Knowledge

Grothendieck group

Source 📝

4804: 8677:
Since the (bounded) derived category is triangulated, there is a Grothendieck group for derived categories too. This has applications in representation theory for example. For the unbounded category the Grothendieck group however vanishes. For a derived category of some complex finite-dimensional
4630: 4663: 6518: 4890: 5000: 8263: 3930: 1932: 490: 8858: 6324: 4540: 989: 7613: 1770: 6694: 2129: 7322: 3330: 5893: 7375: 7179: 7105: 6926: 1442: 7962: 6986: 6872: 7690: 4799:{\displaystyle \dim _{\mathbb {Q} }(B\otimes _{\mathbb {Z} }\mathbb {Q} )=\dim _{\mathbb {Q} }(A\otimes _{\mathbb {Z} }\mathbb {Q} )+\dim _{\mathbb {Q} }(C\otimes _{\mathbb {Z} }\mathbb {Q} )} 6195: 7416: 7241: 2882: 5254: 7051: 3860: 2634: 6750:. The distinguished sequences are called "exact sequences", hence the name. The precise axioms for this distinguished class do not matter for the construction of the Grothendieck group. 2010: 5291: 1826: 7826: 2179: 8429: 8315: 5189: 4503: 3189: 2688: 8598:(defined via direct sum of finitely generated projective modules) coincide. In fact, both groups are isomorphic to the free abelian group generated by the isomorphism classes of 6100: 5041: 4256: 3761: 4430: 4147: 5941: 4218: 1663: 6403: 5668: 4096: 3224: 2413: 5343: 8517: 8489: 8453: 8339: 7440: 7269: 7129: 6950: 6775: 6732: 6396: 5972: 5730: 5409: 1306: 623: 580: 548: 8087: 1115: 1069: 777: 7984: 6026: 5518: 5063: 4655: 4532: 4278: 3723: 3672: 3491: 3029: 1957: 1626: 1601: 3134: 817: 658: 4819: 7894: 5448: 1023: 850: 731: 8596: 8560: 8383: 6363: 3650: 3559: 3003: 2930: 2585: 2513: 2477: 2308: 2234: 1241: 1484:
and yields a group which satisfies the corresponding universal properties for semigroups, i.e. the "most general and smallest group containing a homomorphic image of
320: 218: 8863: 5784: 8668: 8633: 8113: 7199: 6132: 5363: 5121: 2754: 2364: 291: 250: 7208:
is an exact category if one just uses the standard interpretation of "exact". This gives the notion of a Grothendieck group in the previous section if one chooses
6834: 5817:
in block triangular form one easily sees that character functions are additive in the above sense. By the universal property this gives us a "universal character"
4901: 4012: 1471: 1351: 3430: 2038: 4391: 4052: 3830: 2825: 8013: 6236: 6156: 6049: 5992: 5804: 5754: 5688: 5629: 5609: 5578: 5558: 5538: 5468: 5384: 5141: 5094: 4309: 6753:
The Grothendieck group is defined in the same way as before as the abelian group with one generator for each (isomorphism class of) object(s) of the category
4456: 4339: 4173: 3787: 3698: 3614: 3588: 3359: 3081: 3055: 2956: 8124: 8780: 3872: 1838: 89: 336: 8719: 6245: 4625:{\displaystyle 0\to A\otimes _{\mathbb {Z} }\mathbb {Q} \to B\otimes _{\mathbb {Z} }\mathbb {Q} \to C\otimes _{\mathbb {Z} }\mathbb {Q} \to 0} 8749: 858: 7502: 6529: 8709: 7289: 3240: 4509: 4058: 7324:
with the canonical inclusion and projection morphisms. This procedure produces the Grothendieck group of the commutative monoid
5820: 7327: 7134: 7060: 6881: 1628:. First one observes that the natural numbers (including 0) together with the usual addition indeed form a commutative monoid 7905: 1665:
Now when one uses the Grothendieck group construction one obtains the formal differences between natural numbers as elements
6959: 6845: 8878: 8837: 6135: 8883: 7630: 7454:. The construction is essentially similar but uses the relations − + = 0 whenever there is a distinguished triangle 8832: 6161: 1679: 8635:
of a ring or a ringed space which is sometimes useful. The category in the case is chosen to be the category of all
7380: 7211: 2837: 1363: 8678:
positively graded algebra there is a subcategory in the unbounded derived category containing the abelian category
5194: 4066: 1516: 6991: 3835: 2590: 2322: 2046: 1357: 1974: 5259: 4810: 4103: 105: 7718: 8391: 8277: 1259: 5150: 4464: 3150: 2649: 2440: 5810: 5733: 2432: 1512: 85: 7490:, two vector spaces are isomorphic if and only if they have the same dimension. Thus, for a vector space 6513:{\displaystyle \cdots \to 0\to 0\to A^{n}\to A^{n+1}\to \cdots \to A^{m-1}\to A^{m}\to 0\to 0\to \cdots } 6058: 5008: 4223: 3728: 8827: 7451: 6878:
Alternatively and equivalently, one can define the Grothendieck group using a universal property: A map
5588: 4396: 4113: 2336: 2259: 2255: 173: 5898: 4178: 1631: 6326:
onto the ring of Brauer characters. In this way Grothendieck groups show up in representation theory.
5634: 5103:
The Grothendieck group satisfies a universal property. One makes a preliminary definition: A function
4072: 3197: 2376: 8714: 6366: 5814: 5300: 3794: 2828: 2641: 2537: 2328: 2263: 1775: 996: 8498: 8470: 8434: 8320: 7421: 7250: 7110: 6931: 6756: 6713: 6376: 5949: 5693: 5390: 1865: 596: 553: 521: 8028: 7484: 6052: 4885:{\displaystyle \operatorname {rank} (A)=\dim _{\mathbb {Q} }(A\otimes _{\mathbb {Z} }\mathbb {Q} )} 2541: 2134: 1074: 1028: 736: 516: 327: 65: 7967: 6000: 5473: 5046: 4638: 4515: 4261: 3706: 3655: 3466: 3012: 1940: 1609: 1584: 8815: 8789: 8775: 8704: 8342: 6699:
In fact the Grothendieck group was originally introduced for the study of Euler characteristics.
4458:
of the Grothendieck group. Suppose one has the following short exact sequence of abelian groups:
3094: 2315: 1504: 1491:. This is known as the "group completion of a semigroup" or "group of fractions of a semigroup". 1309: 782: 628: 591: 158: 62: 43: 8385:
is then defined as the Grothendieck group of this exact category and again this gives a functor.
2246:
is defined to be the Grothendieck group of the commutative monoid of all isomorphism classes of
8859:
The Grothendieck Group of Algebraic Vector Bundles; Calculations of Affine and Projective Space
7843: 5414: 1265: 1002: 829: 710: 8888: 8763: 8745: 8565: 8529: 8352: 7283: 6735: 6332: 6198: 3619: 3499: 2972: 2899: 2554: 2482: 2446: 2367: 2325: 2277: 2203: 1959:. Indeed, this is the usual construction to obtain the integers from the natural numbers. See 1532: 1214: 1170: 705: 261: 101: 4995:{\displaystyle =\operatorname {rank} (B)=\operatorname {rank} (A)+\operatorname {rank} (C)=+} 296: 197: 8799: 8770:, (Notes taken by D.W.Anderson, Fall 1964), published in 1967, W.A. Benjamin Inc., New York. 7286:
is also exact if one declares those and only those sequences to be exact that have the form
7205: 6239: 5763: 5584: 2311: 1166: 109: 8811: 8646: 8611: 8098: 7184: 6105: 5348: 5106: 2703: 2342: 267: 223: 8807: 8519:
is an abelian category and a fortiori an exact category so the construction above applies.
7276: 6783: 6370: 3942: 2420: 2185: 1528: 1500: 1447: 1327: 142: 81: 3367: 2015: 8258:{\displaystyle \chi (V^{*})=\sum _{i}(-1)^{i}\dim V=\sum _{i}(-1)^{i}\dim H^{i}(V^{*}).} 4344: 4311:
Indeed, the observation made from the previous paragraph shows that every abelian group
4025: 3803: 2774: 8636: 8456: 7989: 6708: 6707:
A common generalization of these two concepts is given by the Grothendieck group of an
6212: 6141: 6034: 5977: 5789: 5739: 5673: 5614: 5594: 5563: 5543: 5523: 5453: 5369: 5126: 5068: 4283: 3936: 2416: 1604: 1321: 260:. In particular, in the case of a monoid operation denoted multiplicatively that has a 4435: 4318: 4152: 3766: 3677: 3593: 3567: 3338: 3060: 3034: 2935: 8872: 8819: 8683: 8599: 8464: 2548: 2247: 2237: 733:. The two coordinates are meant to represent a positive part and a negative part, so 323: 52: 4432:. Furthermore, the rank of the abelian group satisfies the conditions of the symbol 3925:{\displaystyle 0\to \mathbb {Z} \to \mathbb {Z} \to \mathbb {Z} /n\mathbb {Z} \to 0} 1927:{\displaystyle \forall n\in \mathbb {N} :\qquad {\begin{cases}n:=\\-n:=\end{cases}}} 8272: 7480: 7450:
Generalizing even further it is also possible to define the Grothendieck group for
6202: 6029: 4015: 3493:. The observation from the previous paragraph hence proves the following equation: 2963: 4809:
On the other hand, one also has the following relation; for more information, see
8639:
on the ringed space which reduces to the category of all modules over some ring
4657:-vector spaces, the sequence splits. Therefore, one has the following equation. 4018:
has its symbol equal to 0. This in turn implies that every finite abelian group
1444:. (Here +′ and −′ denote the addition and subtraction in the free abelian group 31: 17: 485:{\displaystyle x=1.x=(0^{-1}.0).x=0^{-1}.(0.x)=0^{-1}.(0.0)=(0^{-1}.0).0=1.0=0} 8850: 5995: 5757: 3006: 113: 2321:
is the Grothendieck group of the monoid consisting of isomorphism classes of
80:. The Grothendieck group construction takes its name from a specific case in 1563: 1555: 1535:
from the category of abelian groups to the category of commutative monoids.
1478: 61:
in the most universal way, in the sense that any abelian group containing a
8845: 6209:
elements. In this case the analogously defined map that associates to each
1971:
Similarly, the Grothendieck group of the multiplicative commutative monoid
8803: 6319:{\displaystyle G_{0}({\overline {\mathbb {F} _{p}}})\to \mathrm {BCh} (G)} 8526:
is a finite-dimensional algebra over some field, the Grothendieck groups
3439:-vector spaces have the same dimension. Also, any two finite-dimensional 2240: 2197: 1960: 1354: 691: 678:
being the "most general" abelian group containing a homomorphic image of
550:
satisfying the following universal property: for any monoid homomorphism
93: 8491:
being the category of finitely generated modules over a noetherian ring
1477:.) This construction has the advantage that it can be performed for any 1199:
is compatible with our equivalence relation, one obtains an addition on
1579: 1578:
The easiest example of a Grothendieck group is the construction of the
1508: 8562:(defined via short exact sequences of finitely generated modules) and 3451:
of same dimension are isomorphic to each other. In fact, every finite
3194:
Since any short exact sequence of vector spaces splits, it holds that
1191:
to be the set of equivalence classes. Since the addition operation on
984:{\displaystyle (m_{1},m_{2})+(n_{1},n_{2})=(m_{1}+n_{1},m_{2}+n_{2})} 97: 7608:{\displaystyle ={\big }\in K_{0}(\mathrm {Vect} _{\mathrm {fin} }).} 511:
be a commutative monoid. Its Grothendieck group is an abelian group
74:
will also contain a homomorphic image of the Grothendieck group of
8794: 8015:
Finally for a bounded complex of finite-dimensional vector spaces
6689:{\displaystyle =\sum _{i}(-1)^{i}=\sum _{i}(-1)^{i}\in G_{0}(R).} 3335:
The above equality hence satisfies the condition of the symbol
2373:
The two previous examples are related: consider the case where
7317:{\displaystyle A\hookrightarrow A\oplus B\twoheadrightarrow B} 3325:{\displaystyle \dim _{K}(V\oplus W)=\dim _{K}(V)+\dim _{K}(W)} 8674:
a functor, but nevertheless it carries important information.
8504: 8476: 8463:. This includes the special case (if the ringed space is an 8440: 8407: 8326: 8293: 7427: 7400: 7350: 7256: 7217: 7157: 7116: 7083: 6937: 6904: 6762: 6719: 5396: 2759:
This definition implies that for any two finitely generated
2254:
with the monoid operation given by direct sum. This gives a
2262:
to abelian groups. This functor is studied and extended in
1920: 4065:
is isomorphic to a direct sum of a torsion subgroup and a
3832:. The following short exact sequence holds, where the map 2196:
The Grothendieck group is the fundamental construction of
5888:{\displaystyle \chi :G_{0}(R)\to \mathrm {Hom} _{K}(R,K)} 7370:{\displaystyle (\mathrm {Iso} ({\mathcal {A}}),\oplus )} 7174:{\displaystyle \chi :\mathrm {Ob} ({\mathcal {A}})\to X} 7100:{\displaystyle \phi :\mathrm {Ob} ({\mathcal {A}})\to G} 6921:{\displaystyle \chi :\mathrm {Ob} ({\mathcal {A}})\to X} 5123:
from the set of isomorphism classes to an abelian group
4059:
fundamental theorem of finitely generated abelian groups
3226:. In fact, for any two finite-dimensional vector spaces 3140:. Suppose one has the following short exact sequence of 8864:
Grothendieck Group of a Smooth Projective Complex Curve
7957:{\displaystyle K_{0}(\mathrm {Vect} _{\mathrm {fin} })} 6738:
together with a class of distinguished short sequences
6981:{\displaystyle A\hookrightarrow B\twoheadrightarrow C} 6867:{\displaystyle A\hookrightarrow B\twoheadrightarrow C} 4407: 4195: 4124: 153:
always exists; it is called the Grothendieck group of
8649: 8614: 8568: 8532: 8501: 8473: 8437: 8394: 8355: 8323: 8280: 8127: 8101: 8031: 7992: 7970: 7908: 7846: 7721: 7633: 7505: 7424: 7383: 7330: 7292: 7253: 7214: 7187: 7137: 7113: 7063: 6994: 6962: 6934: 6884: 6848: 6786: 6759: 6716: 6532: 6406: 6379: 6335: 6248: 6215: 6164: 6144: 6108: 6061: 6037: 6003: 5980: 5952: 5901: 5823: 5792: 5766: 5742: 5696: 5676: 5637: 5617: 5597: 5566: 5546: 5526: 5476: 5456: 5417: 5411:
to the element representing its isomorphism class in
5393: 5372: 5351: 5303: 5262: 5197: 5153: 5129: 5109: 5071: 5049: 5011: 4904: 4822: 4666: 4641: 4543: 4518: 4467: 4438: 4399: 4347: 4321: 4286: 4264: 4226: 4181: 4155: 4116: 4075: 4054:
by the fundamental theorem of finite abelian groups.
