Knowledge (XXG)

Hygroscopy

Source 📝

775:
remains open, allowing liquid water passage for germination. Physiologically, the inner and outer epidermides have independent hilar valve control. The outer epidermis has columnar-shaped cells, annularly arranged about the hilum. These counter palisade cells, being hygroscopic, respond to external humidity by swelling and closing the hilar valve during high humidity, preventing water absorption into the seed. Reversibly, they shrivel, opening the valve during low humidity, allowing the seed to expel excess moisture. The inner epidermis, inside the seed's impermeable integument, has palisade epidermis cells, a second annularly arranged hygroscopic layer attuned to the embryo's moisture level. There exists a moisture tension between inner and outer palisade cells. For the hilum to close, this moisture needs to exceed some minimum level (14–25% for these species). While the hilar valve is open (i.e., low outer humidity) if the humidity suddenly increases, the moisture tension reaches that protective threshold and the hilum closes, preventing moisture (liquid water) from entering. If, however, the outer humidity rises gradually, implying suitable growing conditions, the moisture tension level doesn't immediately exceed the threshold, keeping the hilum open and enabling the gradual moisture entry necessary for
1007:) employ a hygromorphic hinge for their seed release. Physiology involves a bi-layered structure of closely packed long parallel thick-walled cells. Fiber alignments within layers are non-uniform, varying longitudinally, producing different microfibril angles (MFAs) of 30° and 74° between layers over the span of the scale. The region of greatest MFA, the hinge knuckle, is a small region near the scale and midrib (central stem) union. In mature pine cones the outer scale layer is the controlling tissue, its long thick-walled cells responding longitudinally to environmental humidity. Distortion occurs in the knuckle region as movement of the outer layer overtakes that of the more passive inner scale layer, forcing the scale to bend or flex. The remainder of the scale is hygroscopically passive, though amplifies apex displacement via length and geometrically; e.g. bending the scale closed with hydration or flexing it open with dehydration- releasing seed. 966: 805: 569: 1184: 585: 1167:, all resting upon the capsule floor. Seeds are visible, but restrained by the cup-like ring created by the encircling keels. The final requirement for dispersal is rainfall, or sufficient moisture, to flush seed from this barrier, colloquially termed the splash cup. Seed that overflows or splashes from the cup is dispersed to the nearby ground. Any remaining seed will be preserved when keels desiccate, hygroscopically shrink, and restore to their natural folded, closed state. The hygromorphic process is reversible, repeatable; neglected seed having subsequent dispersal opportunity via future rainfalls. 270: 1117: 789:
tri-layered) and the effects of the opposite-surface's cell orientation control the hygroscopic reaction. Moisture responsive seed encapsulations rely on valves opening when exposed to wetting or drying; discontinuous tissue structures provide such predetermined breaking points (sutures), often implemented via reduced cell wall thickness or seams within bi- or tri-layered structures. Graded distributions varying in density and/or cell orientation focus hygroscopic movement, frequently observed as biological actuators (a hinge function); e.g. pinecones (
1082: 864:(inner petal) tissue, parenchyma and adaxial epidermis (outer petal tissue). Bract cell wall composition is rather uniform but its cells gradually change in orientation. The bract's hygroscopic bending is due to the differing cell orientations of its inner and outer epidermides, causing adaxial–abaxial force gradients between opposing sides that change with moisture; thus, the aggregate hygrometric force, in whorl unison, controls the capitulum's repetitive opening and closing. 601: 1010: 708: 1170: 617: 1244:). All rely upon a bi-layered parallel fiber hygroscopic cell physiology to control the awn's movement for dispersal and self-burial of seeds. Alignment of cellulose fibrils in the awn's controlling cell wall determines direction of movement. If fiber alignments are tilted, non-parallel venation, a helix develops and awn movement becomes twisting (coiling) instead of bending; e.g. coiling occurs in awns of 1276: 1163:) is composed of cellulosic lattice tissue that swells with hydration, opening within minutes. The enlarged cells force straightening of an inherent desiccated fold in the keel, the hygroscopic hinge, near the keel's union with the capsule perimeter. Fully opened, the keel pivots over 150°, upward then backward, exposing seed compartments, one beneath each valve, separated by 722: 1073:
