Knowledge (XXG)

Huge-LQG

Source đź“ť

259:
assortment of quasars, by utilizing the similar friends-of-friends method originally used. Using a Monte Carlo method of at least a thousand runs, he generated a set of random points in three-dimensional space and identified 10,000 regions identical in size to that studied by Clowes, and filled them with randomly distributed quasars with the same position statistics as did the actual quasars in the sky. The original method by Clowes produces at least a thousand clusterings identical to the Huge-LQG, even on regions where one should expect the distribution to be truly random. The data is supporting the study of the homogeneity scale by Yadav
36: 140:, a major multi-imaging and spectroscopic redshift survey of the sky. They reported that the grouping was, as they announced, the largest known structure in the observable universe. The structure was initially discovered in November 2012 and took two months of verification before its announcement. News about the structure's announcement spread worldwide, and has received great attention from the scientific community. 1003: 263:, and that there is, therefore, no challenge to the cosmological principle. The identification of the Huge-LQG, together with the clusterings identified by Nadathur, is therefore referred to be false positive identifications or errors due to a miscalculation of the statistical measurement used, finally arriving at the conclusion that the Huge-LQG is not a real structure at all. 1027: 979: 206:, meaning that the statistical fluctuations in quantities such as the matter density between different regions of the universe are small. However, different definitions exist for the homogeneity scale above which these fluctuations may be considered sufficiently small, and the appropriate definition depends on the context in which it is used. Jaswant Yadav 1015: 25: 991: 270:
found independent support for the reality of the structure from its coincidence with Mg II absorbers (once-ionised magnesium gas, commonly used to probe distant galaxies). The Mg II gas suggests that the Huge-LQG is associated with an enhancement of the mass, rather than being a false positive
258:
After performing a number of statistical analyses on the quasar data, and finding extreme changes in the Huge-LQG membership and shape with small changes in the cluster finding parameters, he determined the probability that apparent clusters the size of the Huge-LQG would appear in a random
477: 210:
have suggested a definition of the homogeneity scale based on the fractal dimension of the universe; they conclude that, according to this definition, an upper limit for the homogeneity scale in the universe is
160:
feeding on matter. Since they are only found in dense regions of the universe, quasars can be used to find overdensities of matter within the universe. It has the approximate binding mass of 6.1
367: 255:. By utilizing a new map that includes all the quasars in the region (including those not included from the 73 quasars of the group), the presence of a structure became less noticeable. 481: 278:
in September 2014. They measured the polarization of quasars in the Huge-LQG and found "a remarkable correlation" of the polarization vectors on scales larger than 500 Mpc.
900: 1075: 1070: 51:
in red crosses. Map is by Roger Clowes of University of Central Lancashire. Each black circle and red cross on the map is a quasar similar to this one.
244:
One of the questions that arose after the discovery of the Huge-LQG was regarding the method used in its identification. In the initial paper by Clowes
236:, it is known that structures can be found in the distribution of galaxies in the universe that extend over scales larger than the homogeneity scale. 371: 297: 98: 317: 215:. Some studies that have attempted to measure the homogeneity scale according to this definition have found values in the range 70–130/h Mpc. 342: 397:
Clowes, Roger G.; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J. (2013-01-11).
302: 785:
Gaite, Jose; Dominguez, Alvaro; Perez-Mercader, Juan (1999). "The fractal distribution of galaxies and the transition to homogeneity".
198:
In Clowes' initial announcement of the structure, he has reported that the structure has contradicted the cosmological principle. The
152:
in length, by 640 Mpc and 370 Mpc on the other dimensions, and contains 73 quasars, respectively. Quasars are very luminous
229:
upper limit to the homogeneity scale, and has therefore been claimed to challenge our understanding of the universe on large scales.
307: 90: 894:
Clowes, Roger G.; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Soechting, Ilona K.; Graham, Matthew J. (2013).
233: 114: 838:
Hutsemekers, D.; Braibant, L.; Pelgrims, V.; Sluse, D. (2014). "Alignment of quasar polarizations with large-scale structures".
177:
of 1.27 (where the "U" refers to a connected unit of quasars), placing its distance at about 9 billion light-years from Earth.
222:, discovered in 2003, has a length of 423 Mpc, which is marginally larger than the homogeneity scale as defined above. 704:
Nadathur, Seshadri, (July 2013) "Seeing patterns in noise: gigaparsec-scale 'structures' that do not violate homogeneity".