4028: 3945: 3875: 3838: 3806: 3769: 3731: 3709: 3680: 3658: 3622: 3596: 3570: 3502: 3469: 3370: 3341: 3243: 3200: 3153: 3097: 3063: 3037: 3015: 2975: 2938: 2902: 2840: 2777: 2706: 2652: 2593: 2557: 2485: 2449: 2379: 2345: 2280: 2206: 2137: 2049: 2018: 1977: 1943: 1841: 1778: 1682: 1634: 1612: 1587: 1450: 1366: 1330: 1268: 1217: 1077: 1031: 1005: 861: 832: 785: 739: 713: 631: 599: 556: 524: 339: 299: 270: 226: 200: 2184:
which of course can be identified with the positive
8662: 8627: 8590: 8554: 8511: 8483: 8447: 8423: 8377: 8333: 8309: 8257: 8107: 8081: 8007: 7978: 7956: 7888: 7820: 7684: 7607: 7434: 7410: 7369: 7316: 7263: 7235: 7193: 7173: 7123: 7099: 7045: 6980: 6944: 6920: 6866: 6828: 6769: 6726: 6688: 6512: 6390: 6357: 6318: 6230: 6189: 6150: 6126: 6094: 6043: 6020: 5986: 5966: 5935: 5887: 5798: 5778: 5748: 5724: 5682: 5662: 5623: 5603: 5572: 5552: 5532: 5512: 5462: 5442: 5403: 5378: 5357: 5337: 5285: 5248: 5183: 5135: 5115: 5088: 5057: 5035: 4994: 4884: 4798: 4649: 4624: 4526: 4497: 4450: 4424: 4385: 4333: 4303: 4272: 4250: 4212: 4167: 4141: 4090: 4046: 4006: 3924: 3854: 3824: 3781: 3755: 3717: 3692: 3666: 3644: 3608: 3582: 3553: 3485: 3424: 3353: 3324: 3218: 3183: 3128: 3075: 3049: 3023: 2997: 2950: 2924: 2876: 2819: 2748: 2682: 2628: 2579: 2507: 2471: 2407: 2358: 2302: 2228: 2173: 2123: 2032: 2004: 1951: 1926: 1820: 1764: 1657: 1620: 1595: 1465: 1436: 1345: 1300: 1235: 1207:becomes an abelian group. The identity element of 1109: 1063: 1017: 983: 844: 811: 771: 725: 652: 617: 574: 542: 484: 314: 285: 244: 212: 7685:{\displaystyle 0\to k^{l}\to k^{m}\to k^{n}\to 0} 6956:is called "additive" if for every exact sequence 5760:that is given by multiplication with the element 3435:Note that any two isomorphic finite-dimensional 2640:-modules and the following relations: For every 8115:is the standard Euler characteristic defined by 6190:{\displaystyle {\overline {\mathbb {F} _{p}}},} 5631:-algebra, then one can associate the character 5580:is the only group homomorphism that does that. 3725:be the set of integers. The Grothendieck group 1765:{\displaystyle n-m\sim n'-m'\iff n+m'+k=n'+m+k} 1211:is , and the inverse of is . The homomorphism 662:This expresses the fact that any abelian group 8778:(2013), "Completions of Grothendieck groups", 8690:-adic completion of the Grothendieck group of 7479:In the abelian category of finite-dimensional 7446:Grothendieck groups of triangulated categories 7411:{\displaystyle \mathrm {Iso} ({\mathcal {A}})} 7236:{\displaystyle {\mathcal {A}}:=R{\text{-mod}}} 3616:with integer coefficients, which implies that 2877:{\displaystyle 0\to M\to M\oplus N\to N\to 0.} 1437:{\displaystyle \{(x+'y)-'(x+y)\mid x,y\in M\}} 7549: 7520: 5249:{\displaystyle \chi (A)-\chi (B)+\chi (C)=0.} 4635:Since the above is a short exact sequence of 2636:of isomorphism classes of finitely generated 2192:Example: the Grothendieck group of a manifold 2012:(starting at 1) consists of formal fractions 330:with only one element), since one must have 8: 7046:{\displaystyle \chi (A)-\chi (B)+\chi (C)=0} 3855:{\displaystyle \mathbb {Z} \to \mathbb {Z} } 2629:{\displaystyle \{\mid X\in R{\text{-mod}}\}} 2623: 2594: 1431: 1367: 161:and can also be concretely constructed from 27:Abelian group extending a commutative monoid 8781:Bulletin of the London Mathematical Society 8740:Bruns, Winfried; Gubeladze, Joseph (2009). 7418:means the "set" of isomorphism classes in 2528:Another construction that carries the name 2124:{\displaystyle p/q\sim p'/q'\iff pq'r=p'qr} 1473:while + denotes the addition in the monoid 3789:for any finitely generated abelian groups 2587:as the abelian group generated by the set 2145: 2141: 2089: 2085: 2005:{\displaystyle (\mathbb {N} ^{*},\times )} 1786: 1782: 1718: 1714: 120:Grothendieck group of a commutative monoid 8793: 8654: 8648: 8619: 8613: 8573: 8567: 8537: 8531: 8503: 8502: 8500: 8475: 8474: 8472: 8439: 8438: 8436: 8412: 8406: 8405: 8393: 8360: 8354: 8325: 8324: 8322: 8298: 8292: 8291: 8279: 8243: 8230: 8214: 8195: 8173: 8154: 8138: 8126: 8100: 8061: 8039: 8030: 7991: 7972: 7971: 7969: 7938: 7937: 7923: 7913: 7907: 7845: 7778: 7757: 7730: 7720: 7670: 7657: 7644: 7632: 7586: 7585: 7571: 7561: 7548: 7547: 7529: 7519: 7518: 7504: 7426: 7425: 7423: 7399: 7398: 7384: 7382: 7349: 7348: 7334: 7329: 7291: 7255: 7254: 7252: 7228: 7216: 7215: 7213: 7186: 7156: 7155: 7144: 7136: 7115: 7114: 7112: 7082: 7081: 7070: 7062: 6993: 6961: 6936: 6935: 6933: 6903: 6902: 6891: 6883: 6847: 6785: 6761: 6760: 6758: 6718: 6717: 6715: 6668: 6649: 6636: 6623: 6604: 6588: 6575: 6556: 6540: 6531: 6486: 6467: 6442: 6429: 6405: 6383: 6378: 6340: 6334: 6296: 6270: 6266: 6265: 6262: 6253: 6247: 6214: 6173: 6169: 6168: 6165: 6163: 6143: 6107: 6076: 6075: 6066: 6060: 6036: 6005: 6004: 6002: 5979: 5960: 5959: 5951: 5927: 5900: 5864: 5853: 5834: 5822: 5791: 5765: 5741: 5707: 5695: 5675: 5642: 5636: 5616: 5596: 5565: 5545: 5525: 5475: 5455: 5422: 5416: 5395: 5394: 5392: 5371: 5350: 5314: 5302: 5286:{\displaystyle \chi :R{\text{-mod}}\to X} 5272: 5261: 5196: 5152: 5128: 5108: 5076: 5075: 5070: 5051: 5050: 5048: 5026: 5025: 5016: 5010: 4903: 4895:Therefore, the following equation holds: 4875: 4874: 4868: 4867: 4866: 4847: 4846: 4845: 4821: 4789: 4788: 4782: 4781: 4780: 4761: 4760: 4759: 4745: 4744: 4738: 4737: 4736: 4717: 4716: 4715: 4701: 4700: 4694: 4693: 4692: 4673: 4672: 4671: 4665: 4643: 4642: 4640: 4612: 4611: 4605: 4604: 4603: 4589: 4588: 4582: 4581: 4580: 4566: 4565: 4559: 4558: 4557: 4542: 4520: 4519: 4517: 4466: 4437: 4406: 4398: 4376: 4375: 4357: 4353: 4352: 4346: 4320: 4291: 4290: 4285: 4266: 4265: 4263: 4241: 4240: 4231: 4225: 4194: 4180: 4154: 4123: 4115: 4082: 4078: 4077: 4074: 4027: 3991: 3990: 3977: 3976: 3963: 3962: 3954: 3950: 3949: 3944: 3912: 3911: 3903: 3899: 3898: 3891: 3890: 3883: 3882: 3874: 3848: 3847: 3840: 3839: 3837: 3805: 3768: 3763:is an abelian group generated by symbols 3746: 3745: 3736: 3730: 3711: 3710: 3708: 3679: 3660: 3659: 3657: 3627: 3621: 3595: 3569: 3523: 3501: 3474: 3468: 3369: 3340: 3304: 3279: 3248: 3242: 3199: 3152: 3114: 3096: 3062: 3036: 3017: 3016: 3014: 2980: 2974: 2937: 2932:is an abelian group generated by symbols 2907: 2901: 2839: 2776: 2705: 2651: 2618: 2592: 2562: 2556: 2490: 2484: 2454: 2448: 2390: 2378: 2350: 2344: 2335:, with the monoid operation given by the 2285: 2279: 2270:Example: The Grothendieck group of a ring 2211: 2205: 2136: 2072: 2053: 2048: 2022: 2017: 1987: 1983: 1982: 1976: 1945: 1944: 1942: 1860: 1852: 1851: 1840: 1777: 1681: 1639: 1638: 1633: 1614: 1613: 1611: 1589: 1588: 1586: 1562:has the cancellation property, and it is 1449: 1365: 1329: 1267: 1216: 1098: 1085: 1076: 1052: 1039: 1030: 1004: 972: 959: 946: 933: 914: 901: 882: 869: 860: 831: 803: 790: 784: 760: 747: 738: 712: 670:will also contain a homomorphic image of 630: 598: 555: 523: 452: 421: 390: 362: 338: 298: 269: 225: 199: 55:. This abelian group is constructed from 7821:{\displaystyle \left=\left+\left=(l+n).} 6365:the 'universal receiver' of generalized 2896:be a field. Then the Grothendieck group 8732: 6703:Grothendieck groups of exact categories 5583:Examples of additive functions are the 692:K-theory § Grothendieck completion 92:, which resulted in the development of 8424:{\displaystyle (X,{\mathcal {O}}_{X})} 8310:{\displaystyle (X,{\mathcal {O}}_{X})} 7275:was assumed to be artinian (and hence 6734:. Simply put, an exact category is an 5387:and the map that takes each object of 1967:Example: the positive rational numbers 1511:; one thus obtains a functor from the 1250:Alternatively, the Grothendieck group 6051:then this character map even gives a 5184:{\displaystyle 0\to A\to B\to C\to 0} 4498:{\displaystyle 0\to A\to B\to C\to 0} 3184:{\displaystyle 0\to V\to T\to W\to 0} 2683:{\displaystyle 0\to A\to B\to C\to 0} 2551:. Then define the Grothendieck group 1673:and one has the equivalence relation 666:that contains a homomorphic image of 7: 8608:There is another Grothendieck group 7107:is called the Grothendieck group of 3136:, the dimension of the vector space 696:To construct the Grothendieck group 141:is to be constructed by introducing 8720:Atiyah–Hirzebruch spectral sequence 8431:, one can also define the category 7243:the category of finitely generated 6329:This universal property also makes 6095:{\displaystyle G_{0}(\mathbb {C} )} 5036:{\displaystyle G_{0}(\mathbb {Z} )} 4251:{\displaystyle G_{0}(\mathbb {Z} )} 3756:{\displaystyle G_{0}(\mathbb {Z} )} 1519:which sends the commutative monoid 1169:does not hold in all monoids). The 322:the Grothendieck group must be the 157:. It is characterized by a certain 133:, "the most general" abelian group 8722:for computing topological K-theory 7945: 7942: 7939: 7933: 7930: 7927: 7924: 7593: 7590: 7587: 7581: 7578: 7575: 7572: 7391: 7388: 7385: 7341: 7338: 7335: 7148: 7145: 7074: 7071: 7057:together with an additive mapping 6895: 6892: 6303: 6300: 6297: 5860: 5857: 5854: 4425:{\displaystyle r={\mbox{rank}}(A)} 4142:{\displaystyle r={\mbox{rank}}(A)} 2391: 1842: 25: 7271:. This is really abelian because 5936:{\displaystyle \chi ()=\chi _{V}} 4213:{\displaystyle ={\mbox{rank}}(A)} 2519:Grothendieck group and extensions 1963:for a more detailed explanation. 