Knowledge (XXG)

Group of Lie type

Source 📝

45: 1294:. He found that if a finite field of characteristic 2 also has an automorphism whose square was the Frobenius map, then an analogue of Steinberg's construction gave the Suzuki groups. The fields with such an automorphism are those of order 2, and the corresponding groups are the Suzuki groups 2117:), but there are so many conventions that it is not possible to say exactly what groups these correspond to without it being specified explicitly. The source of the problem is that the simple group is not the orthogonal group O, nor the 1934:
There is a bewildering number of "accidental" isomorphisms between various small groups of Lie type (and alternating groups). For example, the groups SL(2, 4), PSL(2, 5), and the alternating group on 5 points are all isomorphic.
2015:) does not necessarily induce a surjective map of the corresponding groups with values in some (non algebraically closed) field. There are similar problems with the points of other algebraic groups with values in finite fields. 1163:, and field automorphisms induced by automorphisms of a finite field. Analogously to the unitary case, Steinberg constructed families of groups by taking fixed points of a product of a diagram and a field automorphism. 1524:), gradually a belief formed that nearly all finite simple groups can be accounted for by appropriate extensions of Chevalley's construction, together with cyclic and alternating groups. Moreover, the exceptions, the 1400:
are the ones whose structure is hardest to pin down explicitly. These groups also played a role in the discovery of the first modern sporadic group. They have involution centralizers of the form
1017:), which can be used to define the corresponding algebraic groups over the integers. In particular, he could take their points with values in any finite field. For the Lie algebras A 1954: 490: 465: 428: 2396: 945:. They can be constructed over finite fields (or any other field) in much the same way that they are constructed over the real numbers. They correspond to the series A 2780:, SĂ©minaire Bourbaki; 10e annĂ©e: 1957/1958. Textes des confĂ©rences; ExposĂ©s 152 Ă  168; 2e Ăšd. corrigĂ©e, ExposĂ© 162, vol. 15, Paris: SecrĂ©tariat math'ematique, 2699: 1561:
In general the finite group associated to an endomorphism of a simply connected simple algebraic group is the universal central extension of a simple group, so is
792: 2589: 2545: 1969:
There is no standard notation for the finite groups of Lie type, and the literature contains dozens of incompatible and confusing systems of notation for them.
2121:
PSO, but rather a subgroup of PSO, which accordingly does not have a classical notation. A particularly nasty trap is that some authors, such as the
2304: 2261: 1538: 1385: 847: 350: 2508: 2336: 300: 2118: 1569:. However some of the smallest groups in the families above are either not perfect or have a Schur multiplier larger than "expected". 785: 295: 1601:(2) Not perfect, but is isomorphic to the symmetric group on 6 points so its derived subgroup has index 2 and is simple of order 360. 1516:. Moreover, as in the case of compact simple Lie groups, the corresponding groups turned out to be almost simple as abstract groups ( 1528:, share many properties with the finite groups of Lie type, and in particular, can be constructed and characterized based on their 1436:
The Suzuki groups are the only finite non-abelian simple groups with order not divisible by 3. They have order 2(2 + 1)(2 − 1).
1473: 1457: 2633: 711: 2694: 2405: 1267: 778: 1041:
this gave well known classical groups, but his construction also gave groups associated to the exceptional Lie algebras E
2320: 1939: 1014: 1484:≠ 2, 3. This theorem generalizes to projective groups of higher dimensions and gives an important infinite family PSL( 395: 209: 2257: 1241:
have no analogue over the reals, as the complex numbers have no automorphism of order 3. The symmetries of the D
1105:
Chevalley's construction did not give all of the known classical groups: it omitted the unitary groups and the non-
2811: 1949:. Some of the small alternating groups also have exceptional properties. The alternating groups usually have an 1950: 989:
Chevalley groups can be thought of as Lie groups over finite fields. The theory was clarified by the theory of
593: 327: 204: 92: 2444:"A class of groups in an arbitrary realm connected with the configuration of the 27 lines on a cubic surface" 2672: 2217:) are the groups of points with values in the simple or the simply connected algebraic group. For example, A 1274:) found a new infinite series of groups that at first sight seemed unrelated to the known algebraic groups. 942: 1156:, which commute. The unitary group is the group of fixed points of the product of these two automorphisms. 1125:. This construction generalizes the usual construction of the unitary group from the general linear group. 2439: 2391: 2300: 2122: 1946: 1529: 1291: 1106: 831: 743: 533: 2806: 2801: 1550: 617: 1637:
Some cases where the group is perfect but has a Schur multiplier that is larger than expected include:
1957:. Alternating groups usually have a Schur multiplier of order 2, but the ones on 6 or 7 points have a 2708: 2328: 1505: 1493: 1306:(Strictly speaking, the group Suz(2) is not counted as a Suzuki group as it is not simple: it is the 915: 557: 545: 163: 97: 2267: 1359: 1153: 892: 132: 27: 473: 448: 411: 2734: 2480: 2427: 1148: 1010: 117: 89: 2583:
Ree, Rimhak (1961), "A family of simple groups associated with the simple Lie algebra of type (F
2539:
Ree, Rimhak (1960), "A family of simple groups associated with the simple Lie algebra of type (G
1520:). Although it was known since 19th century that other finite simple groups exist (for example, 1465: 2137:
the orthogonal group, but the corresponding simple group. The notation Ω, PΩ was introduced by
1545:
include all the finite simple groups other than the cyclic groups, the alternating groups, the
2760: 2726: 2652: 2608: 2564: 2504: 2443: 2419: 2372: 2332: 2138: 1958: 1453: 1342:
have extra automorphisms in characteristic 2 and 3. (Roughly speaking, in characteristic
1209: 1121:, the second of which was discovered at about the same time from a different point of view by 1113:
found a modification of Chevalley's construction that gave these groups and two new families D
1097: 935: 904: 858: 846:
groups of Lie type does have a precise definition, and they make up most of the groups in the
688: 522: 259: 1444:
Finite groups of Lie type were among the first groups to be considered in mathematics, after
861:
may be viewed as the rational points of a reductive linear algebraic group over the field of
2750: 2716: 2642: 2598: 2554: 2472: 2409: 2362: 2145:≀ 4 and thus the same notation may be used for a slightly different group, which agrees in 1566: 1501: 994: 931: 923: 919: 887:
An initial approach to this question was the definition and detailed study of the so-called
673: 665: 657: 649: 641: 629: 569: 509: 499: 341: 283: 158: 127: 2785: 2746: 2682: 2664: 2620: 2576: 2518: 2384: 2346: 842:
does not have a widely accepted precise definition, but the important collection of finite
2781: 2742: 2678: 2660: 2616: 2572: 2514: 2500: 2380: 2342: 2201: 1525: 1497: 1449: 1307: 1006: 990: 882: 828: 757: 750: 736: 693: 581: 504: 334: 248: 188: 68: 911:
investigated the orders of such groups, with a view to classifying cases of coincidence.
2712: 1633:(3) Not perfect, but the derived group has index 3 and is the simple group of order 504. 2772: 2525: 1521: 1469: 1160: 1137: 1129: 938: 824: 764: 700: 390: 370: 307: 272: 193: 183: 168: 153: 107: 84: 2755: 2414: 1541:. Inspection of the list of finite simple groups shows that groups of Lie type over a 2795: 2484: 2180:, and people have different ideas on which should be included in the notation. The "A 1562: 1258: 927: 900: 820: 683: 605: 439: 312: 178: 2603: 2559: 2529: 1416:= 3, and by investigating groups with an involution centralizer of the similar form 1542: 1468:
in the 1830s. The systematic exploration of finite groups of Lie type started with
1445: 1369: 862: 853:
The name "groups of Lie type" is due to the close relationship with the (infinite)
843: 835: 810: 538: 237: 226: 173: 148: 143: 102: 73: 36: 1942:. Many of these special properties are related to certain sporadic simple groups. 2628: 1945:
Alternating groups sometimes behave as if they were groups of Lie type over the
1425: 806: 2700:
Proceedings of the National Academy of Sciences of the United States of America
1626:(2) Not perfect, but the derived group has index 2 and is simple of order 6048. 1616: 1546: 1380:
is not simple, but it has a simple normal subgroup of index 3, isomorphic to A
1364: 1350:
in the Dynkin diagram when taking diagram automorphisms.) The smallest group F
1275: 908: 854: 705: 433: 2730: 2656: 2612: 2568: 2423: 2376: 2367: 1159:
In the same way, many Chevalley groups have diagram automorphisms induced by
1262: 526: 17: 2764: 2647: 2721: 44: 2079:("orthogonal" groups) is particularly confusing. Some symbols used are O( 1246: 63: 1907:, so the Schur multiplier of the simple group has order 12 instead of 3. 1884:, so the Schur multiplier of the simple group has order 12 instead of 3. 1861:, so the Schur multiplier of the simple group has order 36 instead of 4. 1706:, so the Schur multiplier of the simple group has order 48 instead of 3. 1587:(3) = PSL(2, 3) Solvable of order 12 (the alternating group on 4 points) 2476: 2431: 2007:). The problem is that a surjective map of algebraic groups such as SL( 1930:, so the Schur multiplier of the simple group has order 4 instead of 1. 1838:, so the Schur multiplier of the simple group has order 2 instead of 1. 1823:, so the Schur multiplier of the simple group has order 2 instead of 1. 1808:, so the Schur multiplier of the simple group has order 3 instead of 1. 1793:, so the Schur multiplier of the simple group has order 2 instead of 1. 1778:, so the Schur multiplier of the simple group has order 4 instead of 1. 1755:, so the Schur multiplier of the simple group has order 6 instead of 2. 1740:, so the Schur multiplier of the simple group has order 2 instead of 1. 1721:, so the Schur multiplier of the simple group has order 2 instead of 1. 1683:, so the Schur multiplier of the simple group has order 2 instead of 1. 1668:, so the Schur multiplier of the simple group has order 6 instead of 2. 1653:, so the Schur multiplier of the simple group has order 2 instead of 1. 1128:
The unitary group arises as follows: the general linear group over the
405: 319: 1504:
realized that after an appropriate reformulation, many theorems about
2738: 2200:)" convention is far more common and is closer to the convention for 1615:(2) Not perfect, but the derived group has index 2 and is the simple 1290:
had an "extra" automorphism in characteristic 2 whose square was the
1009:(a sort of integral form but over finite fields) for all the complex 2460: 2286: 1580:(2) = SL(2, 2) Solvable of order 6 (the symmetric group on 3 points) 2172:). The problem is that there are two fields involved, one of order 2686: 2247:(4) may be any one of 4 different groups, depending on the author. 930:. There are several minor variations of these, given by taking 1223: 1090: 1508:
admit analogues for algebraic groups over an arbitrary field
1346:
one is allowed to ignore the arrow on bonds of multiplicity
1310:
of order 20.) Ree was able to find two new similar families
1146:(which corresponds to taking the transpose inverse), and a 2394:(1901b), "Theory of Linear Groups in An Arbitrary Field", 2353:
Chevalley, Claude (1955), "Sur certains groupes simples",
2162:) (and so on) for the group that other authors denote by A 1953:
of order 2, but the alternating group on 6 points has an
2287:
mathoverflow – Definition of “finite group of Lie type”?