35: 969: 1065: 1050: 248:, the standard used was statistical friend-of-friends method, which has also been used to identify other similar LQGs. 478:"The Largest Structure in Universe Discovered – Quasar Group 4 Billion Light-Years Wide Challenges Current Cosmology" 896:"A structure in the early universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology" 399:"A structure in the early Universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology" 1055: 181: 48: 137: 252: 157: 153: 193: 919: 857: 804: 751: 664: 607: 552: 420: 1031: 129: 94: 1019: 1007: 937: 909: 873: 847: 820: 794: 767: 741: 682: 654: 623: 597: 570: 542: 438: 410: 82: 588:
Hogg, D.W.; et al. (2005). "Cosmic Homogeneity Demonstrated with Luminous Red Galaxies".
1060: 983: 927: 865: 861: 812: 759: 716: 672: 615: 560: 428: 312: 219: 133: 292: 287: 923: 808: 755: 668: 611: 556: 424: 118: 504: 1044: 677: 642: 574: 565: 530: 346: 322: 126: 877: 713: 686: 627: 995: 771: 274:
Further support for the reality of the Huge-LQG comes from the work of Hutsemékers
941: 869: 824: 643:"The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity" 442: 251:
This method has been put into question in a paper by Seshadri Nadathur from the
203: 961: 457: 165: 86: 720: 24: 932: 895: 433: 398: 101:
at 10 billion light-years. There are also issues about its structure (see
799: 746: 602: 202:
implies that at sufficiently large scales, the universe is approximately
174: 225:
The Huge-LQG is three times longer than, and twice as wide as the Yadav
732:
Gott, J. Richard III; et al. (May 2005). "A Map of the Universe".
462: 529:
Yadav, Jaswant; Bagla, J. S.; Khandai, Nishikanta (25 February 2010).
212: 149: 122: 78: 56: 955: 990: 816: 763: 619: 271:
identification. This point is not discussed by the critical paper.
914: 852: 709: 659: 547: 415: 184:(U1.28), a group of 34 quasars also discovered by Clowes in 1991. 164:
10 (6.1 trillion (long scale) or 6.1 quintillion (short scale))
47:: Map of the Huge-LQG noted by black circles, adjacent to the 531:"Fractal dimension as a measure of the scale of homogeneity" 368:"Astronomers discover the largest structure in the universe" 173:. The Huge-LQG was initially named U1.27 due to its average 343:"Largest structure challenges Einstein's smooth cosmos" 967: 77:) is a possible structure or pseudo-structure of 73 113:Roger G. Clowes, together with colleagues from the 89:across. At its discovery, it was identified as the 901:Monthly Notices of the Royal Astronomical Society 706:Monthly Notices of the Royal Astronomical Society 647:Monthly Notices of the Royal Astronomical Society 535:Monthly Notices of the Royal Astronomical Society 403:Monthly Notices of the Royal Astronomical Society 148:The Huge-LQG was estimated to be about 1.24  121:, had reported on January 11, 2013 a grouping of 8: 370:. Royal astronomical society. Archived from 232:However, due to the existence of long-range 91:largest and the most massive known structure 700: 698: 696: 641:Scrimgeour, Morag I.; et al. (2012). 931: 913: 851: 798: 745: 676: 658: 601: 564: 546: 505:"Universe's Largest Structure Discovered" 432: 414: 1076:Astronomical objects discovered in 2012 974: 524: 522: 333: 97:, though it has been superseded by the 392: 390: 388: 180:The Huge-LQG is 615 Mpc from the 7: 1071:Large-scale structure of the cosmos 503:Prostak, Sergio (11 January 2013). 303:Large-scale structure of the cosmos 298:Hercules–Corona Borealis Great Wall 99:Hercules–Corona Borealis Great Wall 458:"The Impossibly Huge Quasar Group" 14: 956:http://www.star.uclan.ac.uk/~rgc/ 480:. 