1658:{\displaystyle (\mathbb {N} ,+).} 90:Grothendieck–Riemann–Roch theorem 8686:whose Grothendieck group is the 8317:, one can consider the category 5663:{\displaystyle \chi _{V}:R\to k} 5256:Then, for any additive function 4534:implies the following equation. 4091:{\displaystyle \mathbb {Z} ^{r}} 3219:{\displaystyle T\cong V\oplus W} 2408:{\displaystyle R=C^{\infty }(M)} 7621:Moreover, for an exact sequence 5338:{\displaystyle f:G_{0}(R)\to X} 3031:whose generator is the element 1859: 1821:{\displaystyle k\iff n+m'=n'+m} 252:), then the Grothendieck group 8742:Polytopes, Rings, and K-Theory 8585: 8579: 8549: 8543: 8512:{\displaystyle {\mathcal {A}}} 8484:{\displaystyle {\mathcal {A}}} 8448:{\displaystyle {\mathcal {A}}} 8418: 8395: 8372: 8366: 8334:{\displaystyle {\mathcal {A}}} 8304: 8281: 8249: 8236: 8211: 8201: 8170: 8160: 8144: 8131: 8076: 8070: 8067: 8054: 8045: 8032: 7999: 7993: 7951: 7919: 7880: 7874: 7871: 7865: 7853: 7847: 7812: 7806: 7803: 7791: 7676: 7663: 7650: 7637: 7599: 7567: 7542: 7536: 7512: 7506: 7435:{\displaystyle {\mathcal {A}}} 7405: 7395: 7364: 7355: 7345: 7331: 7308: 7296: 7264:{\displaystyle {\mathcal {A}}} 7165: 7162: 7152: 7124:{\displaystyle {\mathcal {A}}} 7091: 7088: 7078: 7034: 7028: 7019: 7013: 7004: 6998: 6972: 6966: 6945:{\displaystyle {\mathcal {A}}} 6912: 6909: 6899: 6858: 6852: 6817: 6811: 6805: 6799: 6793: 6787: 6770:{\displaystyle {\mathcal {A}}} 6727:{\displaystyle {\mathcal {A}}} 6680: 6674: 6658: 6655: 6642: 6629: 6620: 6610: 6594: 6581: 6572: 6562: 6546: 6533: 6504: 6498: 6492: 6479: 6460: 6454: 6435: 6422: 6416: 6410: 6391:{\displaystyle R{\text{-mod}}} 6352: 6346: 6313: 6307: 6293: 6290: 6287: 6281: 6259: 6242:is also a natural isomorphism 6225: 6219: 6121: 6115: 6089: 6086: 6080: 6072: 6015: 6009: 5967:{\displaystyle k=\mathbb {C} } 5917: 5914: 5908: 5905: 5882: 5870: 5849: 5846: 5840: 5813:and writing the corresponding 5725:{\displaystyle V:\chi _{V}(x)} 5719: 5713: 5654: 5507: 5501: 5492: 5489: 5483: 5480: 5434: 5428: 5404:{\displaystyle {\mathcal {A}}} 5329: 5326: 5320: 5277: 5237: 5231: 5222: 5216: 5207: 5201: 5175: 5169: 5163: 5157: 5080: 5072: 5030: 5022: 4989: 4983: 4977: 4971: 4965: 4959: 4947: 4941: 4929: 4923: 4911: 4905: 4879: 4856: 4835: 4829: 4793: 4770: 4749: 4726: 4705: 4682: 4616: 4593: 4570: 4547: 4489: 4483: 4477: 4471: 4445: 4439: 4419: 4413: 4380: 4372: 4363: 4348: 4328: 4322: 4295: 4287: 4245: 4237: 4220:. Then the Grothendieck group 4207: 4201: 4188: 4182: 4162: 4156: 4136: 4130: 4098:for some non-negative integer 4035: 4029: 3995: 3987: 3981: 3973: 3967: 3946: 3916: 3895: 3887: 3879: 3844: 3813: 3807: 3776: 3770: 3750: 3742: 3687: 3681: 3639: 3633: 3603: 3597: 3577: 3571: 3548: 3542: 3509: 3503: 3419: 3413: 3407: 3401: 3395: 3383: 3377: 3371: 3348: 3342: 3319: 3313: 3294: 3288: 3269: 3257: 3175: 3169: 3163: 3157: 3104: 3098: 3070: 3064: 3044: 3038: 2992: 2986: 2945: 2939: 2919: 2913: 2868: 2862: 2850: 2844: 2814: 2808: 2802: 2796: 2790: 2778: 2737: 2731: 2725: 2719: 2713: 2707: 2674: 2668: 2662: 2656: 2603: 2597: 2574: 2568: 2502: 2496: 2466: 2460: 2427:. In this case the projective 2402: 2396: 2297: 2291: 2223: 2217: 2142: 2086: 1999: 1978: 1914: 1902: 1886: 1874: 1783: 1715: 1649: 1635: 1515:of commutative monoids to the 1460: 1454: 1410: 1398: 1387: 1370: 1340: 1334: 1295: 1281: 1275: 1269: 1258:can also be constructed using 1227: 1187:) is denoted by . One defines 1104: 1078: 1058: 1032: 978: 926: 920: 894: 888: 862: 766: 740: 618:{\displaystyle g\colon K\to A} 609: 575:{\displaystyle f\colon M\to A} 566: 543:{\displaystyle i\colon M\to K} 534: 464: 445: 439: 433: 411: 402: 374: 355: 1: 8082:{\displaystyle =\chi (V^{*})} 6136:modular representation theory 5520:for every finitely generated 2274:The zeroth algebraic K group 2174:{\displaystyle r\iff pq'=p'q} 1961:"Construction" under Integers 1507:construction gives rise to a 1110:{\displaystyle (n_{1},n_{2})} 1064:{\displaystyle (m_{1},m_{2})} 772:{\displaystyle (m_{1},m_{2})} 7979:{\displaystyle \mathbb {Z} } 6523:one has a canonical element 6276: 6179: 6021:{\displaystyle \mathbb {C} } 5670:to every finite-dimensional 5513:{\displaystyle f()=\chi (V)} 5147:if, for each exact sequence 5058:{\displaystyle \mathbb {Z} } 4650:{\displaystyle \mathbb {Q} } 4527:{\displaystyle \mathbb {Q} } 4273:{\displaystyle \mathbb {Z} } 3718:{\displaystyle \mathbb {Z} } 3667:{\displaystyle \mathbb {Z} } 3590:is generated by the element 3486:{\displaystyle K^{\oplus n}} 3024:{\displaystyle \mathbb {Z} } 2366:is a covariant functor from 1952:{\displaystyle \mathbb {Z} } 1621:{\displaystyle \mathbb {N} } 1596:{\displaystyle \mathbb {Z} } 852:is defined coordinate-wise: 96:. This specific case is the 8833:Encyclopedia of Mathematics 8643:in case of affine schemes. 7279:) in the previous section. 6369:. In particular, for every 5450:Concretely this means that 3793:. One first notes that any 3361:in the Grothendieck group. 3129:{\displaystyle =\dim _{K}V} 2958:for any finite-dimensional 2697:-modules, add the relation 812:{\displaystyle m_{1}-m_{2}} 653:{\displaystyle f=g\circ i.} 129:Given a commutative monoid 8905: 8455:to be the category of all 4512:with the rational numbers 4067:torsion-free abelian group 1937:This defines the integers 1523:to its Grothendieck group 1517:category of abelian groups 689: 7889:{\displaystyle =\dim(V),} 7377:in the first sense (here 7282:On the other hand, every 7181:factors uniquely through 5443:{\displaystyle G_{0}(R).} 5005:Hence one has shown that 3083:for a finite-dimensional 1538:For a commutative monoid 1316:, the Grothendieck group 1301:{\displaystyle (Z(M),+')} 1165:is necessary because the 1018:{\displaystyle M\times M} 845:{\displaystyle M\times M} 726:{\displaystyle M\times M} 8744:. Springer. p. 50. 8591:{\displaystyle K_{0}(R)} 8555:{\displaystyle G_{0}(R)} 8378:{\displaystyle K_{0}(X)} 6839:for each exact sequence 6358:{\displaystyle G_{0}(R)} 5611:is a finite-dimensional 4811:Rank of an abelian group 3645:{\displaystyle G_{0}(K)} 3554:{\displaystyle =\left=n} 2998:{\displaystyle G_{0}(K)} 2925:{\displaystyle G_{0}(K)} 2580:{\displaystyle G_{0}(R)} 2536:be a finite-dimensional 2508:{\displaystyle K_{0}(M)} 2472:{\displaystyle K_{0}(R)} 2303:{\displaystyle K_{0}(R)} 2229:{\displaystyle K_{0}(M)} 1260:generators and relations 1236:{\displaystyle i:M\to K} 700:of a commutative monoid 149:. Such an abelian group 7452:triangulated categories 7131:iff every additive map 6102:and the character ring 5809:By choosing a suitable 5470:satisfies the equation 4341:the same to the symbol 2435:to vector bundles over 315:{\displaystyle x\in M,} 213:{\displaystyle a\neq b} 176:(that is, there exists 8682:of finite-dimensional 8664: 8637:quasi-coherent sheaves 8629: 8592: 8556: 8513: 8485: 8449: 8425: 8379: 8335: 8311: 8259: 8109: 8083: 8009: 7980: 7958: 7890: 7822: 7686: 7609: 7436: 7412: 7371: 7318: 7265: 7237: 7195: 7175: 7125: 7101: 7047: 6982: 6952:into an abelian group 6946: 6922: 6868: 6830: 6771: 6728: 6690: 6514: 6392: 6359: 6320: 6232: 6191: 6152: 6128: 6096: 6045: 6022: 5988: 5968: 5937: 5889: 5800: 5780: 5779:{\displaystyle x\in R} 5750: 5726: 5684: 5664: 5625: 5605: 5574: 5554: 5534: 5514: 5464: 5444: 5405: 5380: 5359: 5339: 5287: 5250: 5185: 5137: 5117: 5090: 5059: 5037: 4996: 4886: 4800: 4651: 4626: 4528: 4499: 4452: 4426: 4387: 4335: 4305: 4274: 4252: 4214: 4169: 4143: 4092: 4061:, every abelian group 4048: 4008: 3926: 3856: 3826: 3783: 3757: 3719: 3694: 3668: 3646: 3610: 3584: 3555: 3487: 3426: 3355: 3326: 3220: 3185: 3130: 3077: 3051: 3025: 2999: 2952: 2926: 2878: 2821: 2750: 2684: 2630: 2581: 2532:is the following: Let 2509: 2473: 2423:on a compact manifold 2409: 2360: 2310:of a (not necessarily 2304: 2230: 2175: 2125: 2040:with the equivalence 2034: 2006: 1953: 1928: 1822: 1766: 1659: 1622: 1597: 1467: 1438: 1347: 1302: 1237: 1111: 1065: 1019: 985: 846: 813: 773: 727: 686:Explicit constructions 654: 619: 576: 544: 486: 316: 287: 246: 214: 86:Alexander Grothendieck 8665: 8663:{\displaystyle G_{0}} 8630: 8628:{\displaystyle G_{0}} 8593: 8557: 8514: 8486: 8450: 8426: 8380: 8336: 8312: 8260: 8110: 8108:{\displaystyle \chi } 8084: 8010: 7981: 7959: 7891: 7823: 7687: 7610: 7437: 7413: 7372: 7319: 7266: 7238: 7196: 7194:{\displaystyle \phi } 7176: 7126: 7102: 7048: 6983: 6947: 6923: 6869: 6831: 6772: 6729: 6691: 6515: 6393: 6367:Euler characteristics 6360: 6321: 6233: 6192: 6153: 6129: 6127:{\displaystyle Ch(G)} 6097: 6046: 6023: 5989: 5969: 5938: 5890: 5801: 5781: 5751: 5732:is defined to be the 5727: 5685: 5665: 5626: 5606: 5589:representation theory 5575: 5555: 5535: 5515: 5465: 5445: 5406: 5381: 5360: 5358:{\displaystyle \chi } 5340: 5288: 5251: 5186: 5138: 5118: 5116:{\displaystyle \chi } 5091: 5060: 5038: 4997: 4887: 4801: 4652: 4627: 4529: 4500: 4453: 4427: 4388: 4336: 4306: 4275: 4253: 4215: 4170: 4144: 4093: 4049: 4009: 3927: 3862:is multiplication by 3857: 3827: 3784: 3758: 3720: 3695: 3669: 3647: 3611: 3585: 3556: 3488: 3427: 3356: 3327: 3234:the following holds: 3221: 3186: 3131: 3078: 3052: 3026: 3000: 2953: 2927: 2879: 2831:short exact sequence 2822: 2751: 2749:{\displaystyle -+=0.