 822:88 820:, 806:28 804:, 790:MR 788:, 778:, 762:; 749:MR 747:, 735:97 715:, 705:58 703:, 699:, 661:MR 659:, 647:10 645:, 628:MR 622:, 599:, 569:, 546:; 542:; 529:MR 527:, 515:, 509:, 489:, 474:, 397:, 375:, 365:, 288:^ 276:. 141:. 81:. 35:, 828:: 774:: 741:: 711:: 653:: 624:8 607:: 573:: 563:: 523:: 517:6 491:9 453:. 437:. 421:. 409:. 384:. 379:: 369:: 333:. 310:. 298:. 238:3 235:K 231:3 228:K 220:3 217:K 205:3 202:K 198:3 195:K 191:G 183:G 171:4 168:K 164:4 161:K 131:d 127:d 115:4 112:K 108:4 105:K

Index


mathematical
graph theory
triangle-free
planar graph
colored
four-color theorem
Herbert Grötzsch
Berge (1960)
planar dual
nowhere-zero 3-flow
girth
3-list-colorable
complete graph
Dvořák
Thomas
colored
European Prize in Combinatorics
Grötzsch graph
Chvátal graph
Mycielskian
graph homomorphism
Clebsch graph
tensor product
composing
de Castro et al. (2002)
Scheinerman's conjecture
intersection graphs
line segments
linear time

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.