2190:)" convention is more logical and consistent, but the "A 2697:(1960), "A new type of simple groups of finite order", 2454:: 145–173, Reprinted in volume 5 of his collected works 2531:
Traité des substitutions et des équations algébriques
2448:
The Quarterly Journal of Pure and Applied Mathematics
1608:(2) = Suz(2) Solvable of order 20 (a Frobenius group) 476: 451: 414: 484: 459: 422: 2397:Transactions of the American Mathematical Society 1512:, leading to construction of what are now called 2434:, Reprinted in volume II of his collected papers 2062:) (the symplectic group) or (confusingly) by Sp( 1938:For a complete list of these exceptions see the 1424:× PSL(2, 5) Janko found the sporadic group  873:are standard references for groups of Lie type. 1500:in the beginning of 20th century. In the 1950s 1358:is not simple, but it has a simple subgroup of 2227:) may mean either the special linear group SL( 2152:For the Steinberg groups, some authors write A 2033:) (the projective special linear group) or by 1005:concept was isolated. Chevalley constructed a 2590:Bulletin of the American Mathematical Society 2546:Bulletin of the American Mathematical Society 2235:) or the projective special linear group PSL( 1572:Cases where the group is not perfect include 786: 8: 2488:Leonard E. Dickson reported groups of type G 1981:) is not usually the same as the group PSL( 2774:Les "formes rĂ©elles" des groupes de type E 2207:Authors differ on whether groups such as A 2141:, though his definition is not simple for 2003:-valued points of the algebraic group PSL( 1537:The belief has now become a theorem – the 914:A classical group is, roughly speaking, a 793: 779: 231: 57: 22: 2754: 2720: 2646: 2602: 2558: 2413: 2366: 2296: 2294: 1496:. Other classical groups were studied by 1334:of simple groups by using the fact that F 1110: 1001:) on Lie algebras, by means of which the 998: 866: 823:that are closely related to the group of 478: 477: 475: 453: 452: 450: 416: 415: 413: 2279: 1078: 1070: 349: 115: 25: 1914:(8) The Schur multiplier has an extra 1891:(4) The Schur multiplier has an extra 1868:(4) The Schur multiplier has an extra 1845:(9) The Schur multiplier has an extra 1830:(4) The Schur multiplier has an extra 1815:(4) The Schur multiplier has an extra 1800:(3) The Schur multiplier has an extra 1785:(2) The Schur multiplier has an extra 1762:(2) The Schur multiplier has an extra 1747:(3) The Schur multiplier has an extra 1732:(2) The Schur multiplier has an extra 1713:(2) The Schur multiplier has an extra 1690:(4) The Schur multiplier has an extra 1675:(2) The Schur multiplier has an extra 1660:(9) The Schur multiplier has an extra 1645:(4) The Schur multiplier has an extra 1539:classification of finite simple groups 1386:classification of finite simple groups 1271: 1161:automorphisms of their Dynkin diagrams 896: 870: 848:classification of finite simple groups 351:Classification of finite simple groups 2677:, Yale University, New Haven, Conn., 7: 2629:"Variations on a theme of Chevalley" 2327:, Wiley Classics Library, New York: 1229:, from the order 3 automorphism of D 1215:, from the order 2 automorphism of E 1199:, from the order 2 automorphism of D 1180:, from the order 2 automorphism of A 1122: 2497:La gĂ©omĂ©trie des groupes classiques 2119:projective special orthogonal group 1955:outer automorphism group of order 4 1440:Relations with finite simple groups 1283: 1279: 981:of Chevalley and Steinberg groups. 