} 2685: 2631: 2582: 2547:or more generally an 2510: 2474: 2410: 2361: 2359:{\displaystyle K_{0}} 2305: 2256:contravariant functor 2231: 2176: 2126: 2035: 2007: 1954: 1929: 1823: 1767: 1660: 1623: 1598: 1574:Example: the integers 1468: 1439: 1348: 1312:generated by the set 1303: 1238: 1117:if, for some element 1112: 1066: 1020: 986: 847: 814: 774: 728: 655: 620: 577: 545: 487: 317: 288: 286:{\displaystyle 0.x=0} 247: 245:{\displaystyle ac=bc} 215: 174:cancellation property 8879:Algebraic structures 8846:"Grothendieck group" 8828:"Grothendieck group" 8715:Topological K-theory 8647: 8612: 8566: 8530: 8499: 8471: 8435: 8392: 8353: 8343:locally free sheaves 8321: 8278: 8125: 8099: 8029: 7990: 7986:and is generated by 7968: 7906: 7844: 7719: 7631: 7503: 7422: 7381: 7328: 7290: 7251: 7212: 7185: 7135: 7111: 7061: 6992: 6960: 6932: 6882: 6846: 6829:{\displaystyle -+=0} 6784: 6757: 6714: 6530: 6404: 6377: 6333: 6246: 6213: 6162: 6142: 6106: 6059: 6035: 6001: 5978: 5950: 5899: 5821: 5790: 5764: 5740: 5694: 5674: 5635: 5615: 5595: 5564: 5544: 5524: 5474: 5454: 5415: 5391: 5370: 5349: 5301: 5260: 5195: 5151: 5127: 5107: 5069: 5047: 5009: 4902: 4820: 4664: 4639: 4541: 4516: 4465: 4436: 4397: 4345: 4319: 4284: 4262: 4224: 4179: 4153: 4149:. Define the symbol 4114: 4073: 4057:Observe that by the 4026: 4007:{\displaystyle =-=0} 3943: 3873: 3836: 3804: 3795:finite abelian group 3767: 3729: 3707: 3703:More generally, let 3678: 3656: 3620: 3594: 3568: 3564:Hence, every symbol 3500: 3467: 3368: 3339: 3241: 3198: 3151: 3095: 3061: 3035: 3013: 2973: 2936: 2900: 2838: 2775: 2704: 2650: 2642:short exact sequence 2591: 2555: 2515:are the same group. 2483: 2447: 2377: 2343: 2278: 2264:topological K-theory 2204: 2135: 2047: 2016: 1975: 1941: 1839: 1776: 1680: 1632: 1610: 1603:from the (additive) 1585: 1570:is already a group. 1466:{\displaystyle Z(M)} 1448: 1364: 1346:{\displaystyle Z(M)} 1328: 1266: 1215: 1075: 1029: 1003: 997:equivalence relation 995:Next one defines an 859: 830: 783: 737: 711: 629: 597: 590:, there is a unique 586:to an abelian group 554: 522: 337: 297: 268: 224: 198: 88:in his proof of the 40:group of differences 8884:Homological algebra 8804:10.1112/blms/bds079 8776:Stroppel, Catharina 8388:For a ringed space 7053:; an abelian group 6053:natural isomorphism 5297:group homomorphism 3674:with the generator 3425:{\displaystyle ==+} 3057:. Here, the symbol 2370:to abelian groups. 2033:{\displaystyle p/q} 1499:In the language of 517:monoid homomorphism 145:to all elements of 102:isomorphism classes 8774:Achar, Pramod N.; 8705:Field of fractions 8660: 8625: 8588: 8552: 8522:In the case where 8509: 8481: 8445: 8421: 8375: 8331: 8307: 8255: 8200: 8159: 8105: 8079: 8005: 7976: 7954: 7886: 7818: 7682: 7605: 7432: 7408: 7367: 7314: 7261: 7233: 7191: 7171: 7121: 7097: 7043: 6978: 6942: 6918: 6864: 6826: 6767: 6724: 6686: 6609: 6561: 6510: 6388: 6355: 6316: 6228: 6187: 6148: 6138:of finite groups, 6124: 6092: 6041: 6018: 5984: 5964: 5933: 5885: 5796: 5776: 5746: 5722: 5680: 5660: 5621: 5601: 5585:character function 5570: 5550: 5530: 5510: 5460: 5440: 5401: 5376: 5355: 5335: 5283: 5246: 5181: 5133: 5113: 5099:Universal Property 5086: 5055: 5033: 4992: 4882: 4796: 4647: 4622: 4524: 4495: 4448: 4422: 4411: 4386:{\displaystyle =r} 4383: 4331: 4301: 4270: 4248: 4210: 4199: 4165: 4139: 4128: 4088: 4047:{\displaystyle =0} 4044: 4004: 3922: 3852: 3825:{\displaystyle =0} 3822: 3779: 3753: 3715: 3690: 3664: 3642: 3606: 3580: 3551: 3483: 3422: 3351: 3322: 3216: 3181: 3126: 3073: 3047: 3021: 2995: 2948: 2922: 2874: 2820:{\displaystyle =+} 2817: 2746: 2680: 2626: 2577: 2530:Grothendieck group 2505: 2469: 2441:Serre–Swan theorem 2405: 2356: 2323:finitely generated 2300: 2250:of finite rank on 2226: 2171: 2121: 2030: 2002: 1949: 1924: 1919: 1818: 1762: 1655: 1618: 1593: 1527:. This functor is 1463: 1434: 1343: 1310:free abelian group 1298: 1243:sends the element 1233: 1107: 1061: 1015: 981: 842: 809: 769: 723: 650: 615: 592:group homomorphism 572: 540: 503:Universal property 482: 312: 283: 242: 210: 172:does not have the 159:universal property 116:as its operation. 44:commutative monoid 36:Grothendieck group 8764:Michael F. Atiyah 8751:978-0-387-76355-2 8191: 8150: 8008:{\displaystyle .} 7964:is isomorphic to 7284:additive category 7231: 6777:and one relation 6736:additive category 6600: 6552: 6386: 6279: 6231:{\displaystyle k} 6199:algebraic closure 6182: 6151:{\displaystyle k} 6044:{\displaystyle G} 5987:{\displaystyle R} 5799:{\displaystyle V} 5749:{\displaystyle k} 5683:{\displaystyle R} 5624:{\displaystyle k} 5604:{\displaystyle R} 5573:{\displaystyle f} 5553:{\displaystyle V} 5533:{\displaystyle R} 5463:{\displaystyle f} 5379:{\displaystyle f} 5275: 5136:{\displaystyle X} 5089:{\displaystyle .} 5043:is isomorphic to 4410: 4304:{\displaystyle .} 4258:is isomorphic to 4198: 4127: 3652:is isomorphic to 3463:is isomorphic to 2827:, because of the 2621: 1533:forgetful functor 1171:equivalence class 1071:is equivalent to 706:Cartesian product 137:that arises from 16:(Redirected from 8896: 8855: 8841: 8822: 8797: 8756: 8755: 8737: 8669: 8667: 8666: 8661: 8659: 8658: 8634: 8632: 8631: 8626: 8624: 8623: 8597: 8595: 8594: 8589: 8578: 8577: 8561: 8559: 8558: 8553: 8542: 8541: 8518: 8516: 8515: 8510: 8508: 8507: 8495:. In both cases 8490: 8488: 8487: 8482: 8480: 8479: 8457:coherent sheaves 8454: 8452: 8451: 8446: 8444: 8443: 8430: 8428: 8427: 8422: 8417: 8416: 8411: 8410: 8384: 8382: 8381: 8376: 8365: 8364: 8340: 8338: 8337: 8332: 8330: 8329: 8316: 8314: 8313: 8308: 8303: 8302: 8297: 8296: 8264: 8262: 8261: 8256: 8248: 8247: 8235: 8234: 8219: 8218: 8199: 8178: 8177: 8158: 8143: 8142: 8114: 8112: 8111: 8106: 8088: 8086: 8085: 8080: 8066: 8065: 8044: 8043: 8014: 8012: 8011: 8006: 7985: 7983: 7982: 7977: 7975: 7963: 7961: 7960: 7955: 7950: 7949: 7948: 7936: 7918: 7917: 7895: 7893: 7892: 7887: 7827: 7825: 7824: 7819: 7787: 7783: 7782: 7766: 7762: 7761: 7745: 7741: 7740: 7691: 7689: 7688: 7683: 7675: 7674: 7662: 7661: 7649: 7648: 7614: 7612: 7611: 7606: 7598: 7597: 7596: 7584: 7566: 7565: 7553: 7552: 7546: 7545: 7524: 7523: 7474:Further examples 7441: 7439: 7438: 7433: 7431: 7430: 7417: 7415: 7414: 7409: 7404: 7403: 7394: 7376: 7374: 7373: 7368: 7354: 7353: 7344: 7323: 7321: 7320: 7315: 7270: 7268: 7267: 7262: 7260: 7259: 7242: 7240: 7239: 7234: 7232: 7229: 7221: 7220: 7206:abelian category 7200: 7198: 7197: 7192: 7180: 7178: 7177: 7172: 7161: 7160: 7151: 7130: 7128: 7127: 7122: 7120: 7119: 7106: 7104: 7103: 7098: 7087: 7086: 7077: 7052: 7050: 7049: 7044: 6987: 6985: 6984: 6979: 6951: 6949: 6948: 6943: 6941: 6940: 6927: 6925: 6924: 6919: 6908: 6907: 6898: 6873: 6871: 6870: 6865: 6835: 6833: 6832: 6827: 6776: 6774: 6773: 6768: 6766: 6765: 6733: 6731: 6730: 6725: 6723: 6722: 6695: 6693: 6692: 6687: 6673: 6672: 6654: 6653: 6641: 6640: 6628: 6627: 6608: 6593: 6592: 6580: 6579: 6560: 6545: 6544: 6519: 6517: 6516: 6511: 6491: 6490: 6478: 6477: 6453: 6452: 6434: 6433: 6397: 6395: 6394: 6389: 6387: 6384: 6364: 6362: 6361: 6356: 6345: 6344: 6325: 6323: 6322: 6317: 6306: 6280: 6275: 6274: 6269: 6263: 6258: 6257: 6240:Brauer character 6237: 6235: 6234: 6229: 6196: 6194: 6193: 6188: 6183: 6178: 6177: 6172: 6166: 6157: 6155: 6154: 6149: 6133: 6131: 6130: 6125: 6101: 6099: 6098: 6093: 6079: 6071: 6070: 6050: 6048: 6047: 6042: 6027: 6025: 6024: 6019: 6008: 5993: 5991: 5990: 5985: 5973: 5971: 5970: 5965: 5963: 5942: 5940: 5939: 5934: 5932: 5931: 5894: 5892: 5891: 5886: 5869: 5868: 5863: 5839: 5838: 5805: 5803: 5802: 5797: 5785: 5783: 5782: 5777: 5755: 5753: 5752: 5747: 5731: 5729: 5728: 5723: 5712: 5711: 5689: 5687: 5686: 5681: 5669: 5667: 5666: 5661: 5647: 5646: 5630: 5628: 5627: 5622: 5610: 5608: 5607: 5602: 5579: 5577: 5576: 5571: 5559: 5557: 5556: 5551: 5539: 5537: 5536: 5531: 5519: 5517: 5516: 5511: 5469: 5467: 5466: 5461: 5449: 5447: 5446: 5441: 5427: 5426: 5410: 5408: 5407: 5402: 5400: 5399: 5385: 5383: 5382: 5377: 5365:factors through 5364: 5362: 5361: 5356: 5344: 5342: 5341: 5336: 5319: 5318: 5292: 5290: 5289: 5284: 5276: 5273: 5255: 5253: 5252: 5247: 5190: 5188: 5187: 5182: 5142: 5140: 5139: 5134: 5122: 5120: 5119: 5114: 5095: 5093: 5092: 5087: 5079: 5064: 5062: 5061: 5056: 5054: 5042: 5040: 5039: 5034: 5029: 5021: 5020: 5001: 4999: 4998: 4993: 4891: 4889: 4888: 4883: 4878: 4873: 4872: 4871: 4852: 4851: 4850: 4805: 4803: 4802: 4797: 4792: 4787: 4786: 4785: 4766: 4765: 4764: 4748: 4743: 4742: 4741: 4722: 4721: 4720: 4704: 4699: 4698: 4697: 4678: 4677: 4676: 4656: 4654: 4653: 4648: 4646: 4631: 4629: 4628: 4623: 4615: 4610: 4609: 4608: 4592: 4587: 4586: 4585: 4569: 4564: 4563: 4562: 4533: 4531: 4530: 4525: 4523: 4504: 4502: 4501: 4496: 4457: 4455: 4454: 4451:{\displaystyle } 4449: 4431: 4429: 4428: 4423: 4412: 4408: 4392: 4390: 4389: 4384: 4379: 4362: 4361: 4356: 4340: 4338: 4337: 4334:{\displaystyle } 4332: 4310: 4308: 4307: 4302: 4294: 4279: 4277: 4276: 4271: 4269: 4257: 4255: 4254: 4249: 4244: 4236: 4235: 4219: 4217: 4216: 4211: 4200: 4196: 4174: 4172: 4171: 4168:{\displaystyle } 4166: 4148: 4146: 4145: 4140: 4129: 4125: 4097: 4095: 4094: 4089: 4087: 4086: 4081: 4053: 4051: 4050: 4045: 4013: 4011: 4010: 4005: 3994: 3980: 3966: 3958: 3953: 3931: 3929: 3928: 3923: 3915: 3907: 3902: 3894: 3886: 3861: 3859: 3858: 3853: 3851: 3843: 3831: 3829: 3828: 3823: 3788: 3786: 3785: 3782:{\displaystyle } 3780: 3762: 3760: 3759: 3754: 3749: 3741: 3740: 3724: 3722: 3721: 3716: 3714: 3699: 3697: 3696: 3693:{\displaystyle } 3691: 3673: 3671: 3670: 3665: 3663: 3651: 3649: 3648: 3643: 3632: 3631: 3615: 3613: 3612: 3609:{\displaystyle } 3607: 3589: 3587: 3586: 3583:{\displaystyle } 3581: 3560: 3558: 3557: 3552: 3535: 3531: 3530: 3492: 3490: 3489: 3484: 3482: 3481: 3431: 3429: 3428: 3423: 3360: 3358: 3357: 3354:{\displaystyle } 3352: 3331: 3329: 3328: 3323: 3309: 3308: 3284: 3283: 3253: 3252: 3225: 3223: 3222: 3217: 3190: 3188: 3187: 3182: 3144:-vector spaces. 