Knowledge (XXG)

Gromov–Hausdorff convergence

Source 📝

63: 381:
The Gromov–Hausdorff distance metric has been applied in the field of computer graphics and computational geometry to find correspondences between different shapes. It also has been applied in the problem of
194:
The Gromov–Hausdorff distance turns the set of all isometry classes of compact metric spaces into a metric space, called Gromov–Hausdorff space, and it therefore defines a notion of convergence for
332: 198:
of compact metric spaces, called Gromov–Hausdorff convergence. A metric space to which such a sequence converges is called the Gromov–Hausdorff limit of the sequence.
226:. In the global sense, the Gromov–Hausdorff space is totally heterogeneous, i.e., its isometry group is trivial, but locally there are many nontrivial isometries. 234:
The pointed Gromov–Hausdorff convergence is an analog of Gromov–Hausdorff convergence appropriate for non-compact spaces. A pointed metric space is a pair (
768:
Sukkar, Fouad; Wakulicz, Jennifer; Lee, Ki Myung Brian; Fitch, Robert (2022-09-11). "Motion planning in task space with Gromov-Hausdorff approximations".
219: 347: 552:
Ivanov, A. O.; Nikolaeva, N. K.; Tuzhilin, A. A. (2016). "The Gromov–Hausdorff metric on the space of compact metric spaces is strictly intrinsic".
393:
to prove the stability of the Friedmann model in Cosmology. This model of cosmology is not stable with respect to smooth variations of the metric.
434: 678: 640:
Ivanov, Alexander O.; Tuzhilin, Alexey A. (2016). "Local Structure of Gromov-Hausdorff Space near Finite Metric Spaces in General Position".
901: 370:
in the Gromov–Hausdorff metric. The limit spaces are metric spaces. Additional properties on the length spaces have been proven by
875: 183:
is understood in the global sense, i.e. it must preserve all distances, not only infinitesimally small ones; for example no compact
744: 71: 39: 661:
Bellaïche, André (1996). "The tangent space in sub-Riemannian geometry". In André Bellaïche; Jean-Jacques Risler (eds.).
896: 70:
The Gromov–Hausdorff distance was introduced by David Edwards in 1975, and it was later rediscovered and generalized by
834:
Kotani, Motoko; Sunada, Toshikazu (2006). "Large deviation and the tangent cone at infinity of a crystal lattice".
320: 891: 335:. (Also see D. Edwards for an earlier work.) The key ingredient in the proof was the observation that for the 412: 397: 339:
of a group with polynomial growth a sequence of rescalings converges in the pointed Gromov–Hausdorff sense.
211: 215: 431: 343: 328: 184: 851: 816: 798: 769: 750: 641: 620: 599: 579: 561: 513: 451: 430:
David A. Edwards, "The Structure of Superspace", in "Studies in Topology", Academic Press, 1975,
367: 172: 51: 871: 740: 674: 390: 843: 808: 732: 729:
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing - SGP '04
707: 666: 571: 521: 497: 470:
M. Gromov. "Structures métriques pour les variétés riemanniennes", edited by Lafontaine and
17: 509: 62: 598:
Chowdhury, Samir; Mémoli, Facundo (2016). "Explicit Geodesics in Gromov-Hausdorff Space".
525: 505: 438: 383: 351: 324: 188: 43: 619:
Ivanov, Alexander; Tuzhilin, Alexey (2018). "Isometry Group of Gromov--Hausdorff Space".
485: 375: 316: 207: 885: 855: 754: 517: 75: 820: 583: 486:"Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits)" 471: 371: 336: 47: 670: 396:
In a special case, the concept of Gromov–Hausdorff limits is closely related to
315:
The notion of Gromov–Hausdorff convergence was used by Gromov to prove that any
31: 847: 812: 575: 712: 695: 736: 665:. Progress in Mathematics. Vol. 44. Basel: Birkhauser. pp. 1–78 . 450:
Tuzhilin, Alexey A. (2016). "Who Invented the Gromov-Hausdorff Distance?".
66:
How far and how near are some figures under the Gromov–Hausdorff distance.
359: 223: 195: 79: 501: 106: 789:
Sormani, Christina (2004). "Friedmann cosmology and almost isotropy".
803: 727:
Mémoli, Facundo; Sapiro, Guillermo (2004). "Comparing point clouds".
774: 646: 625: 604: 566: 456: 696:"On the structure of spaces with Ricci curvature bounded below. I" 61: 265:) of pointed metric spaces converges to a pointed metric space ( 222:, i.e., any two of its points are the endpoints of a minimizing 868:
Metric structures for Riemannian and non-Riemannian spaces
350:, which states that the set of Riemannian manifolds with 596:For explicit construction of the geodesics, see 389:The Gromov–Hausdorff distance has been used by 333:Gromov's theorem on groups of polynomial growth 8: 74:in 1981. This distance measures how far two 323:is virtually nilpotent (i.e. it contains a 694:Cheeger, Jeff; Colding, Tobias H. (1997). 277: > 0, the sequence of closed 802: 773: 711: 645: 624: 603: 565: 455: 342:Another simple and very useful result in 202:Some properties of Gromov–Hausdorff space 423: 27:Notion for convergence of metric spaces 878:(translation with additional content). 307:in the usual Gromov–Hausdorff sense. 7: 490:Publications Mathématiques de l'IHÉS 230:Pointed Gromov–Hausdorff convergence 90:are two compact metric spaces, then 134:)) for all (compact) metric spaces 538:D. Burago, Yu. Burago, S. Ivanov, 25: 791:Geometric and Functional Analysis 46:, is a notion for convergence of 700:Journal of Differential Geometry 242:) consisting of a metric space 206:The Gromov–Hausdorff space is 187:admits such an embedding into 1: 138:and all isometric embeddings 78:metric spaces are from being 50:which is a generalization of 348:Gromov's compactness theorem 36:Gromov–Hausdorff convergence 18:Gromov-Hausdorff convergence 671:10.1007/978-3-0348-9210-0_1 540:A Course in Metric Geometry 918: 902:Convergence (mathematics) 848:10.1007/s00209-006-0951-9 836:Mathematische Zeitschrift 813:10.1007/s00039-004-0477-4 576:10.1134/S0001434616110298 58:Gromov–Hausdorff distance 484:Gromov, Michael (1981). 295:converges to the closed 737:10.1145/1057432.1057436 663:Sub-Riemannian Geometry 413:Intrinsic flat distance 398:large-deviations theory 191:of the same dimension. 105:) is defined to be the 713:10.4310/jdg/1214459974 67: 870:, Birkhäuser (1999). 65: 897:Riemannian geometry 542:, AMS GSM 33, 2001. 344:Riemannian geometry 185:Riemannian manifold 181:isometric embedding 175:between subsets in 554:Mathematical Notes 502:10.1007/BF02698687 437:2016-03-04 at the 368:relatively compact 325:nilpotent subgroup 173:Hausdorff distance 68: 52:Hausdorff distance 680:978-3-0348-9946-8 321:polynomial growth 16:(Redirected from 909: 860: 859: 831: 825: 824: 806: 786: 780: 779: 777: 765: 759: 758: 724: 718: 717: 715: 691: 685: 684: 658: 652: 651: 649: 637: 631: 630: 628: 616: 610: 609: 607: 594: 588: 587: 569: 560:(5–6): 883–885. 549: 543: 536: 530: 529: 481: 475: 468: 462: 461: 459: 447: 441: 428: 21: 917: 916: 912: 911: 910: 908: 907: 906: 892:Metric geometry 882: 881: 863: 833: 832: 828: 788: 787: 783: 767: 766: 762: 747: 726: 725: 721: 693: 692: 688: 681: 660: 659: 655: 639: 638: 634: 618: 617: 613: 597: 595: 591: 551: 550: 546: 537: 533: 483: 482: 478: 469: 465: 449: 448: 444: 439:Wayback Machine 429: 425: 421: 409: 403: 384:motion planning 352:Ricci curvature 313: 293: 286: 273:) if, for each 263: 259: 254:. A sequence ( 232: 204: 189:Euclidean space 170: 117: 109:of all numbers 95: 60: 44:Felix Hausdorff 28: 23: 22: 15: 12: 11: 5: 915: 913: 905: 904: 899: 894: 884: 883: 880: 879: 862: 861: 842:(4): 837–870. 826: 781: 760: 745: 731:. p. 32. 