2499:(3rd ed.), Berlin, New York: 1069:) had already been constructed by 14: 2415:10.1090/S0002-9947-1901-1500573-3 2073:The notation for groups of type D 1460:over prime finite fields, PSL(2, 1286:) knew that the algebraic group B 1458:projective special linear groups 43: 2604:10.1090/S0002-9904-1961-10527-2 2560:10.1090/S0002-9904-1960-10523-X 2461:"A new system of simple groups" 2355:The Tohoku Mathematical Journal 2176:, and its fixed field of order 2149:≄ 5 but not in lower dimension. 1474:projective special linear group 1368:(named after the mathematician 899:. These groups were studied by 2634:Pacific Journal of Mathematics 712:Infinite dimensional Lie group 1: 2406:American Mathematical Society 2264:of finite groups of Lie type) 2054:are sometimes denoted by Sp(2 2025:are sometimes denoted by PSL( 1015:universal enveloping algebras 2674:Lectures on Chevalley groups 2495:DieudonnĂ©, Jean A. (1971) , 1940:list of finite simple groups 485:{\displaystyle \mathbb {Z} } 460:{\displaystyle \mathbb {Z} } 423:{\displaystyle \mathbb {Z} } 1959:Schur multiplier of order 6 210:List of group theory topics 2828: 2671:Steinberg, Robert (1968), 2627:Steinberg, Robert (1959), 1256: 1245:diagram also give rise to 1088: 880: 15: 2534:, Paris: Gauthier-Villars 2325:Simple groups of Lie type 1951:outer automorphism group 1557:Small groups of Lie type 1073:, and the ones of type E 943:projective linear groups 328:Elementary abelian group 205:Glossary of group theory 16:Not to be confused with 2459:Dickson, L. E. (1905), 2440:Dickson, Leonard Eugene 2404:(4), Providence, R.I.: 2392:Dickson, Leonard Eugene 1518:Tits simplicity theorem 1464:) being constructed by 1372:). The smallest group G 1136:given by reversing the 1107:split orthogonal groups 2771:Tits, Jacques (1958), 2648:10.2140/pjm.1959.9.875 2368:10.2748/tmj/1178245104 2258:Deligne–Lusztig theory 2133:) for a group that is 1947:field with one element 1551:sporadic simple groups 1534:in the sense of Tits. 1292:Frobenius automorphism 941:, the latter yielding 891:over finite and other 832:linear algebraic group 744:Linear algebraic group 486: 461: 424: 2722:10.1073/pnas.46.6.868 2329:John Wiley & Sons 2262:representation theory 1973:The simple group PSL( 1506:semisimple Lie groups 487: 462: 425: 2048:The groups of type C 2018:The groups of type A 1494:finite simple groups 1472:'s theorem that the 1237:The groups of type D 1134:diagram automorphism 1061:. The ones of type G 1013:(or rather of their 474: 449: 412: 2713:1960PNAS...46..868S 2268:Modular Lie algebra 1154:complex conjugation 1011:simple Lie algebras 118:Group homomorphisms 28:Algebraic structure 2477:10.1007/BF01447497 1149:field automorphism 1065:(sometimes called 993:, and the work of 819:usually refers to 809:, specifically in 594:Special orthogonal 482: 457: 420: 301:Lagrange's theorem 2510:978-0-387-05391-2 2357:, Second Series, 2338:978-0-471-50683-6 1456:groups, with the 1388:, the Ree groups 1253:Suzuki–Ree groups 1191:orthogonal groups 932:derived subgroups 859:compact Lie group 840:group of Lie type 834:with values in a 816:group of Lie type 803: 802: 378: 377: 260:Alternating group 217: 216: 2819: 2812:Algebraic groups 2788: 2767: 2758: 2724: 2690: 2685:, archived from 2667: 2650: 2623: 2606: 2579: 2562: 2535: 2521: 2487: 2455: 2435: 2417: 2387: 2370: 2349: 2321:Carter, Roger W. 2307: 2298: 2289: 2284: 2202:algebraic groups 1567:Schur multiplier 1565:and has trivial 1514:Chevalley groups 1502:Claude Chevalley 1480:) is simple for 1152:given by taking 1111:Steinberg (1959) 1085:Steinberg groups 991:algebraic groups 985:Chevalley groups 889:classical groups 877:Classical groups 867:DieudonnĂ© (1971) 795: 788: 781: 737:Algebraic groups 510:Hyperbolic group 500:Arithmetic group 491: 489: 488: 483: 481: 466: 464: 463: 458: 456: 429: 427: 426: 421: 419: 342:Schur multiplier 296:Cauchy's theorem 284:Quaternion group 232: 58: 47: 34: 23: 