12 January 2013. Archived from 318:Pisces–Cetus Supercluster Complex 308:List of largest cosmic structures 1025: 1013: 1001: 989: 977: 678:10.1111/j.1365-2966.2012.21402.x 566:10.1111/j.1365-2966.2010.16612.x 115:University of Central Lancashire 85:, that measures about 4 billion 34: 23: 136:catalogue of the comprehensive 16:Possible astronomical structure 456:SciShow Space (21 July 2016). 1: 962:Biggest Thing in the Universe 55:: Image of the bright quasar 840:Astronomy & Astrophysics 714:Bibcode: 2013MNRAS.tmp.1690N 870:10.1051/0004-6361/201424631 125:within the vicinity of the 1092: 191: 132:. They used data from the 787:The Astrophysical Journal 734:The Astrophysical Journal 590:The Astrophysical Journal 158:supermassive black holes 138:Sloan Digital Sky Survey 862:2014A&A...572A..18H 253:University of Bielefeld 67:Huge Large Quasar Group 200:cosmological principle 194:Cosmological principle 188:Cosmological principle 154:active galactic nuclei 721:10.1093/mnras/stt1028 266:Nevertheless, Clowes 933:10.1093/mnras/sts497 434:10.1093/mnras/sts497 182:Clowes–Campusano LQG 49:Clowes–Campusano LQG 1066:Large quasar groups 1051:Leo (constellation) 924:2013MNRAS.429.2910C 809:1999ApJ...522L...5G 756:2005ApJ...624..463G 669:2012MNRAS.425..116S 612:2005ApJ...624...54H 557:2010MNRAS.405.2009Y 425:2013MNRAS.429.2910C 95:observable universe 81:, referred to as a 484:on 15 January 2013 83:large quasar group 1083: 1056:Galaxy filaments 1030: 1029: 1028: 1018: 1017: 1016: 1006: 1005: 1004: 994: 993: 982: 981: 980: 973: 945: 935: 917: 908:(4): 2910–2916. 882: 881: 855: 835: 829: 828: 802: 800:astro-ph/9812132 782: 776: 775: 749: 747:astro-ph/0310571 729: 723: 702: 691: 690: 680: 662: 638: 632: 631: 605: 603:astro-ph/0411197 585: 579: 578: 568: 550: 541:(3): 2009–2015. 526: 517: 516: 514: 512: 500: 494: 493: 491: 489: 474: 468: 467: 453: 447: 446: 436: 418: 394: 383: 382: 380: 379: 364: 358: 357: 355: 353: 338: 313:Sloan Great Wall 220:Sloan Great Wall 163: 156:, thought to be 105:section below). 38: 27: 1091: 1090: 1086: 1085: 1084: 1082: 1081: 1080: 1041: 1040: 1038: 1036: 1026: 1024: 1014: 1012: 1002: 1000: 988: 978: 976: 968: 960:Sixty Symbols: 952: 893: 890: 888:Further reading 885: 837: 836: 832: 784: 783: 779: 731: 730: 726: 710:arXiv:1306.1700 703: 694: 640: 639: 635: 587: 586: 582: 528: 527: 520: 510: 508: 502: 501: 497: 487: 485: 476: 475: 471: 455: 454: 450: 396: 395: 386: 377: 375: 366: 365: 361: 351: 349: 340: 339: 335: 331: 293:Galaxy filament 288:CfA2 Great Wall 284: 242: 196: 190: 171: 168: 161: 146: 144:Characteristics 111: 63: 62: 61: 60: 41: 40: 39: 30: 29: 28: 17: 12: 11: 5: 1089: 1087: 1079: 1078: 1073: 1068: 1063: 1058: 1053: 1043: 1042: 1035: 1034: 1022: 1010: 998: 986: 966: 965: 958: 951: 950:External links 948: 947: 946: 889: 886: 884: 883: 830: 817:10.1086/312204 777: 764:10.1086/428890 740:(2): 463–484. 724: 692: 653:(1): 116–134. 633: 620:10.1086/429084 580: 518: 495: 469: 448: 384: 359: 332: 330: 327: 326: 325: 320: 315: 310: 305: 300: 295: 290: 283: 280: 241: 238: 192:Main article: 189: 186: 169: 166: 145: 142: 119:United Kingdom 110: 107: 73:, also called 43: 42: 33: 32: 31: 22: 21: 20: 19: 18: 15: 13: 10: 9: 6: 4: 3: 2: 1088: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1048: 1046: 1039: 1033: 1023: 1021: 1011: 1009: 999: 997: 992: 987: 985: 975: 971: 963: 959: 957: 954: 953: 949: 943: 939: 934: 929: 925: 921: 916: 911: 907: 903: 902: 897: 892: 891: 887: 879: 875: 871: 867: 863: 859: 854: 849: 845: 841: 834: 831: 826: 822: 818: 814: 810: 806: 801: 796: 792: 788: 781: 778: 773: 769: 765: 761: 757: 753: 748: 743: 739: 735: 728: 725: 722: 718: 715: 711: 707: 701: 699: 697: 693: 688: 684: 679: 674: 670: 666: 661: 656: 652: 648: 644: 637: 634: 629: 625: 621: 617: 613: 609: 604: 599: 595: 591: 584: 581: 576: 572: 567: 562: 558: 554: 549: 544: 540: 536: 532: 525: 523: 519: 507:. scinews.com 506: 499: 496: 483: 479: 473: 470: 465: 464: 459: 452: 449: 444: 440: 435: 430: 426: 422: 417: 412: 408: 404: 400: 393: 391: 389: 385: 374:on 2013-01-14 373: 369: 363: 360: 348: 347:New Scientist 344: 341:Aron, Jacob. 