719: 686: 679: 653: 632: 611: 589: 544: 531: 476: 463: 442: 422: 420: 417: 416: 415: 408: 405: 317:discrete group 312: 309: 291: 284: 281:-balls around 261: 257: 231: 228: 218:. It is also 208:path-connected 203: 200: 166: 113: 93: 72:Mikhail Gromov 59: 56: 40:Mikhail Gromov 38:, named after 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 914: 903: 900: 898: 895: 893: 890: 889: 887: 877: 876:0-8176-3898-9 873: 869: 865: 864: 857: 853: 849: 845: 841: 837: 830: 827: 822: 818: 814: 810: 805: 800: 796: 792: 785: 782: 776: 771: 764: 761: 756: 752: 748: 742: 738: 734: 730: 723: 720: 714: 709: 705: 701: 697: 690: 687: 682: 676: 672: 668: 664: 657: 654: 648: 643: 636: 633: 627: 622: 615: 612: 606: 601: 593: 590: 585: 581: 577: 573: 568: 563: 559: 555: 548: 545: 541: 535: 532: 527: 523: 519: 515: 511: 507: 503: 499: 495: 491: 487: 480: 477: 473: 467: 464: 458: 453: 446: 443: 440: 436: 433: 427: 424: 418: 414: 411: 410: 406: 404: 401: 399: 394: 392: 387: 386:in robotics. 385: 379: 377: 373: 369: 365: 362: ≤  361: 357: 354: ≥  353: 349: 345: 340: 338: 334: 330: 326: 322: 318: 310: 308: 306: 302: 299:-ball around 298: 294: 287: 280: 276: 272: 268: 264: 253: 249: 245: 241: 237: 229: 227: 225: 221: 217: 213: 209: 201: 199: 197: 192: 190: 186: 182: 178: 174: 169: 165: 161: 158: →  157: 154: :  153: 149: 146: →  145: 142: :  141: 137: 133: 129: 125: 121: 116: 112: 108: 104: 100: 96: 89: 85: 81: 77: 73: 64: 57: 55: 53: 49: 48:metric spaces 45: 41: 37: 33: 19: 867: 839: 835: 829: 804:math/0302244 794: 790: 784: 763: 728: 722: 703: 699: 689: 662: 656: 635: 614: 592: 557: 553: 547: 539: 534: 493: 489: 479: 472:Pierre Pansu 466: 445: 426: 402: 395: 388: 380: 363: 355: 341: 337:Cayley graph 314: 311:Applications 304: 300: 296: 289: 282: 278: 274: 270: 266: 255: 251: 247: 243: 239: 235: 233: 205: 193: 180: 176: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 114: 110: 102: 98: 91: 87: 83: 69: 35: 29: 866:M. Gromov. 32:mathematics 886:Categories 775:2209.04800 746:3905673134 647:1611.04484 626:1806.02100 605:1603.02385 567:1504.03830 526:0474.20018 457:1612.00728 419:References 327:of finite 246:and point 856:122531716 755:207156533 518:121512559 496:: 53–78. 216:separable 196:sequences 80:isometric 821:53312009 584:39754495 435:Archived 407:See also 360:diameter 224:geodesic 220:geodesic 212:complete 179:and the 171:denotes 510:0623534 474:, 1981. 391:Sormani 376:Colding 372:Cheeger 331:). See 269:,  162:. Here 107:infimum 76:compact 874:  854:  819:  753:  743:  677:  582:  524:  516:  508:  214:, and 852:S2CID 817:S2CID 799:arXiv 797:(4). 770:arXiv 751:S2CID 706:(3). 642:arXiv 621:arXiv 600:arXiv 580:S2CID 562:arXiv 514:S2CID 452:arXiv 329:index 319:with 82:. If 872:ISBN 741:ISBN 675:ISBN 374:and 358:and 150:and 86:and 42:and 844:doi 840:254 809:doi 733:doi 708:doi 667:doi 572:doi 558:100 522:Zbl 498:doi 432:pdf 366:is 346:is 303:in 288:in 260:, p 250:in 126:), 30:In 888:: 850:. 838:. 815:. 807:. 795:14 793:. 749:. 739:. 704:46 702:. 698:. 673:. 578:. 570:. 556:. 520:. 512:. 506:MR 504:. 494:53 492:. 488:. 400:. 378:. 210:, 101:, 94:GH 54:. 34:, 858:. 846:: 823:. 811:: 801:: 778:. 772:: 757:. 735:: 716:. 710:: 683:. 669:: 650:. 644:: 629:. 623:: 608:. 602:: 586:. 574:: 564:: 528:. 500:: 460:. 454:: 364:D 356:c 305:Y 301:p 297:R 292:n 290:X 285:n 283:p 279:R 275:R 271:p 267:Y 262:n 258:n 256:X 252:X 248:p 244:X 240:p 238:, 236:X 177:M 168:H 164:d 160:M 156:Y 152:g 148:M 144:X 140:f 136:M 132:Y 130:( 128:g 124:X 122:( 120:f 118:( 115:H 111:d 103:Y 99:X 97:( 92:d 88:Y 84:X 20:)

Index

Gromov-Hausdorff convergence
mathematics
Mikhail Gromov
Felix Hausdorff
metric spaces
Hausdorff distance

Mikhail Gromov
compact
isometric
infimum
Hausdorff distance
Riemannian manifold
Euclidean space
sequences
path-connected
complete
separable
geodesic
geodesic
discrete group
polynomial growth
nilpotent subgroup
index
Gromov's theorem on groups of polynomial growth
Cayley graph
Riemannian geometry
Gromov's compactness theorem
Ricci curvature
diameter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.