2827: 2826: 2822: 2821: 2820: 2818: 2817: 2816: 2792: 2791: 2777: 2770: 2693: 2670: 2626: 2586: 2582: 2542: 2538: 2526:Jordan, Camille 2524: 2511: 2501:Springer-Verlag 2494: 2491: 2458: 2438: 2390: 2352: 2339: 2319: 2316: 2311: 2310: 2299: 2292: 2285: 2281: 2276: 2254: 2246: 2222: 2212: 2195: 2185: 2167: 2157: 2112: 2078: 2053: 2024: 2002: 1993: 1967: 1965:Notation issues 1913: 1890: 1867: 1844: 1829: 1814: 1799: 1784: 1761: 1746: 1731: 1727: 1712: 1689: 1674: 1659: 1644: 1632: 1625: 1614: 1607: 1600: 1593: 1586: 1579: 1559: 1526:sporadic groups 1498:Leonard Dickson 1466:Évariste Galois 1442: 1431: 1395: 1383: 1379: 1375: 1357: 1353: 1341: 1337: 1329: 1317: 1308:Frobenius group 1301: 1289: 1265: 1257:Main articles: 1255: 1244: 1240: 1232: 1227: 1222:the new series 1218: 1213: 1208:the new series 1204: 1198: 1185: 1179: 1145: 1130:complex numbers 1120: 1116: 1103: 1101: 1094: 1089:Main articles: 1087: 1076: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1034: 1028: 1022: 1007:Chevalley basis 1003:Chevalley group 987: 980: 974: 968: 962: 956: 950: 885: 883:Classical group 879: 825:rational points 799: 770: 769: 758:Abelian variety 751:Reductive group 739: 729: 728: 727: 726: 677: 669: 661: 653: 645: 618:Special unitary 529: 515: 514: 496: 495: 472: 471: 447: 446: 410: 409: 401: 400: 391:Discrete groups 380: 379: 335:Frobenius group 280: 267: 256: 249:Symmetric group 245: 229: 219: 218: 69:Normal subgroup 55: 35: 26: 21: 12: 11: 5: 2825: 2823: 2815: 2814: 2809: 2804: 2794: 2793: 2790: 2789: 2775: 2768: 2707:(6): 868–870, 2695:Suzuki, Michio 2691: 2668: 2641:(3): 875–891, 2624: 2584: 2580: 2553:(6): 508–510, 2540: 2536: 2522: 2509: 2492: 2489: 2456: 2436: 2388: 2361:(1–2): 14–66, 2350: 2337: 2315: 2312: 2309: 2308: 2290: 2278: 2277: 2275: 2272: 2271: 2270: 2265: 2253: 2250: 2249: 2248: 2244: 2218: 2208: 2205: 2191: 2181: 2163: 2153: 2150: 2139:Jean DieudonnĂ© 2108: 2074: 2071: 2049: 2046: 2019: 2016: 1998: 1989: 1966: 1963: 1932: 1931: 1911: 1908: 1888: 1885: 1865: 1862: 1842: 1839: 1827: 1824: 1812: 1809: 1797: 1794: 1782: 1779: 1759: 1756: 1744: 1741: 1729: 1725: 1722: 1710: 1707: 1687: 1684: 1672: 1669: 1657: 1654: 1642: 1635: 1634: 1630: 1627: 1623: 1620: 1612: 1609: 1605: 1602: 1598: 1595: 1591: 1588: 1584: 1581: 1577: 1558: 1555: 1522:Mathieu groups 1470:Camille Jordan 1441: 1438: 1429: 1398: 1397: 1393: 1381: 1377: 1373: 1362:2, called the 1355: 1351: 1339: 1335: 1332: 1331: 1327: 1320: 1319: 1315: 1304: 1303: 1299: 1287: 1254: 1251: 1242: 1238: 1235: 1234: 1230: 1225: 1220: 1216: 1211: 1206: 1200: 1194: 1187: 1181: 1175: 1172:unitary groups 1141: 1138:Dynkin diagram 1118: 1114: 1099: 1092: 1086: 1083: 1079:Dickson (1901) 1074: 1071:Dickson (1905) 1067:Dickson groups 1062: 1058: 1054: 1050: 1046: 1042: 1036: 1030: 1024: 1018: 986: 983: 976: 970: 964: 958: 952: 946: 916:special linear 905:Jean DieudonnĂ© 881:Main article: 878: 875: 801: 800: 798: 797: 790: 783: 775: 772: 771: 768: 767: 765:Elliptic curve 761: 760: 754: 753: 747: 746: 740: 735: 734: 731: 730: 725: 724: 721: 718: 714: 710: 709: 708: 703: 701:Diffeomorphism 697: 696: 691: 686: 680: 679: 675: 671: 667: 663: 659: 655: 651: 647: 643: 638: 637: 626: 625: 614: 613: 602: 601: 590: 589: 578: 577: 566: 565: 558:Special linear 554: 553: 546:General linear 542: 541: 536: 530: 521: 520: 517: 516: 513: 512: 507: 502: 494: 493: 480: 468: 455: 442: 440:Modular groups 438: 437: 436: 431: 418: 402: 399: 398: 393: 387: 386: 385: 382: 381: 376: 375: 374: 373: 368: 363: 360: 354: 353: 347: 346: 345: 344: 338: 337: 331: 330: 325: 316: 315: 313:Hall's theorem 310: 308:Sylow theorems 304: 303: 298: 290: 289: 288: 287: 281: 276: 273:Dihedral group 269: 268: 263: 257: 252: 