pappus to close, contracting its radially patterned structure, reducing its area and the likelihood of wind current dispersal. For any achene that become released, flight dynamics of the reduced pappus dramatically limit dispersal range. The hygroscopic actuator's responsiveness to changes in relative humidity (RH) is predictable, repeatable; e.g. the pappi of
391:. The volume of a particular material or compound is affected by ambient moisture and may be considered its coefficient of hygroscopic expansion (CHE) (also referred to as CME, or coefficient of moisture expansion) or the coefficient of hygroscopic contraction (CHC)—the difference between the two terms being a difference in sign convention. 557:. Movement occurs when plant tissue matures, dies and desiccates, cell walls drying, shrinking; and also when humidity re-hydrates plant tissue, cell walls enlarging, expanding. The direction of the resulting force depends upon the architecture of the tissue and is capable of producing bending, twisting or coiling movements. 690:) benefit from two hygroscopically-enabled hydration processes; transcutaneous uptake of condensation on their skin and reduced evaporative water loss due to the condensed water film barrier covering their skin. Condensation volume is enhanced by the hygroscopic secretions they wipe across their granular skin. 1072:
undergoes binary morphing (opened or closed) of its whisker-like filaments, in unison with chorused responses of the remaining achenes. Pappus movement is controlled via a hygroscopic actuator in the apical plate, at the beak's top, the locus for all the achene's filaments. High humidity causes each
394:
Differences in hygroscopy can be observed in plastic-laminated paperback book covers—often, in a suddenly moist environment, the book cover will curl away from the rest of the book. The unlaminated side of the cover absorbs more moisture than the laminated side and increases in area, causing a stress
224:
viewed hygroscopicity from the physical side, a physico-chemical process. Berthelot's principle of reversibility, briefly- that water dried from plant tissue could be restored hygroscopically, was published in "Recherches sur la desiccation des plantes et des tissues végétaux; conditions d'équilibre
1134:
Some plants synchronize the opening of their mature seed capsule with active rainfall- hygrochasy. This dispersal technique is frequently observed in the arid regions of southern and eastern Africa, the Israeli desert, parts of North America and Somalia, and believed evolved to offer higher survival
788:
Typical of hygroscopic movement are plant tissues with "closely packed long (columnar) parallel thick-walled cells (that) respond by expanding longitudinally when exposed to humidity and shrinking when dried (Reyssat et al., 2009)". Cell orientation, pattern structure (annular, planar, bi-layered or
526:
Hygroscopy appears in both plant and animal kingdoms, the latter benefiting via hydration and nutrition. Some amphibian species secrete a hygroscopic mucus that harvests moisture from the air. Orb web building spiders produce hygroscopic secretions that preserve the stickiness and adhesion force of
997:
are sealed by a wax (resin) layer, released by high ambient temperatures (fire), "thereby facilitating opening (e.g. Huss et al., 2018)." The follicle mesocarp consists of high density branched fiber bundles; the endocarp, low density parallel fibers. A suture is caused by differential hygroscopic
1408:
Another approach performs at lower 15–30% RHs but also has environs limitations; a sustainable biomass source is necessary. Super hygroscopic polymer films composed of biomass and hygroscopic salts are able to condense moisture from atmospheric humidity. By implementing rapid sorption-desorption
1413:
Hygroscopic glues are candidates for commercial development. The most common cause of synthetic glue failure at high humidity is attributed to water lubricating the contact area, impacting bond quality. Hygroscopic glues may allow more durable adhesive bonds by absorbing (pulling) inter-facial
1417:
Integrating hygroscopic movement into smart building designs and systems is frequently mentioned, e.g. self-opening windows. Such movement is appealing, an adaptive, self-shaping response that requires no external force or energy. However, capabilities of current material choices are limited.