3135: 3133: 3132: 3127: 3119: 3118: 3082: 3080: 3079: 3076:{\displaystyle } 3074: 3056: 3054: 3053: 3050:{\displaystyle } 3048: 3030: 3028: 3027: 3022: 3020: 3004: 3002: 3001: 2996: 2985: 2984: 2957: 2955: 2954: 2951:{\displaystyle } 2949: 2931: 2929: 2928: 2923: 2912: 2911: 2883: 2881: 2880: 2875: 2826: 2824: 2823: 2818: 2755: 2753: 2752: 2747: 2689: 2687: 2686: 2681: 2635: 2633: 2632: 2627: 2622: 2619: 2586: 2584: 2583: 2578: 2567: 2566: 2514: 2512: 2511: 2506: 2495: 2494: 2478: 2476: 2475: 2470: 2459: 2458: 2421:smooth functions 2414: 2412: 2411: 2406: 2395: 2394: 2365: 2363: 2362: 2357: 2355: 2354: 2309: 2307: 2306: 2301: 2290: 2289: 2235: 2233: 2232: 2227: 2216: 2215: 2186:rational numbers 2180: 2178: 2177: 2172: 2167: 2156: 2130: 2128: 2127: 2122: 2114: 2100: 2084: 2076: 2071: 2057: 2039: 2037: 2036: 2031: 2026: 2011: 2009: 2008: 2003: 1992: 1991: 1986: 1958: 1956: 1955: 1950: 1948: 1933: 1931: 1930: 1925: 1923: 1922: 1855: 1827: 1825: 1824: 1819: 1811: 1800: 1771: 1769: 1768: 1763: 1749: 1732: 1713: 1702: 1664: 1662: 1661: 1656: 1642: 1627: 1625: 1624: 1619: 1617: 1602: 1600: 1599: 1594: 1592: 1490: 1472: 1470: 1469: 1464: 1443: 1441: 1440: 1435: 1397: 1383: 1352: 1350: 1349: 1344: 1307: 1305: 1304: 1299: 1294: 1242: 1240: 1239: 1234: 1173:of the element ( 1167:cancellation law 1116: 1114: 1113: 1108: 1103: 1102: 1090: 1089: 1070: 1068: 1067: 1062: 1057: 1056: 1044: 1043: 1024: 1022: 1021: 1016: 990: 988: 987: 982: 977: 976: 964: 963: 951: 950: 938: 937: 919: 918: 906: 905: 887: 886: 874: 873: 851: 849: 848: 843: 818: 816: 815: 810: 808: 807: 795: 794: 778: 776: 775: 770: 765: 764: 752: 751: 732: 730: 729: 724: 704:, one forms the 659: 657: 656: 651: 624: 622: 621: 616: 581: 579: 578: 573: 549: 547: 546: 541: 498: 491: 489: 488: 483: 460: 459: 429: 428: 398: 397: 370: 369: 321: 319: 318: 313: 292: 290: 289: 284: 259: 255: 251: 249: 248: 243: 219: 217: 216: 211: 193: 189: 185: 171: 164: 156: 152: 148: 143:inverse elements 140: 136: 132: 110:abelian category 84:, introduced by 79: 73: 60: 50: 21: 18:Group completion 8904: 8903: 8899: 8898: 8897: 8895: 8894: 8893: 8869: 8868: 8844: 8826: 8773: 8760: 8759: 8752: 8739: 8738: 8734: 8729: 8701: 8650: 8645: 8644: 8615: 8610: 8609: 8569: 8564: 8563: 8533: 8528: 8527: 8497: 8496: 8469: 8468: 8433: 8432: 8404: 8390: 8389: 8356: 8351: 8350: 8319: 8318: 8290: 8276: 8275: 8239: 8226: 8210: 8169: 8134: 8123: 8122: 8097: 8096: 8057: 8035: 8027: 8026: 7988: 7987: 7966: 7965: 7922: 7909: 7904: 7903: 7842: 7841: 7774: 7770: 7753: 7749: 7726: 7722: 7717: 7716: 7666: 7653: 7640: 7629: 7628: 7570: 7557: 7525: 7501: 7500: 7476: 7448: 7420: 7419: 7379: 7378: 7326: 7325: 7288: 7287: 7249: 7248: 7210: 7209: 7183: 7182: 7133: 7132: 7109: 7108: 7059: 7058: 6990: 6989: 6958: 6957: 6930: 6929: 6880: 6879: 6844: 6843: 6782: 6781: 6755: 6754: 6712: 6711: 6705: 6664: 6645: 6632: 6619: 6584: 6571: 6536: 6528: 6527: 6482: 6463: 6438: 6425: 6402: 6401: 6375: 6374: 6371:bounded complex 6336: 6331: 6330: 6264: 6249: 6244: 6243: 6211: 6210: 6167: 6160: 6159: 6158:can be a field 6140: 6139: 6104: 6103: 6062: 6057: 6056: 6033: 6032: 5999: 5998: 5976: 5975: 5948: 5947: 5923: 5897: 5896: 5852: 5830: 5819: 5818: 5788: 5787: 5762: 5761: 5738: 5737: 5703: 5692: 5691: 5672: 5671: 5638: 5633: 5632: 5613: 5612: 5593: 5592: 5562: 5561: 5542: 5541: 5522: 5521: 5472: 5471: 5452: 5451: 5418: 5413: 5412: 5389: 5388: 5368: 5367: 5347: 5346: 5310: 5299: 5298: 5258: 5257: 5193: 5192: 5149: 5148: 5125: 5124: 5105: 5104: 5101: 5067: 5066: 5065:with generator 5045: 5044: 5012: 5007: 5006: 4900: 4899: 4862: 4841: 4818: 4817: 4776: 4755: 4732: 4711: 4688: 4667: 4662: 4661: 4637: 4636: 4599: 4576: 4553: 4539: 4538: 4514: 4513: 4463: 4462: 4434: 4433: 4395: 4394: 4351: 4343: 4342: 4317: 4316: 4315:has its symbol 4282: 4281: 4280:with generator 4260: 4259: 4227: 4222: 4221: 4177: 4176: 4151: 4150: 4112: 4111: 4110:and denoted by 4076: 4071: 4070: 4024: 4023: 3941: 3940: 3871: 3870: 3834: 3833: 3802: 3801: 3800:satisfies that 3765: 3764: 3732: 3727: 3726: 3705: 3704: 3676: 3675: 3654: 3653: 3623: 3618: 3617: 3592: 3591: 3566: 3565: 3519: 3515: 3498: 3497: 3470: 3465: 3464: 3443:-vector spaces 3366: 3365: 3337: 3336: 3300: 3275: 3244: 3239: 3238: 3196: 3195: 3149: 3148: 3110: 3093: 3092: 3059: 3058: 3033: 3032: 3011: 3010: 2976: 2971: 2970: 2934: 2933: 2903: 2898: 2897: 2890: 2836: 2835: 2773: 2772: 2702: 2701: 2648: 2647: 2589: 2588: 2558: 2553: 2552: 2526: 2521: 2486: 2481: 2480: 2450: 2445: 2444: 2415:is the ring of 2386: 2375: 2374: 2346: 2341: 2340: 2281: 2276: 2275: 2272: 2207: 2202: 2201: 2194: 2160: 2149: 2133: 2132: 2107: 2093: 2077: 2064: 2045: 2044: 2014: 2013: 1981: 1973: 1972: 1969: 1939: 1938: 1918: 1917: 1890: 1889: 1861: 1837: 1836: 1804: 1793: 1774: 1773: 1742: 1725: 1706: 1695: 1678: 1677: 1630: 1629: 1608: 1607: 1605:natural numbers 1583: 1582: 1576: 1566:if and only if 1558:if and only if 1501:category theory 1497: 1488: 1446: 1445: 1390: 1376: 1362: 1361: 1326: 1325: 1287: 1264: 1263: 1213: 1212: 1186: 1179: 1156: 1149: 1138: 1131: 1094: 1081: 1073: 1072: 1048: 1035: 1027: 1026: 1001: 1000: 968: 955: 942: 929: 910: 897: 878: 865: 857: 856: 828: 827: 799: 786: 781: 780: 779:corresponds to 756: 743: 735: 734: 709: 708: 694: 688: 627: 626: 595: 594: 552: 551: 520: 519: 505: 496: 448: 417: 386: 358: 335: 334: 295: 294: 266: 265: 257: 256:cannot contain 253: 222: 221: 196: 195: 191: 187: 177: 169: 162: 154: 150: 146: 138: 134: 130: 127: 122: 82:category theory 75: 69: 56: 46: 28: 23: 22: 15: 12: 11: 5: 8902: 8900: 8892: 8891: 8886: 8881: 8871: 8870: 8867: 8866: 8861: 8856: 8842: 8824: 8788:(1): 200–212, 8771: 8758: 8757: 8750: 8731: 8730: 8728: 8725: 8724: 8723: 8717: 8712: 8707: 8700: 8697: 8696: 8695: 8684:graded modules 8675: 8657: 8653: 8622: 8618: 8606: 8587: 8584: 8581: 8576: 8572: 8551: 8548: 8545: 8540: 8536: 8520: 8506: 8478: 8442: 8420: 8415: 8409: 8403: 8400: 8397: 8386: 8374: 8371: 8368: 8363: 8359: 8328: 8306: 8301: 8295: 8289: 8286: 8283: 8268: 8267: 8266: 8265: 8254: 8251: 8246: 8242: 8238: 8233: 8229: 8225: 8222: 8217: 8213: 8209: 8206: 8203: 8198: 8194: 8190: 8187: 8184: 8181: 8176: 8172: 8168: 8165: 8162: 8157: 8153: 8149: 8146: 8141: 8137: 8133: 8130: 8117: 8116: 8104: 8092: 8091: 8090: 8089: 8078: 8075: 8072: 8069: 8064: 8060: 8056: 8053: 8050: 8047: 8042: 8038: 8034: 8021: 8020: 8004: 8001: 7998: 7995: 7974: 7953: 7947: 7944: 7941: 7935: 7932: 7929: 7926: 7921: 7916: 7912: 7899: 7898: 7897: 7896: 7885: 7882: 7879: 7876: 7873: 7870: 7867: 7864: 7861: 7858: 7855: 7852: 7849: 7836: 7835: 7831: 7830: 7829: 7828: 7817: 7814: 7811: 7808: 7805: 7802: 7799: 7796: 7793: 7790: 7786: 7781: 7777: 7773: 7769: 7765: 7760: 7756: 7752: 7748: 7744: 7739: 7736: 7733: 7729: 7725: 7711: 7710: 7695: 7694: 7693: 7692: 7681: 7678: 7673: 7669: 7665: 7660: 7656: 7652: 7647: 7643: 7639: 7636: 7623: 7622: 7618: 7617: 7616: 7615: 7604: 7601: 7595: 7592: 7589: 7583: 7580: 7577: 7574: 7569: 7564: 7560: 7556: 7551: 7544: 7541: 7538: 7535: 7532: 7528: 7522: 7517: 7514: 7511: 7508: 7495: 7494: 7475: 7472: 7447: 7444: 7429: 7407: 7402: 7397: 7393: 7390: 7387: 7366: 7363: 7360: 7357: 7352: 7347: 7343: 7340: 7337: 7333: 7313: 7310: 7307: 7304: 7301: 7298: 7295: 7258: 7227: 7224: 7219: 7190: 7170: 7167: 7164: 7159: 7154: 7150: 7147: 7143: 7140: 7118: 7096: 7093: 7090: 7085: 7080: 7076: 7073: 7069: 7066: 7042: 7039: 7036: 7033: 7030: 7027: 7024: 7021: 7018: 7015: 7012: 7009: 7006: 7003: 7000: 6997: 6977: 6974: 6971: 6968: 6965: 6939: 6917: 6914: 6911: 6906: 6901: 6897: 6894: 6890: 6887: 6876: 6875: 6863: 6860: 6857: 6854: 6851: 6837: 6836: 6825: 6822: 6819: 6816: 6813: 6810: 6807: 6804: 6801: 6798: 6795: 6792: 6789: 6764: 6721: 6709:exact