246: 241: 230: 225: 224: 221: 220: 215: 214: 213: 212: 207: 199: 198: 197: 196: 191: 186: 181: 176: 171: 166: 164:multiplicative 161: 156: 151: 146: 138: 137: 136: 135: 130: 122: 121: 113: 112: 111: 110: 108:Wreath product 105: 100: 95: 93:direct product 87: 85:Quotient group 79: 78: 77: 76: 71: 66: 56: 53: 52: 49: 48: 40: 39: 13: 10: 9: 6: 4: 3: 2: 2824: 2813: 2810: 2808: 2805: 2803: 2800: 2799: 2797: 2787: 2783: 2779: 2778: 2769: 2766: 2762: 2757: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2723: 2718: 2714: 2710: 2706: 2702: 2701: 2696: 2692: 2689:on 2012-09-10 2688: 2684: 2680: 2676: 2675: 2669: 2666: 2662: 2658: 2654: 2649: 2644: 2640: 2636: 2635: 2630: 2625: 2622: 2618: 2614: 2610: 2605: 2600: 2596: 2592: 2591: 2581: 2578: 2574: 2570: 2566: 2561: 2556: 2552: 2548: 2547: 2537: 2533: 2532: 2527: 2523: 2520: 2516: 2512: 2506: 2502: 2498: 2493: 2486: 2482: 2478: 2474: 2470: 2466: 2462: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2416: 2411: 2407: 2403: 2399: 2398: 2393: 2389: 2386: 2382: 2378: 2374: 2369: 2364: 2360: 2356: 2351: 2348: 2344: 2340: 2334: 2330: 2326: 2322: 2318: 2317: 2313: 2306: 2302: 2297: 2295: 2291: 2288: 2283: 2280: 2273: 2269: 2266: 2263: 2259: 2256: 2255: 2251: 2242: 2238: 2234: 2230: 2226: 2221: 2216: 2211: 2206: 2203: 2199: 2194: 2189: 2184: 2179: 2175: 2171: 2166: 2161: 2156: 2151: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2111: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2077: 2072: 2069: 2065: 2061: 2057: 2052: 2047: 2044: 2040: 2036: 2032: 2028: 2022: 2017: 2014: 2010: 2006: 2001: 1997: 1992: 1988: 1984: 1980: 1976: 1972: 1971: 1970: 1964: 1962: 1960: 1956: 1952: 1948: 1943: 1941: 1936: 1929: 1925: 1921: 1917: 1909: 1906: 1902: 1898: 1894: 1886: 1883: 1879: 1875: 1871: 1863: 1860: 1856: 1852: 1848: 1840: 1837: 1833: 1825: 1822: 1818: 1810: 1807: 1803: 1795: 1792: 1788: 1780: 1777: 1773: 1769: 1765: 1757: 1754: 1750: 1742: 1739: 1735: 1723: 1720: 1716: 1708: 1705: 1701: 1697: 1693: 1685: 1682: 1678: 1670: 1667: 1663: 1655: 1652: 1648: 1640: 1639: 1638: 1628: 1621: 1618: 1610: 1603: 1596: 1589: 1582: 1575: 1574: 1573: 1570: 1568: 1564: 1556: 1554: 1552: 1549:, and the 26 1548: 1544: 1540: 1535: 1533: 1532: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1439: 1437: 1434: 1432: 1428: 1423: 1419: 1415: 1411: 1407: 1403: 1391: 1390: 1389: 1387: 1376:(3) of type G 1371: 1367: 1366: 1361: 1354:(2) of type F 1349: 1345: 1325: 1324: 1323: 1313: 1312: 1311: 1309: 1302:(2) = Suz(2). 1297: 1296: 1295: 1293: 1285: 1281: 1277: 1273: 1269: 1264: 1260: 1259:Suzuki groups 1252: 1250: 1248: 1228: 1221: 1214: 1207: 1203: 1197: 1192: 1188: 1184: 1178: 1173: 1169: 1168: 1167: 1164: 1162: 1157: 1155: 1151: 1150: 1144: 1139: 1135: 1131: 1126: 1124: 1112: 1108: 1102: 1095: 1084: 1082: 1080: 1072: 1068: 1039: 1033: 1027: 1021: 1016: 1012: 1008: 1004: 1000: 996: 992: 984: 982: 979: 973: 967: 961: 955: 949: 944: 940: 937: 933: 929: 928:unitary group 925: 921: 917: 912: 910: 906: 902: 901:L. E. Dickson 898: 897:Jordan (1870) 894: 890: 884: 876: 874: 872: 871:Carter (1989) 868: 864: 860: 856: 851: 849: 845: 841: 838:. The phrase 837: 833: 830: 826: 822: 821:finite groups 818: 817: 813:, the phrase 812: 808: 796: 791: 789: 784: 782: 777: 776: 774: 773: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 742: 741: 738: 733: 732: 722: 719: 716: 715: 713: 707: 704: 702: 699: 698: 695: 692: 690: 687: 685: 682: 681: 678: 672: 670: 664: 662: 656: 654: 648: 646: 640: 639: 635: 631: 628: 627: 623: 619: 616: 615: 611: 607: 604: 603: 599: 595: 592: 591: 587: 583: 580: 579: 575: 571: 568: 567: 563: 559: 556: 555: 551: 547: 544: 543: 540: 537: 535: 532: 531: 528: 524: 519: 518: 511: 508: 506: 503: 