860:, the hinge and blade composed exclusively of dead cells (Nishikawa et al., 2008), allowing the hygroscopically activated bracts to function from flowering through achene dispersal. Physiologically, the bract's lower section is source to the hinge-like function, consisting of sclerenchyma-like 774:
species, also has hygroscopic seeds shown to imbibe up to 20% atmospheric moisture, by weight. Functionally, the hilar valve allows water vapor to enter or exit to ensure viability, while blocking liquid water. If however, humidity levels gradually rise to a high enough level, the hilar valve
1287:
Hygroscopicity is a general term used to describe a material's ability to absorb moisture from the environment. There is no standard quantitative definition of hygroscopicity, so generally the qualification of hygroscopic and non-hygroscopic is determined on a case-by-case basis. For example,
1422:
Hygrometric response time, precise shape changes and durability are lacking. Most currently available hygro-actuated composites are inferior and exhibit fatigue failure well before that seen in nature, e.g. in pine cone scales, indicating that a better understanding of the plants' biological
992:
composed of a bi-layer hygroscopic cell network. The woody follicle is thermo-sensitive, then hygroresponsive; serotinous humidity opening the ventral suture and exposing seed when germination conditions are favorable. Physiologically, the heat-sensitive follicle valves of
218:, October 1897) focused on the biological properties of hygroscopicity. He noted pea seeds, both living and dead (without germinative capacity), responded similarly to atmospheric humidity, their weight increasing or decreasing in relation to hygrometric variation. 642:
that use their degenerated, non-nutritive roots to anchor upon rocks or other plants. Hygroscopic leaves absorb their necessary moisture from humidity in the air. The collected water molecules are transported from leaf surfaces to an internal storage network via
1156:
of New Zealand, evolving in the last 9Myr. Common to all seed capsules are triangular circumferentially-arranged hygroscopic keels (valves) covering its seeds. These protective valves mechanically open only when hydrated with liquid water. Each keel (five for
550:, Oxford, 1907). When movement becomes larger scale, affected plant tissues are colloquially termed hygromorphs. Hygromorphy is a common mechanism of seed dispersal as the movement of dead tissues respond to hygrometric variation, e.g. spore release from the 673:, an aggregate blend of glycoproteins, low molecular mass organic and inorganic compounds (LMMCs), and water. The LMMCs are hygroscopic, thus is the glue, its moisture absorbing properties using environmental humidity to keep the capture silk soft and tacky. 354:
hygroscopic in concentrated form but its solutions are hygroscopic down to concentrations of 10% v/v or below. A hygroscopic material will tend to become damp and cakey when exposed to moist air (such as the salt inside salt shakers during humid weather).
1291:
The amount of moisture held by hygroscopic materials is usually proportional to the relative humidity. Tables containing this information can be found in many engineering handbooks and is also available from suppliers of various materials and chemicals.
1864:"Close observation of a common fern challenges long-held notions of how plants move. A commentary on 'Fern fronds that move like pine cones: humidity-driven motion of fertile leaflets governs the timing of spore dispersal in a widespread fern species'" 833:
being examples. The hygroscopic bending of involucral bracts surrounding a capitulum contributes to flower protection and pollination and assists dispersion by protecting delicate pappi filaments from entanglement or destruction by precipitation, e.g.
1372:
are often used to achieve differences in moisture content and, hence, crispiness. Different varieties of sugars are used in different quantities to produce a crunchy, crisp cookie (British English: biscuit) versus a soft, chewy cake. Sugars such as
1288:
pharmaceuticals that pick up more than 5% by mass, between 40 and 90% relative humidity at 25 °C, are described as hygroscopic, while materials that pick up less than 1%, under the same conditions are regarded as non-hygroscopic.
1750:
Wells, Mickey; Wood, Daniel; Sanftleben, Ronald; Shaw, Kelley; Hottovy, Jeff; Weber, Thomas; Geoffroy, Jean-Marie; Alkire, Todd; Emptage; Sarabia, Rafael (June 1997). "Potassium carbonate as a desiccant in effervescent tablets".
403:
make use of this principle using a coiled strip. Deliquescence is the process by which a substance absorbs moisture from the atmosphere until it dissolves in the absorbed water and forms a solution. Deliquescence occurs when the
71:
or some other physical characteristic or property of the substance. For example, a finely dispersed hygroscopic powder, such as a salt, may become clumpy over time due to collection of moisture from the surrounding environment.
173:
referring in the 1790s to measuring devices for humidity level. These hygroscopes used materials, such as certain animal hairs, that appreciably changed shape and size when they became damp. Such materials were then said to be
2872:
Sloane, T. O'Conor. Facts Worth Knowing Selected Mainly from the Scientific American for Household, Workshop, and Farm Embracing Practical and Useful Information for Every Branch of Industry. Hartford: S. S. Scranton and Co.