category 6704: 6701: 6697: 6696: 6685: 6682: 6679: 6676: 6671: 6667: 6663: 6660: 6657: 6652: 6648: 6644: 6639: 6635: 6631: 6626: 6622: 6618: 6615: 6612: 6607: 6603: 6599: 6596: 6591: 6587: 6583: 6578: 6574: 6570: 6567: 6564: 6559: 6555: 6551: 6548: 6543: 6539: 6535: 6521: 6520: 6509: 6506: 6503: 6500: 6497: 6494: 6489: 6485: 6481: 6476: 6473: 6470: 6466: 6462: 6459: 6456: 6451: 6448: 6445: 6441: 6437: 6432: 6428: 6424: 6421: 6418: 6415: 6412: 6409: 6382: 6373:of objects in 6354: 6351: 6348: 6343: 6339: 6315: 6312: 6309: 6305: 6302: 6299: 6295: 6292: 6289: 6286: 6283: 6278: 6273: 6268: 6261: 6256: 6252: 6227: 6224: 6221: 6218: 6186: 6181: 6176: 6171: 6147: 6123: 6120: 6117: 6114: 6111: 6091: 6088: 6085: 6082: 6078: 6074: 6069: 6065: 6040: 6017: 6014: 6011: 6007: 5983: 5962: 5958: 5955: 5930: 5926: 5922: 5919: 5916: 5913: 5910: 5907: 5904: 5884: 5881: 5878: 5875: 5872: 5867: 5862: 5859: 5856: 5851: 5848: 5845: 5842: 5837: 5833: 5829: 5826: 5795: 5775: 5772: 5769: 5745: 5721: 5718: 5715: 5710: 5706: 5702: 5699: 5679: 5659: 5656: 5653: 5650: 5645: 5641: 5620: 5600: 5569: 5549: 5529: 5509: 5506: 5503: 5500: 5497: 5494: 5491: 5488: 5485: 5482: 5479: 5459: 5439: 5436: 5433: 5430: 5425: 5421: 5398: 5375: 5354: 5334: 5331: 5328: 5325: 5322: 5317: 5313: 5309: 5306: 5282: 5279: 5271: 5268: 5265: 5245: 5242: 5239: 5236: 5233: 5230: 5227: 5224: 5221: 5218: 5215: 5212: 5209: 5206: 5203: 5200: 5180: 5177: 5174: 5171: 5168: 5165: 5162: 5159: 5156: 5132: 5112: 5100: 5097: 5085: 5082: 5078: 5074: 5053: 5032: 5028: 5024: 5019: 5015: 5003: 5002: 4991: 4988: 4985: 4982: 4979: 4976: 4973: 4970: 4967: 4964: 4961: 4958: 4955: 4952: 4949: 4946: 4943: 4940: 4937: 4934: 4931: 4928: 4925: 4922: 4919: 4916: 4913: 4910: 4907: 4893: 4892: 4881: 4877: 4870: 4865: 4861: 4858: 4855: 4849: 4844: 4840: 4837: 4834: 4831: 4828: 4825: 4807: 4806: 4795: 4791: 4784: 4779: 4775: 4772: 4769: 4763: 4758: 4754: 4751: 4747: 4740: 4735: 4731: 4728: 4725: 4719: 4714: 4710: 4707: 4703: 4696: 4691: 4687: 4684: 4681: 4675: 4670: 4645: 4633: 4632: 4621: 4618: 4614: 4607: 4602: 4598: 4595: 4591: 4584: 4579: 4575: 4572: 4568: 4561: 4556: 4552: 4549: 4546: 4522: 4506: 4505: 4494: 4491: 4488: 4485: 4482: 4479: 4476: 4473: 4470: 4447: 4444: 4441: 4421: 4418: 4415: 4405: 4402: 4382: 4378: 4374: 4371: 4368: 4365: 4360: 4355: 4350: 4330: 4327: 4324: 4300: 4297: 4293: 4289: 4268: 4247: 4243: 4239: 4234: 4230: 4209: 4206: 4203: 4193: 4190: 4187: 4184: 4164: 4161: 4158: 4138: 4135: 4132: 4122: 4119: 4085: 4080: 4069:isomorphic to 4043: 4040: 4037: 4034: 4031: 4003: 4000: 3997: 3993: 3989: 3986: 3983: 3979: 3975: 3972: 3969: 3965: 3961: 3957: 3952: 3948: 3937:exact sequence 3933: 3932: 3921: 3918: 3914: 3910: 3906: 3901: 3897: 3893: 3889: 3885: 3881: 3878: 3850: 3846: 3842: 3821: 3818: 3815: 3812: 3809: 3778: 3775: 3772: 3752: 3748: 3744: 3739: 3735: 3713: 3689: 3686: 3683: 3662: 3641: 3638: 3635: 3630: 3626: 3605: 3602: 3599: 3579: 3576: 3573: 3562: 3561: 3550: 3547: 3544: 3541: 3538: 3534: 3529: 3526: 3522: 3518: 3514: 3511: 3508: 3505: 3480: 3477: 3473: 3459:-vector space 3433: 3432: 3421: 3418: 3415: 3412: 3409: 3406: 3403: 3400: 3397: 3394: 3391: 3388: 3385: 3382: 3379: 3376: 3373: 3350: 3347: 3344: 3333: 3332: 3321: 3318: 3315: 3312: 3307: 3303: 3299: 3296: 3293: 3290: 3287: 3282: 3278: 3274: 3271: 3268: 3265: 3262: 3259: 3256: 3251: 3247: 3215: 3212: 3209: 3206: 3203: 3192: 3191: 3180: 3177: 3174: 3171: 3168: 3165: 3162: 3159: 3156: 3125: 3122: 3117: 3113: 3109: 3106: 3103: 3100: 3091:is defined as 3087:-vector space 3072: 3069: 3066: 3046: 3043: 3040: 3019: 2994: 2991: 2988: 2983: 2979: 2947: 2944: 2941: 2921: 2918: 2915: 2910: 2906: 2889: 2886: 2885: 2884: 2873: 2870: 2867: 2864: 2861: 2858: 2855: 2852: 2849: 2846: 2843: 2816: 2813: 2810: 2807: 2804: 2801: 2798: 2795: 2792: 2789: 2786: 2783: 2780: 2757: 2756: 2745: 2742: 2739: 2736: 2733: 2730: 2727: 2724: 2721: 2718: 2715: 2712: 2709: 2691: 2690: 2679: 2676: 2673: 2670: 2667: 2664: 2661: 2658: 2655: 2625: 2617: 2614: 2611: 2608: 2605: 2602: 2599: 2596: 2576: 2573: 2570: 2565: 2561: 2525: 2522: 2520: 2517: 2504: 2501: 2498: 2493: 2489: 2468: 2465: 2462: 2457: 2453: 2404: 2401: 2398: 2393: 2389: 2385: 2382: 2353: 2349: 2299: 2296: 2293: 2288: 2284: 2271: 2268: 2248:vector bundles 2225: 2222: 2219: 2214: 2210: 2193: 2190: 2182: 2181: 2170: 2166: 2163: 2159: 2155: 2152: 2148: 2144: 2140: 2120: 2117: 2113: 2110: 2106: 2103: 2099: 2096: 2092: 2088: 2083: 2080: 2075: 2070: 2067: 2063: 2060: 2056: 2052: 2029: 2025: 2021: 2001: 1998: 1995: 1990: 1985: 1980: 1968: 1965: 1947: 1935: 1934: 1921: 1916: 1913: 1910: 1907: 1904: 1901: 1898: 1895: 1892: 1891: 1888: 1885: 1882: 1879: 1876: 1873: 1870: 1867: 1866: 1864: 1858: 1854: 1850: 1847: 1844: 1830: 1829: 1817: 1814: 1810: 1807: 1803: 1799: 1796: 1792: 1789: 1785: 1781: 1761: 1758: 1755: 1752: 1748: 1745: 1741: 1738: 1735: 1731: 1728: 1724: 1721: 1717: 1712: 1709: 1705: 1701: 1698: 1694: 1691: 1688: 1685: 1654: 1651: 1648: 1645: 1641: 1637: 1616: 1591: 1575: 1572: 1496: 1493: 1462: 1459: 1456: 1453: 1433: 1430: 1427: 1424: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1400: 1396: 1393: 1389: 1386: 1382: 1379: 1375: 1372: 1369: 1342: 1339: 1336: 1333: 1297: 1293: 1290: 1286: 1283: 1280: 1277: 1274: 1271: 1262:: denoting by 1232: 1229: 1226: 1223: 1220: 1184: 1177: 1154: 1147: 1136: 1129: 1106: 1101: 1097: 1093: 1088: 1084: 1080: 1060: 1055: 1051: 1047: 1042: 1038: 1034: 1014: 1011: 1008: 993: 992: 980: 975: 971: 967: 962: 958: 954: 949: 945: 941: 936: 932: 928: 925: 922: 917: 913: 909: 904: 900: 896: 893: 890: 885: 881: 877: 872: 868: 864: 841: 838: 835: 806: 802: 798: 793: 789: 768: 763: 759: 755: 750: 746: 742: 722: 719: 716: 687: 684: 649: 646: 643: 640: 637: 634: 614: 611: 608: 605: 602: 571: 568: 565: 562: 559: 539: 536: 533: 530: 527: 504: 501: 493: 492: 481: 478: 475: 472: 469: 466: 463: 458: 455: 451: 447: 444: 441: 438: 435: 432: 427: 424: 420: 416: 413: 410: 407: 404: 401: 396: 393: 389: 385: 382: 379: 376: 373: 368: 365: 361: 357: 354: 351: 348: 345: 342: 311: 308: 305: 302: 282: 279: 276: 273: 241: 238: 235: 232: 229: 209: 206: 203: 126: 123: 121: 118: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 8901: 8890: 8887: 8885: 8882: 8880: 8877: 8876: 8874: 8865: 8862: 8860: 8857: 8853: 8852: 8847: 8843: 8839: 8835: 8834: 8829: 8825: 8821: 8817: 8813: 8809: 8805: 8801: 8796: 8791: 8787: 8783: 8782: 8777: 8772: 8769: 8765: 8762: 8761: 8753: 8747: 8743: 8736: 8733: 8726: 8721: 8718: 8716: 8713: 8711: 8708: 8706: 8703: 8702: 8698: 8693: 8689: 8685: 8681: 8676: 8673: 8655: 8651: 8642: 8638: 8620: 8616: 8607: 8604: 8601: 8582: 8574: 8570: 8546: 8538: 8534: 8525: 8521: 8494: 8466: 8465:affine scheme 8462: 8458: 8413: 8401: 8398: 8387: 8369: 8361: 8357: 8348: 8344: 8299: 8287: 8284: 8274: 8270: 8269: 8252: 8244: 8240: 8231: 8227: 8223: 8220: 8215: 8207: 8204: 8196: 8192: 8188: 8185: 8182: 8179: 8174: 8166: 8163: 8155: 8151: 8147: 8139: 8135: 8128: 8121: 8120: 8119: 8118: 8102: 8094: 8093: 8073: 8062: 8058: 8051: 8048: 8040: 8036: 8025: 8024: 8023: 8022: 8018: 8002: 7996: 7914: 7910: 7901: 7900: 7883: 7877: 7868: 7862: 7859: 7856: 7850: 7840: 7839: 7838: 7837: 7833: 7832: 7815: 7809: 7800: 7797: 7794: 7788: 7784: 7779: 7775: 7771: 7767: 7763: 7758: 7754: 7750: 7746: 7742: 7737: 7734: 7731: 7727: 7723: 7715: 7714: 7713: 7712: 7708: 7704: 7700: 7697: 7696: 7679: 7671: 7667: 7658: 7654: 7645: 7641: 7634: 7627: 7626: 7625: 7624: 7620: 7619: 7602: 7562: 7558: 7554: 7539: 7533: 7530: 7526: 7515: 7509: 7499: 7498: 7497: 7496: 7493: 7489: 7486: 7482: 7481:vector spaces 7478: 7477: 7473: 7471: 7469: 7465: 7461: 7457: 7453: 7445: 7443: 7361: 7358: 7311: 7305: 7302: 7299: 7293: 7285: 7280: 7278: 7274: 7246: 7225: 7222: 7207: 7202: 7188: 7168: 7141: 7138: 7094: 7067: 7064: 7056: 7040: 7037: 7031: 7025: 7022: 7016: 7010: 7007: 7001: 6995: 6975: 6969: 6963: 6955: 6915: 6888: 6885: 6861: 6855: 6849: 6842: 6841: 6840: 6823: 6820: 6814: 6808: 6802: 6796: 6790: 6780: 6779: 6778: 6751: 6749: 6745: 6741: 6737: 6710: 6702: 6700: 6683: 6677: 6669: 6665: 6661: 6650: 6646: 6637: 6633: 6624: 6616: 6613: 6605: 6601: 6597: 6589: 6585: 6576: 6568: 6565: 6557: 6553: 6549: 6541: 6537: 6526: 6525: 6524: 6507: 6501: 6495: 6487: 6483: 6474: 6471: 6468: 6464: 6457: 6449: 6446: 6443: 6439: 6430: 6426: 6419: 6413: 6407: 6400: 6399: 6398: 6380: 6372: 6368: 6349: 6341: 6337: 6327: 6310: 6284: 6271: 6254: 6250: 6241: 6222: 6216: 6208: 6204: 6200: 6184: 6174: 6145: 6137: 6118: 6112: 6109: 6083: 6067: 6063: 6054: 6038: 6031: 6012: 5997: 5981: 5956: 5953: 5944: 5928: 5924: 5920: 5911: 5902: 5879: 5876: 5873: 5865: 5843: 5835: 5831: 5827: 5824: 5816: 5812: 5807: 5793: 5773: 5770: 5767: 5759: 5743: 5735: 5716: 5708: 5704: 5700: 5697: 5677: 5657: 5651: 5648: 5643: 5639: 5618: 5598: 5590: 5586: 5581: 5567: 5547: 5527: 5504: 5498: 5495: 5486: 5477: 5457: 5437: 5431: 5423: 5419: 5386: 5373: 5352: 5332: 5323: 5315: 5311: 5307: 5304: 5296: 5293:, there is a 5280: 5269: 5266: 5263: 5243: 5240: 