501: 498: 497: 469: 444: 443: 441: 435: 432: 407: 404: 403: 397: 394: 392: 389: 388: 384: 383: 372: 369: 367: 364: 361: 358: 357: 356: 355: 352: 348: 343: 340: 339: 336: 333: 332: 329: 326: 324: 322: 318: 317: 314: 311: 309: 306: 305: 302: 299: 297: 294: 293: 292: 291: 285: 282: 279: 274: 271: 270: 266: 261: 258: 255: 250: 247: 244: 239: 236: 235: 234: 233: 228: 227:Finite groups 223: 222: 211: 208: 206: 203: 202: 201: 200: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 145: 142: 141: 140: 139: 134: 131: 129: 126: 125: 124: 123: 120: 119: 114: 109: 106: 104: 101: 99: 96: 94: 91: 88: 86: 83: 82: 81: 80: 75: 72: 70: 67: 65: 62: 61: 60: 59: 54:Basic notions 51: 50: 46: 42: 41: 38: 33: 29: 24: 19: 2807:Lie algebras 2802:Group theory 2773: 2704: 2698: 2687:the original 2673: 2638: 2632: 2594: 2588: 2550: 2544: 2530: 2496: 2468: 2464: 2451: 2447: 2401: 2395: 2358: 2354: 2324: 2282: 2240: 2236: 2232: 2228: 2224: 2219: 2214: 2209: 2197: 2192: 2187: 2182: 2177: 2173: 2169: 2164: 2159: 2154: 2146: 2142: 2134: 2130: 2126: 2114: 2109: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2075: 2067: 2063: 2059: 2055: 2050: 2042: 2038: 2034: 2030: 2026: 2020: 2012: 2008: 2004: 1999: 1995: 1990: 1986: 1982: 1978: 1974: 1968: 1944: 1937: 1933: 1927: 1923: 1919: 1915: 1904: 1900: 1896: 1892: 1881: 1877: 1873: 1869: 1858: 1854: 1850: 1846: 1835: 1831: 1820: 1816: 1805: 1801: 1790: 1786: 1775: 1771: 1767: 1763: 1752: 1748: 1737: 1733: 1718: 1714: 1703: 1699: 1695: 1691: 1680: 1676: 1665: 1661: 1650: 1646: 1636: 1594:(4) Solvable 1571: 1560: 1543:finite field 1536: 1530: 1517: 1513: 1509: 1489: 1485: 1481: 1477: 1461: 1443: 1435: 1426: 1421: 1417: 1413: 1409: 1405: 1401: 1399: 1384:(8). In the 1370:Jacques Tits 1363: 1347: 1343: 1333: 1321: 1305: 1266: 1236: 1201: 1195: 1190: 1182: 1176: 1171: 1166:These gave: 1165: 1158: 1147: 1142: 1133: 1127: 1104: 1066: 1037: 1031: 1025: 1019: 1002: 988: 977: 971: 965: 959: 953: 947: 913: 888: 886: 863:real numbers 852: 839: 836:finite field 815: 814: 811:group theory 804: 633: 621: 609: 597: 585: 573: 561: 549: 365: 320: 277: 264: 253: 242: 238:Cyclic group 116: 103:Free product 74:Group action 37:Group theory 32:Group theory 31: 2597:: 115–116, 2471:: 137–150, 2408:: 363–394, 1454:alternating 1123:Tits (1958) 807:mathematics 523:Topological 362:alternating 2796:Categories 2465:Math. Ann. 2314:References 1617:Tits group 1547:Tits group 1365:Tits group 924:symplectic 920:orthogonal 909:Emil Artin 857:, since a 855:Lie groups 630:Symplectic 570:Orthogonal 527:Lie groups 434:Free group 159:continuous 98:Direct sum 2731:0027-8424 2657:0030-8730 2613:0002-9904 2569:0002-9904 2485:179178145 2424:0002-9947 2377:0040-8735 2323:(1989) , 1450:symmetric 1408:× PSL(2, 1263:Ree group 995:Chevalley 939:quotients 829:reductive 694:Conformal 582:Euclidean 189:nilpotent 18:Lie group 2765:16590684 2528:(1870), 2442:(1901), 2252:See also 2125:, use O( 2011:) → PSL( 1531:geometry 1247:triality 1189:further 689:PoincarĂ© 534:Solenoid 406:Integers 396:Lattices 371:sporadic 366:Lie type 194:solvable 184:dihedral 169:additive 154:infinite 64:Subgroup 2786:0106247 2747:0120283 2709:Bibcode 2683:0466335 2665:0109191 2621:0125155 2577:0125155 2519:0310083 2432:1986251 2385:0073602 2347:0407163 2243:). So A 2099:), PSO( 1728:(2) = C 1563:perfect 1476:PSL(2, 1278: ( 1270: ( 1057:, and G 997: ( 936:central 684:Lorentz 606:Unitary 505:Lattice 445:PSL(2, 179:abelian 90:(Semi-) 2784:  2763:  2756:222949 2753:  2745:  2737:  2729:  2681:  2663:  2655:  2619:  2611:  2575:  2567:  2517:  2507:  2483:  2430:  2422:  2383:  2375:  2345:  2335:  1446:cyclic 1412:) for 1268:Suzuki 1132:has a 893:fields 844:simple 539:Circle 470:SL(2, 