337: 334: 328: 324: 323:The Giant Arc 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 294: 291: 289: 286: 285: 281: 279: 277: 272: 269: 264: 262: 256: 254: 249: 247: 239: 237: 235: 230: 228: 223: 221: 216: 214: 209: 205: 201: 195: 187: 185: 183: 178: 176: 172: 159: 155: 151: 143: 141: 139: 135: 131: 128: 127:constellation 124: 120: 116: 108: 106: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 58: 54: 50: 46: 37: 26: 1037: 1032:Solar System 905: 899: 843: 839: 833: 790: 786: 780: 737: 733: 727: 705: 650: 646: 636: 596:(1): 54–58. 593: 589: 583: 538: 534: 509:. Retrieved 498: 486:. Retrieved 482:the original 472: 461: 451: 406: 402: 376:. Retrieved 372:the original 362: 350:. Retrieved 336: 275: 273: 267: 265: 260: 257: 250: 245: 243: 234:correlations 231: 226: 224: 217: 207: 199: 197: 179: 147: 117:in Preston, 112: 102: 74: 70: 66: 64: 52: 44: 1020:Outer space 1008:Spaceflight 409:(4): 6256. 204:homogeneous 87:light-years 1045:Categories 793:(1): 5–8. 708:in press. 511:15 January 488:14 January 378:2013-01-13 352:14 January 329:References 984:Astronomy 915:1211.6256 853:1409.6098 660:1205.6812 575:118603499 548:1001.0617 416:1211.6256 109:Discovery 878:56092977 687:19959072 628:15957886 282:See also 175:redshift 170:☉ 71:Huge-LQG 1061:Quasars 970:Portals 964:(Video) 920:Bibcode 858:Bibcode 846:: A18. 805:Bibcode 772:9654355 752:Bibcode 665:Bibcode 608:Bibcode 553:Bibcode 463:YouTube 421:Bibcode 240:Dispute 123:quasars 103:Dispute 93:in the 79:quasars 942:486490 940:  876:  825:966351 823:  770:  685:  626:  573:  443:486490 441:  276:et al. 268:et al. 261:et al. 246:et al. 227:et al. 213:/h Mpc 208:et al. 134:DR7QSO 57:3C 273 53:Bottom 996:Stars 938:S2CID 910:arXiv 874:S2CID 848:arXiv 821:S2CID 795:arXiv 768:S2CID 742:arXiv 683:S2CID 655:arXiv 624:S2CID 598:arXiv 571:S2CID 543:arXiv 439:S2CID 411:arXiv 75:U1.27 45:Above 513:2013 490:2013 407:1211 354:2013 218:The 65:The 928:doi 906:429 866:doi 844:572 813:doi 791:522 760:doi 738:624 717:doi 673:doi 651:425 616:doi 594:624 561:doi 539:405 429:doi 211:260 150:Gpc 130:Leo 69:, ( 1047:: 936:. 926:. 918:. 904:. 898:. 872:. 864:. 856:. 842:. 819:. 811:. 803:. 789:. 766:. 758:. 750:. 736:. 712:. 695:^ 681:. 671:. 663:. 649:. 645:. 622:. 614:. 606:. 592:. 569:. 559:. 551:. 537:. 533:. 521:^ 460:. 437:. 427:. 419:. 405:. 401:. 387:^ 345:. 972:: 944:. 930:: 922:: 912:: 880:. 868:: 860:: 850:: 827:. 815:: 807:: 797:: 774:. 762:: 754:: 744:: 719:: 689:. 675:: 667:: 657:: 630:. 618:: 610:: 600:: 577:. 563:: 555:: 545:: 515:. 492:. 466:. 445:. 431:: 423:: 413:: 381:. 356:. 167:M 162:Ă— 59:.

Index

Map of Huge-LQG
Quasar 3C 273
Clowes–Campusano LQG
3C 273
quasars
large quasar group
light-years
largest and the most massive known structure
observable universe
Hercules–Corona Borealis Great Wall
University of Central Lancashire
United Kingdom
quasars
constellation
Leo
DR7QSO
Sloan Digital Sky Survey
Gpc
active galactic nuclei
supermassive black holes
M
redshift
Clowes–Campusano LQG
Cosmological principle
homogeneous
/h Mpc
Sloan Great Wall
correlations
University of Bielefeld
CfA2 Great Wall

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