5234: 5228: 5225: 5219: 5213: 5210: 5204: 5198: 5178: 5172: 5166: 5160: 5154: 5146: 5130: 5110: 5098: 5096: 5083: 5017: 5013: 4986: 4980: 4974: 4968: 4962: 4956: 4953: 4950: 4944: 4938: 4935: 4932: 4926: 4920: 4917: 4914: 4908: 4898: 4897: 4896: 4863: 4859: 4853: 4842: 4838: 4832: 4826: 4823: 4816: 4815: 4814: 4812: 4777: 4773: 4767: 4756: 4752: 4733: 4729: 4723: 4712: 4708: 4689: 4685: 4679: 4668: 4660: 4659: 4658: 4619: 4600: 4596: 4577: 4573: 4554: 4550: 4544: 4537: 4536: 4535: 4511: 4492: 4486: 4480: 4474: 4468: 4461: 4460: 4459: 4442: 4416: 4403: 4400: 4369: 4366: 4358: 4325: 4314: 4298: 4232: 4228: 4204: 4191: 4185: 4159: 4133: 4120: 4117: 4109: 4105: 4102:, called the 4101: 4083: 4068: 4064: 4060: 4055: 4041: 4038: 4032: 4021: 4017: 4001: 3998: 3984: 3970: 3959: 3955: 3939:implies that 3938: 3919: 3908: 3904: 3876: 3869: 3868: 3867: 3865: 3819: 3816: 3810: 3799: 3796: 3792: 3773: 3737: 3733: 3701: 3684: 3636: 3628: 3624: 3600: 3574: 3545: 3539: 3536: 3532: 3527: 3524: 3520: 3516: 3512: 3506: 3496: 3495: 3494: 3478: 3475: 3471: 3462: 3458: 3455:-dimensional 3454: 3450: 3446: 3442: 3438: 3416: 3410: 3404: 3398: 3392: 3389: 3386: 3380: 3374: 3364: 3363: 3362: 3345: 3316: 3310: 3305: 3301: 3297: 3291: 3285: 3280: 3276: 3272: 3266: 3263: 3260: 3254: 3249: 3245: 3237: 3236: 3235: 3233: 3229: 3213: 3210: 3207: 3204: 3201: 3178: 3172: 3166: 3160: 3154: 3147: 3146: 3145: 3143: 3139: 3123: 3120: 3115: 3111: 3107: 3101: 3090: 3086: 3067: 3041: 3008: 2989: 2981: 2977: 2968: 2965: 2961: 2942: 2916: 2908: 2904: 2895: 2887: 2871: 2865: 2859: 2856: 2853: 2847: 2841: 2834: 2833: 2832: 2830: 2811: 2805: 2799: 2793: 2787: 2784: 2781: 2770: 2766: 2762: 2743: 2740: 2734: 2728: 2722: 2716: 2710: 2700: 2699: 2698: 2696: 2677: 2671: 2665: 2659: 2653: 2646: 2645: 2644: 2643: 2639: 2615: 2612: 2609: 2606: 2600: 2571: 2563: 2559: 2550: 2549:artinian ring 2546: 2543: 2539: 2535: 2531: 2523: 2518: 2516: 2499: 2491: 2487: 2463: 2455: 2451: 2442: 2438: 2434: 2431:-modules are 2430: 2426: 2422: 2418: 2399: 2387: 2383: 2380: 2371: 2369: 2351: 2347: 2338: 2334: 2330: 2327: 2324: 2320: 2317: 2313: 2294: 2286: 2282: 2269: 2267: 2265: 2261: 2257: 2253: 2249: 2245: 2242: 2239: 2220: 2212: 2208: 2199: 2191: 2189: 2187: 2168: 2164: 2161: 2157: 2153: 2150: 2146: 2138: 2118: 2115: 2111: 2108: 2104: 2101: 2097: 2094: 2090: 2081: 2078: 2073: 2068: 2065: 2061: 2058: 2054: 2050: 2043: 2042: 2041: 2027: 2023: 2019: 1996: 1993: 1988: 1966: 1964: 1962: 1911: 1908: 1905: 1899: 1896: 1893: 1883: 1880: 1877: 1871: 1868: 1862: 1856: 1848: 1845: 1835: 1834: 1833: 1815: 1812: 1808: 1805: 1801: 1797: 1794: 1790: 1787: 1779: 1759: 1756: 1753: 1750: 1746: 1743: 1739: 1736: 1733: 1729: 1726: 1722: 1719: 1710: 1707: 1703: 1699: 1696: 1692: 1689: 1686: 1683: 1676: 1675: 1674: 1672: 1668: 1652: 1646: 1643: 1606: 1581: 1573: 1571: 1569: 1565: 1561: 1557: 1553: 1549: 1546: :  1545: 1541: 1536: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1494: 1492: 1487: 1483: 1480: 1476: 1457: 1451: 1428: 1425: 1422: 1419: 1416: 1413: 1407: 1404: 1401: 1394: 1391: 1384: 1380: 1377: 1373: 1359: 1356: 1337: 1331: 1323: 1319: 1315: 1311: 1291: 1288: 1284: 1278: 1272: 1261: 1257: 1253: 1248: 1246: 1230: 1224: 1221: 1218: 1210: 1206: 1202: 1198: 1194: 1190: 1183: 1176: 1172: 1168: 1164: 1161:(the element 1160: 1153: 1146: 1142: 1135: 1128: 1124: 1120: 1099: 1095: 1091: 1086: 1082: 1053: 1049: 1045: 1040: 1036: 1012: 1009: 1006: 998: 973: 969: 965: 960: 956: 952: 947: 943: 939: 934: 930: 923: 915: 911: 907: 902: 898: 891: 883: 879: 875: 870: 866: 855: 854: 853: 839: 836: 833: 824: 822: 804: 800: 796: 791: 787: 761: 757: 753: 748: 744: 720: 717: 714: 707: 703: 699: 693: 685: 683: 681: 677: 673: 669: 665: 660: 647: 644: 641: 638: 635: 632: 612: 606: 603: 600: 593: 589: 585: 569: 563: 560: 557: 537: 531: 528: 525: 518: 514: 510: 502: 500: 479: 476: 473: 470: 467: 461: 456: 453: 449: 442: 436: 430: 425: 422: 418: 414: 408: 405: 399: 394: 391: 387: 383: 380: 377: 371: 366: 363: 359: 352: 349: 346: 343: 340: 333: 332: 331: 329: 325: 324:trivial group 309: 306: 303: 300: 280: 277: 274: 271: 263: 239: 236: 233: 230: 227: 207: 204: 201: 184: 180: 175: 166: 160: 144: 124: 119: 117: 115: 111: 107: 103: 99: 95: 91: 87: 83: 78: 72: 67: 64: 59: 54: 53:abelian group 51:is a certain 49: 45: 41: 37: 33: 19: 8849: 8831: 8785: 8779: 8767: 8741: 8735: 8710:Localization 8691: 8687: 8679: 8671: 8640: 8602: 8523: 8492: 8460: 8346: 8273:ringed space 8016: 7706: 7702: 7698: 7491: 7487: 7467: 7463: 7459: 7455: 7449: 7281: 7272: 7247:-modules as 7244: 7203: 7054: 6953: 6877: 6838: 6752: 6747: 6743: 6739: 6706: 6698: 6522: 6328: 6238:-module its 6206: 6203:finite field 6030:finite group 5945: 5808: 5582: 5366: 5294: 5144: 5102: 5004: 4894: 4808: 4634: 4507: 4312: 4107: 4099: 4062: 4056: 4019: 4016:cyclic group 3934: 3863: 3797: 3790: 3702: 3563: 3460: 3456: 3452: 3448: 3444: 3440: 3436: 3434: 3334: 3231: 3227: 3193: 3141: 3137: 3088: 3084: 2966: 2964:vector space 2959: 2893: 2891: 2768: 2764: 2760: 2758: 2694: 2692: 2637: 2544: 2533: 2529: 2527: 2436: 2428: 2424: 2372: 2332: 2318: 2273: 2251: 2243: 2200:. The group 2195: 2183: 1970: 1936: 1831: 1670: 1666: 1577: 1567: 1559: 1551: 1547: 1543: 1539: 1537: 1529:left adjoint 1524: 1520: 1498: 1485: 1481: 1474: 1317: 1313: 1255: 1251: 1249: 1244: 1208: 1204: 1200: 1196: 1192: 1188: 1181: 1174: 1162: 1158: 1151: 1144: 1140: 1133: 1126: 1122: 1118: 1025:, such that 994: 826:Addition on 825: 820: 701: 697: 695: 679: 675: 671: 667: 663: 661: 587: 583: 512: 508: 506: 494: 262:zero element 182: 178: 167: 128: 76: 70: 57: 47: 39: 35: 29: 4014:, so every 2969:. In fact, 2312:commutative 1832:Now define 264:satisfying 112:, with the 63:homomorphic 32:mathematics 8873:Categories 8851:PlanetMath 8727:References 7277:noetherian 5996:group ring 5895:such that 5758:linear map 5345:such that 5191:, one has 5143:is called 4022:satisfies 3007:isomorphic 2540:over some 2524:Definition 2337:direct sum 2326:projective 1542:, the map 1495:Properties 690:See also: 625:such that 495:for every 293:for every 194:such that 125:Motivation 114:direct sum 8838:EMS Press 8820:260493607 8795:1105.2715 8605:-modules. 8245:∗ 8224:⁡ 8205:− 8193:∑ 8183:⁡ 8164:− 8152:∑ 8140:∗ 8129:χ 8103:χ 8063:∗ 8052:χ 8041:∗ 8019: *, 7863:⁡ 7677:→ 7664:→ 7651:→ 7638:→ 7555:∈ 7534:⁡ 7362:⊕ 7309:↠ 7303:⊕ 7297:↪ 7189:ϕ 7166:→ 7139:χ 7092:→ 7065:ϕ 7026:χ 7011:χ 7008:− 6996:χ 6973:↠ 6967:↪ 6913:→ 6886:χ 6859:↠ 6853:↪ 6797:− 6662:∈ 6651:∗ 6614:− 6602:∑ 6566:− 6554:∑ 6542:∗ 6508:⋯ 6505:→ 6499:→ 6493:→ 6480:→ 6472:− 6461:→ 6458:⋯ 6455:→ 6436:→ 6423:→ 6417:→ 6411:→ 6408:⋯ 6294:→ 6277:¯ 6180:¯ 6134:. In the 5925:χ 5903:χ 5850:→ 5825:χ 5771:∈ 5705:χ 5655:→ 5640:χ 5499:χ 5353:χ 5330:→ 5278:→ 5264:χ 5229:χ 5214:χ 5211:− 5199:χ 5176:→ 5170:→ 5164:→ 5158:→ 5111:χ 4957:⁡ 4939:⁡ 4921:⁡ 4864:⊗ 4854:⁡ 4827:⁡ 4778:⊗ 4768:⁡ 4734:⊗ 4724:⁡ 4690:⊗ 4680:⁡ 4617:→ 4601:⊗ 4594:→ 4578:⊗ 4571:→ 4555:⊗ 4548:→ 4510:tensoring 4490:→ 4484:→ 4478:→ 4472:→ 3985:− 3917:→ 3896:→ 3888:→ 3880:→ 3845:→ 3525:⊕ 3476:⊕ 3390:⊕ 3311:⁡ 3286:⁡ 3264:⊕ 3255:⁡ 3211:⊕ 3205:≅ 3176:→ 3170:→ 3164:→ 3158:→ 3121:⁡ 2869:→ 2863:→ 2857:⊕ 2851:→ 2845:→ 2785:⊕ 2763:-modules 2717:− 2675:→ 2669:→ 2663:→ 2657:→ 2613:∈ 2607:∣ 2392:∞ 2260:manifolds 2143:⟺ 2131:for some 2087:⟺ 2062:∼ 1997:× 1989:∗ 1909:− 1894:− 1881:− 1849:∈ 1843:∀ 1784:⟺ 1772:for some 1716:⟺ 1704:− 1693:∼ 1687:− 1564:bijective 1556:injective 1505:universal 1479:semigroup 1426:∈ 1414:∣ 1392:− 1358:generated 1228:→ 1010:× 837:× 797:− 718:× 642:∘ 610:→ 604:: 567:→ 561:: 535:→ 529:: 454:− 423:− 392:− 364:− 304:∈ 205:≠ 8889:K-theory 8768:K-Theory 8699:See also 6988:one has 5815:matrices 5690:-module 5540:-module 5145:additive 2888:Examples 2443:). Thus 2439:(by the 2419:-valued 2241:manifold 2198:K-theory 2165:′ 2154:′ 2112:′ 2098:′ 2082:′ 2069:′ 1809:′ 1798:′ 1747:′ 1730:′ 1711:′ 1700:′ 1580:integers 1513:category 1395:′ 1381:′ 1355:subgroup 1322:quotient 1292:′ 94:K-theory 8840:, 2001 8812:3033967 8341:of all 7483:over a 6201:of the 5994:is the 5736:of the 2538:algebra 2417:complex 2339:. Then 2329:modules 2238:compact 1531:to the 1509:functor 1353:by the 1320:is the 515:with a 106:objects 42:, of a 8818:  8810:  8748:  8600:simple 8271:For a 8095:where 7204:Every 5295:unique 4393:where 1503:, any 1203:, and 108:of an 98:monoid 34:, the 8816:S2CID 8790:arXiv 8467:) of 8345:over 7485:field 6928:from 6205:with 6028:of a 5811:basis 5734:trace 5591:: If 5587:from 4508:Then 2829:split 2542:field 2368:rings 2331:over 2258:from 2236:of a 1247:to . 582:from 328:group 66:image 38:, or 8746:ISBN 7902:and 7834:Thus 7709:, so 7230:-mod 6385:-mod 6197:the 5974:and 5560:and 5274:-mod 4954:rank 4936:rank 4918:rank 4824:rank 4409:rank 4197:rank 4126:rank 4104:rank 3935:The 3447:and 3230:and 2892:Let 2767:and 2620:-mod 2479:and 2433:dual 2316:ring 1308:the 507:Let 220:and 186:and 8800:doi 8672:not 8670:is 8459:on 8221:dim 8180:dim 7860:dim 7531:dim 7442:.) 