359:cyclic 323:-group 174:cyclic 149:finite 144:simple 128:kernel 2739:70960 2735:JSTOR 2481:S2CID 2428:JSTOR 2305:p. xi 2301:ATLAS 2274:Notes 2123:ATLAS 1994:) of 1492:) of 1360:index 1338:and G 926:, or 827:of a 723:Sp(∞) 720:SU(∞) 133:image 2761:PMID 2727:ISSN 2653:ISSN 2609:ISSN 2587:)", 2565:ISSN 2543:)", 2505:ISBN 2420:ISSN 2373:ISSN 2333:ISBN 2239:+1, 2231:+1, 2107:), Ω 1452:and 1322:and 1284:1961 1280:1960 1272:1960 1261:and 1170:the 1096:and 999:1955 903:and 869:and 717:O(∞) 706:Loop 525:and 2751:PMC 2717:doi 2643:doi 2599:doi 2555:doi 2473:doi 2410:doi 2363:doi 2135:not 2087:), 1396:(3) 1330:(3) 1318:(2) 1276:Ree 1117:, E 1077:by 1053:, F 1049:, E 1045:, E 1035:, D 1029:, C 1023:, B 975:, D 963:, D 957:, C 951:, B 934:or 895:by 805:In 632:Sp( 620:SU( 596:SO( 560:SL( 548:GL( 2798:: 2782:MR 2759:, 2749:, 2743:MR 2741:, 2733:, 2725:, 2715:, 2705:46 2703:, 2679:MR 2661:MR 2659:, 2651:, 2637:, 2631:, 2617:MR 2615:, 2607:, 2595:67 2593:, 2573:MR 2571:, 2563:, 2551:66 2549:, 2515:MR 2513:, 2503:, 2479:, 2469:60 2467:, 2463:, 2452:33 2450:, 2446:, 2426:, 2418:, 2400:, 2381:MR 2379:, 2371:, 2343:MR 2341:, 2331:, 2303:, 2293:^ 2129:, 2103:, 2095:, 2083:, 2070:). 2066:, 2058:, 2045:). 2041:, 2029:, 2023:−1 1985:, 1977:, 1961:. 1926:/2 1922:× 1918:/2 1903:/2 1899:× 1895:/2 1880:/2 1876:× 1872:/2 1857:/3 1853:× 1849:/3 1834:/2 1819:/2 1804:/3 1789:/2 1774:/2 1770:× 1766:/2 1751:/3 1736:/2 1717:/2 1702:/4 1698:× 1694:/4 1679:/2 1664:/3 1649:/2 1553:. 1488:, 1448:, 1433:. 1420:/2 1404:/2 1282:, 1249:. 1109:. 1081:. 969:,A 922:, 918:, 907:. 865:. 850:. 608:U( 584:E( 572:O( 30:→ 2776:6 2719:: 2711:: 2645:: 2639:9 2601:: 2585:4 2557:: 2541:2 2490:2 2475:: 2412:: 2402:2 2365:: 2359:7 2260:( 2245:2 2241:q 2237:n 2233:q 2229:n 2225:q 2223:( 2220:n 2215:q 2213:( 2210:n 2204:. 2198:q 2196:( 2193:n 2188:q 2186:( 2183:n 2178:q 2174:q 2170:q 2168:( 2165:n 2160:q 2158:( 2155:n 2147:n 2143:n 2131:q 2127:n 2115:q 2113:( 2110:n 2105:q 2101:n 2097:q 2093:n 2091:( 2089:O 2085:q 2081:n 2076:n 2068:q 2064:n 2060:q 2056:n 2051:n 2043:q 2039:n 2037:( 2035:L 2031:q 2027:n 2021:n 2013:n 2009:n 2005:n 2000:q 1996:F 1991:q 1987:F 1983:n 1979:q 1975:n 1928:Z 1924:Z 1920:Z 1916:Z 1912:2 1910:B 1905:Z 1901:Z 1897:Z 1893:Z 1889:6 1887:E 1882:Z 1878:Z 1874:Z 1870:Z 1866:5 1864:A 1859:Z 1855:Z 1851:Z 1847:Z 1843:3 1841:A 1836:Z 1832:Z 1828:3 1826:A 1821:Z 1817:Z 1813:2 1811:G 1806:Z 1802:Z 1798:2 1796:G 1791:Z 1787:Z 1783:4 1781:F 1776:Z 1772:Z 1768:Z 1764:Z 1760:4 1758:D 1753:Z 1749:Z 1745:3 1743:B 1738:Z 1734:Z 1730:3 1726:3 1724:B 1719:Z 1715:Z 1711:3 1709:A 1704:Z 1700:Z 1696:Z 1692:Z 1688:2 1686:A 1681:Z 1677:Z 1673:2 1671:A 1666:Z 1662:Z 1658:1 1656:A 1651:Z 1647:Z 1643:1 1641:A 1631:2 1629:G 1624:2 1622:G 1619:. 1613:4 1611:F 1606:2 1604:B 1599:2 1597:B 1592:2 1590:A 1585:1 1583:A 1578:1 1576:A 1510:k 1490:q 1486:n 1482:q 1478:q 1462:p 1430:1 1427:J 1422:Z 1418:Z 1414:q 1410:q 1406:Z 1402:Z 1394:2 1392:G 1382:1 1378:2 1374:2 1356:4 1352:4 1348:p 1344:p 1340:2 1336:4 1328:2 1326:G 1316:4 1314:F 1300:2 1298:B 1288:2 1243:4 1239:4 1233:. 1231:4 1226:4 1224:D 1219:; 1217:6 1212:6 1210:E 1205:; 1202:n 1196:n 1193:D 1186:; 1183:n 1177:n 1174:A 1143:n 1140:A 1119:6 1115:4 1100:6 1098:E 1093:4 1091:D 1075:6 1063:2 1059:2 1055:4 1051:8 1047:7 1043:6 1038:n 1032:n 1026:n 1020:n 978:n 972:n 966:n 960:n 954:n 948:n 794:e 787:t 780:v 676:8 674:E 668:7 666:E 660:6 658:E 652:4 650:F 644:2 642:G 636:) 634:n 624:) 622:n 612:) 610:n 600:) 598:n 588:) 586:n 576:) 574:n 564:) 562:n 552:) 550:n 492:) 479:Z 467:) 454:Z 430:) 417:Z 408:( 321:p 286:Q 278:n 275:D 265:n 262:A 254:n 251:S 243:n 240:Z 20:.

Index

Lie group
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