6055:of 5946:If 5786:on 4843:dim 4757:dim 4713:dim 4669:dim 4175:as 4106:of 3302:dim 3277:dim 3246:dim 3112:dim 3009:to 3005:is 2693:of 1554:is 1360:by 1324:of 1254:of 1121:of 999:on 819:in 474:1.0 437:0.0 190:in 168:If 104:of 100:of 68:of 30:In 8875:: 8848:. 8836:, 8830:, 8814:, 8808:MR 8806:, 8798:, 8786:45 8784:, 8766:, 8349:. 7705:+ 7701:= 7470:. 7466:→ 7462:→ 7458:→ 7223::= 7201:. 6746:→ 6742:→ 5943:. 5806:. 5244:0. 4813:. 3866:. 3700:. 2872:0. 2771:, 2744:0. 2314:) 2266:. 2188:. 1900::= 1872::= 1669:− 1550:→ 1195:× 1180:, 1157:+ 1150:+ 1143:= 1139:+ 1132:+ 1125:, 823:. 682:. 674:, 499:. 468:.0 462:.0 406:0. 372:.0 347:1. 272:0. 181:, 165:. 8854:. 8823:. 8802:: 8792:: 8754:. 8694:. 8692:A 8688:q 8680:A 8656:0 8652:G 8641:R 8621:0 8617:G 8603:R 8586:) 8583:R 8580:( 8575:0 8571:K 8550:) 8547:R 8544:( 8539:0 8535:G 8524:R 8505:A 8493:R 8477:A 8461:X 8441:A 8419:) 8414:X 8408:O 8402:, 8399:X 8396:( 8373:) 8370:X 8367:( 8362:0 8358:K 8347:X 8327:A 8305:) 8300:X 8294:O 8288:, 8285:X 8282:( 8253:. 8250:) 8241:V 8237:( 8232:i 8228:H 8216:i 8212:) 8208:1 8202:( 8197:i 8189:= 8186:V 8175:i 8171:) 8167:1 8161:( 8156:i 8148:= 8145:) 8136:V 8132:( 8077:] 8074:k 8071:[ 8068:) 8059:V 8055:( 8049:= 8046:] 8037:V 8033:[ 8017:V 8003:. 8000:] 7997:k 7994:[ 7973:Z 7952:) 7946:n 7943:i 7940:f 7934:t 7931:c 7928:e 7925:V 7920:( 7915:0 7911:K 7884:, 7881:] 7878:k 7875:[ 7872:) 7869:V 7866:( 7857:= 7854:] 7851:V 7848:[ 7816:. 7813:] 7810:k 7807:[ 7804:) 7801:n 7798:+ 7795:l 7792:( 7789:= 7785:] 7780:n 7776:k 7772:[ 7768:+ 7764:] 7759:l 7755:k 7751:[ 7747:= 7743:] 7738:n 7735:+ 7732:l 7728:k 7724:[ 7707:n 7703:l 7699:m 7680:0 7672:n 7668:k 7659:m 7655:k 7646:l 7642:k 7635:0 7603:. 7600:) 7594:n 7591:i 7588:f 7582:t 7579:c 7576:e 7573:V 7568:( 7563:0 7559:K 7550:] 7543:) 7540:V 7537:( 7527:k 7521:[ 7516:= 7513:] 7510:V 7507:[ 7492:V 7488:k 7468:X 7464:Z 7460:Y 7456:X 7428:A 7406:) 7401:A 7396:( 7392:o 7389:s 7386:I 7365:) 7359:, 7356:) 7351:A 7346:( 7342:o 7339:s 7336:I 7332:( 7312:B 7306:B 7300:A 7294:A 7273:R 7257:A 7245:R 7226:R 7218:A 7169:X 7163:) 7158:A 7153:( 7149:b 7146:O 7142:: 7117:A 7095:G 7089:) 7084:A 7079:( 7075:b 7072:O 7068:: 7055:G 7041:0 7038:= 7035:) 7032:C 7029:( 7023:+ 7020:) 7017:B 7014:( 7005:) 7002:A 6999:( 6976:C 6970:B 6964:A 6954:X 6938:A 6916:X 6910:) 6905:A 6900:( 6896:b 6893:O 6889:: 6874:. 6862:C 6856:B 6850:A 6824:0 6821:= 6818:] 6815:C 6812:[ 6809:+ 6806:] 6803:B 6800:[ 6794:] 6791:A 6788:[ 6763:A 6748:C 6744:B 6740:A 6720:A 6684:. 6681:) 6678:R 6675:( 6670:0 6666:G 6659:] 6656:) 6647:A 6643:( 6638:i 6634:H 6630:[ 6625:i 6621:) 6617:1 6611:( 6606:i 6598:= 6595:] 6590:i 6586:A 6582:[ 6577:i 6573:) 6569:1 6563:( 6558:i 6550:= 6547:] 6538:A 6534:[ 6502:0 6496:0 6488:m 6484:A 6475:1 6469:m 6465:A 6450:1 6447:+ 6444:n 6440:A 6431:n 6427:A 6420:0 6414:0 6381:R 6353:) 6350:R 6347:( 6342:0 6338:G 6314:) 6311:G 6308:( 6304:h 6301:C 6298:B 6291:) 6288:] 6285:G 6282:[ 6272:p 6267:F 6260:( 6255:0 6251:G 6226:] 6223:G 6220:[ 6217:k 6207:p 6185:, 6175:p 6170:F 6146:k 6122:) 6119:G 6116:( 6113:h 6110:C 6090:) 6087:] 6084:G 6081:[ 6077:C 6073:( 6068:0 6064:G 6039:G 6016:] 6013:G 6010:[ 6006:C 5982:R 5961:C 5957:= 5954:k 5929:V 5921:= 5918:) 5915:] 5912:V 5909:[ 5906:( 5883:) 5880:K 5877:, 5874:R 5871:( 5866:K 5861:m 5858:o 5855:H 5847:) 5844:R 5841:( 5836:0 5832:G 5828:: 5794:V 5774:R 5768:x 5756:- 5744:k 5720:) 5717:x 5714:( 5709:V 5701:: 5698:V 5678:R 5658:k 5652:R 5649:: 5644:V 5619:k 5599:R 5568:f 5548:V 5528:R 5508:) 5505:V 5502:( 5496:= 5493:) 5490:] 5487:V 5484:[ 5481:( 5478:f 5458:f 5438:. 5435:) 5432:R 5429:( 5424:0 5420:G 5397:A 5374:f 5333:X 5327:) 5324:R 5321:( 5316:0 5312:G 5308:: 5305:f 5281:X 5270:R 5267:: 5241:= 5238:) 5235:C 5232:( 5226:+ 5223:) 5220:B 5217:( 5208:) 5205:A 5202:( 5179:0 5173:C 5167:B 5161:A 5155:0 5131:X 5084:. 5081:] 5077:Z 5073:[ 5052:Z 5031:) 5027:Z 5023:( 5018:0 5014:G 4990:] 4987:C 4984:[ 4981:+ 4978:] 4975:A 4972:[ 4969:= 4966:) 4963:C 4960:( 4951:+ 4948:) 4945:A 4942:( 4933:= 4930:) 4927:B 4924:( 4915:= 4912:] 4909:B 4906:[ 4880:) 4876:Q 4869:Z 4860:A 4857:( 4848:Q 4839:= 4836:) 4833:A 4830:( 4794:) 4790:Q 4783:Z 4774:C 4771:( 4762:Q 4753:+ 4750:) 4746:Q 4739:Z 4730:A 4727:( 4718:Q 4709:= 4706:) 4702:Q 4695:Z 4686:B 4683:( 4674:Q 4644:Q 4620:0 4613:Q 4606:Z 4597:C 4590:Q 4583:Z 4574:B 4567:Q 4560:Z 4551:A 4545:0 4521:Q 4493:0 4487:C 4481:B 4475:A 4469:0 4446:] 4443:A 4440:[ 4420:) 4417:A 4414:( 4404:= 4401:r 4381:] 4377:Z 4373:[ 4370:r 4367:= 4364:] 4359:r 4354:Z 4349:[ 4329:] 4326:A 4323:[ 4313:A 4299:. 4296:] 4292:Z 4288:[ 4267:Z 4246:) 4242:Z 4238:( 4233:0 4229:G 4208:) 4205:A 4202:( 4192:= 4189:] 4186:A 4183:[ 4163:] 4160:A 4157:[ 4137:) 4134:A 4131:( 4121:= 4118:r 4108:A 4100:r 4084:r 4079:Z 4063:A 4042:0 4039:= 4036:] 4033:G 4030:[ 4020:G 4002:0 3999:= 3996:] 3992:Z 3988:[ 3982:] 3978:Z 3974:[ 3971:= 3968:] 3964:Z 3960:n 3956:/ 3951:Z 3947:[ 3920:0 3913:Z 3909:n 3905:/ 3900:Z 3892:Z 3884:Z 3877:0 3864:n 3849:Z 3841:Z 3820:0 3817:= 3814:] 3811:G 3808:[ 3798:G 3791:A 3777:] 3774:A 3771:[ 3751:) 3747:Z 3743:( 3738:0 3734:G 3712:Z 3688:] 3685:K 3682:[ 3661:Z 3640:) 3637:K 3634:( 3629:0 3625:G 3604:] 3601:K 3598:[ 3578:] 3575:V 3572:[ 3549:] 3546:K 3543:[ 3540:n 3537:= 3533:] 3528:n 3521:K 3517:[ 3513:= 3510:] 3507:V 3504:[ 3479:n 3472:K 3461:V 3457:K 3453:n 3449:W 3445:V 3441:K 3437:K 3420:] 3417:W 3414:[ 3411:+ 3408:] 3405:V 3402:[ 3399:= 3396:] 3393:W 3387:V 3384:[ 3381:= 3378:] 3375:T 3372:[ 3349:] 3346:V 3343:[ 3320:) 3317:W 3314:( 3306:K 3298:+ 3295:) 3292:V 3289:( 3281:K 3273:= 3270:) 3267:W 3261:V 3258:( 3250:K 3232:W 3228:V 3214:W 3208:V 3202:T 3179:0 3173:W 3167:T 3161:V 3155:0 3142:K 3138:V 3124:V 3116:K 3108:= 3105:] 3102:V 3099:[ 3089:V 3085:K 3071:] 3068:V 3065:[ 3045:] 3042:K 3039:[ 3018:Z 2993:) 2990:K 2987:( 2982:0 2978:G 2967:V 2962:- 2960:K 2946:] 2943:V 2940:[ 2920:) 2917:K 2914:( 2909:0 2905:G 2894:K 2866:N 2860:N 2854:M 2848:M 2842:0 2815:] 2812:N 2809:[ 2806:+ 2803:] 2800:M 2797:[ 2794:= 2791:] 2788:N 2782:M 2779:[ 2769:N 2765:M 2761:R 2741:= 2738:] 2735:C 2732:[ 2729:+ 2726:] 2723:B 2720:[ 2714:] 2711:A 2708:[ 2695:R 2678:0 2672:C 2666:B 2660:A 2654:0 2638:R 2624:} 2616:R 2610:X 2604:] 2601:X 2598:[ 2595:{ 2575:) 2572:R 2569:( 2564:0 2560:G 2545:k 2534:R 2503:) 2500:M 2497:( 2492:0 2488:K 2467:) 2464:R 2461:( 2456:0 2452:K 2437:M 2429:R 2425:M 2403:) 2400:M 2397:( 2388:C 2384:= 2381:R 2352:0 2348:K 2333:R 2319:R 2298:) 2295:R 2292:( 2287:0 2283:K 2252:M 2244:M 2224:) 2221:M 2218:( 2213:0 2209:K 2169:q 2162:p 2158:= 2151:q 2147:p 2139:r 2119:r 2116:q 2109:p 2105:= 2102:r 2095:q 2091:p 2079:q 2074:/ 2066:p 2059:q 2055:/ 2051:p 2028:q 2024:/ 2020:p 2000:) 1994:, 1984:N 1979:( 1946:Z 1915:] 1912:n 1906:0 1903:[ 1897:n 1887:] 1884:0 1878:n 1875:[ 1869:n 1863:{ 1857:: 1853:N 1846:n 1828:. 1816:m 1813:+ 1806:n 1802:= 1795:m 1791:+ 1788:n 1780:k 1760:k 1757:+ 1754:m 1751:+ 1744:n 1740:= 1737:k 1734:+ 1727:m 1723:+ 1720:n 1708:m 1697:n 1690:m 1684:n 1671:m 1667:n 1653:. 1650:) 1647:+ 1644:, 1640:N 1636:( 1615:N 1590:Z 1568:M 1560:M 1552:K 1548:M 1544:i 1540:M 1525:K 1521:M 1489:" 1486:M 1482:M 1475:M 1461:) 1458:M 1455:( 1452:Z 1432:} 1429:M 1423:y 1420:, 1417:x 1411:) 1408:y 1405:+ 1402:x 1399:( 1388:) 1385:y 1378:+ 1374:x 1371:( 1368:{ 1341:) 1338:M 1335:( 1332:Z 1318:K 1314:M 1296:) 1289:+ 1285:, 1282:) 1279:M 1276:( 1273:Z 1270:( 1256:M 1252:K 1245:m 1231:K 1225:M 1222:: 1219:i 1209:K 1205:K 1201:K 1197:M 1193:M 1189:K 1185:2 1182:m 1178:1 1175:m 1163:k 1159:k 1155:1 1152:n 1148:2 1145:m 1141:k 1137:2 1134:n 1130:1 1127:m 1123:M 1119:k 1105:) 1100:2 1096:n 1092:, 1087:1 1083:n 1079:( 1059:) 1054:2 1050:m 1046:, 1041:1 1037:m 1033:( 1013:M 1007:M 991:. 979:) 974:2 970:n 966:+ 961:2 957:m 953:, 948:1 944:n 940:+ 935:1 931:m 927:( 924:= 921:) 916:2 912:n 908:, 903:1 899:n 895:( 892:+ 889:) 884:2 880:m 876:, 871:1 867:m 863:( 840:M 834:M 821:K 805:2 801:m 792:1 788:m 767:) 762:2 758:m 754:, 749:1 745:m 741:( 721:M 715:M 702:M 698:K 680:M 676:K 672:K 668:M 664:A 648:. 645:i 639:g 636:= 633:f 613:A 607:K 601:g 588:A 584:M 570:A 564:M 558:f 538:K 532:M 526:i 513:K 509:M 497:x 480:0 477:= 471:= 465:) 457:1 450:0 446:( 443:= 440:) 434:( 431:. 426:1 419:0 415:= 412:) 409:x 403:( 400:. 395:1 388:0 384:= 381:x 378:. 375:) 367:1 360:0 356:( 353:= 350:x 344:= 341:x 326:( 310:, 307:M 301:x 281:0 278:= 275:x 258:M 254:K 240:c 237:b 234:= 231:c 228:a 208:b 202:a 192:M 188:c 183:b 179:a 170:M 163:M 155:M 151:K 147:M 139:M 135:K 131:M 77:M 71:M 58:M 48:M 20:)

Index

Group completion
mathematics
commutative monoid
abelian group
homomorphic
image
category theory
Alexander Grothendieck
Grothendieck–Riemann–Roch theorem
K-theory
monoid
isomorphism classes
objects
abelian category
direct sum
inverse elements
universal property
cancellation property
zero element
trivial group
group
monoid homomorphism
group homomorphism
K-theory § Grothendieck completion
Cartesian product
equivalence relation
cancellation law
equivalence class
generators and relations
free abelian group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.