1409:
kinetics and operating 14–24 cycles per day, this technique produced an equivalent water yield of 5.8–13.3 L kg of sustainable raw materials, demonstrating the potential for low-cost, scalable atmospheric water harvesting.
1206:. The awn will thrust (or twist) when the seed is released, its motion dependent upon plant physiology. Subsequent hygrometric changes cause movements to repeat, thrusting (or twisting), pushing the seed into the ground. 538:
examples. Hygroscopic movement (hygrometrically activated movement) is integral in fertilization, seed/spore release, dispersal and germination. The phrase "hygroscopic movement" originated in 1904's "
63:, which is usually at normal or room temperature. If water molecules become suspended among the substance's molecules, adsorbing substances can become physically changed, e.g. changing in volume, 584: 2679:
Harrington, Matthew J.; Razghandi, Khashayar; Ditsch, Friedrich; Guiducci, Lorenzo; Rueggeberg, Markus; Dunlop, John W.C.; Fratzl, Peter; Neinhuis, Christoph; Burgert, Ingo (7 June 2011).
1260:(self-dispersal), active ballists forcibly ejecting their seeds; e.g. species of geranium, violet, wood sorrel, witch hazel, touch-me-not (Impatiens), and acanthus. Rupturing of the 369:, cloud condensation nuclei (CCNs). Being hygroscopic, their microscopic particles provide an attractive surface for moisture vapour to condense and form droplets. Modern-day human 365:, desirable hygroscopic materials might require storage in sealed containers. Some hygroscopic materials, e.g., sea salt and sulfates, occur naturally in the atmosphere and serve as 951:, desiccation, and fire (Moya et al., 2008; Talluto & Benkman, 2014; Lamont et al., 2016, 2020)." The similarity of dual-stage dispersal techniques between different clades, 415:, a process where glass or other solid substances attract water, but are not changed in the process (e.g., water molecules do not become suspended between the glass molecules). 89:. Biological evolution created hygroscopic solutions for water harvesting, filament tensile strength, bonding and passive motion – natural solutions being considered in future 1426:
Current composites require undesirable trade-offs between hygromorphic response time and mechanical stability that must also be balanced with changing environmental stimuli.
1114:
layers, combined with dual sided shrinkage, results in opposing helical torques that force a suture at the weakest point, the seed case valves; their opening releases seed.
1393:
Several hygroscopic approaches to harvest atmospheric moisture have been demonstrated and require further development to assess their potentials as a viable water source.
600: 1689: 1079:
remain closed at ≥ 78% RH and open completely at ≤ 75% RH. During more favorable lower humidity conditions, pappi fully expand and wind current allochory is re-enabled.
965: 705:. When the toad wipes this protective secretion on its body its skin becomes moistened by the surrounding environmental humidity, considered an aid in water balance. 235:
viewed hygroscopicity from perspectives of the physicist and the chemist. His memoir "Sur l'Hygroscopicité comme cause de l'action physiologique à distance" (
656:), from a family known as completely aquatic, has hygroscopic skin that serves as a water reservoir, retarding desiccation, allowing it to travel out of water. 867:
Some trees and shrubs in fire-prone regions evolved a dual-stage hygroscopic dispersal; an initial thermo-sensitive enabling (extreme heat or fire), then a
1397:
Experiments with fog collection, in select environs, duplicated the hydrophilic surfaces and hygroscopic surface wetting observed in tree frog hydration (
568: 239:, tome vi., 1906) provided a hygroscopy definition that remains valid to this day. Hygroscopy is "exhibited in the most comprehensive sense, as displayed 1423:
structures is needed. Materials composed of fluid-responsive active bilayer systems that can direct planned conformational hygromorphing are necessary.
387:
Materials and compounds exhibit different hygroscopic properties, and this difference can lead to detrimental effects, such as stress concentration in
2733: 3029: 2529:
Seale, Madeleine; Kiss, Annamaria; Bovio, Simone; Viola, Ignazio Maria; Mastropaolo, Enrico; Boudaoud, Arezki; Nakayama, Naomi (May 6, 2022).
2789: 2830: 1668: 1633: 804: 1183: 2349:
Borowska-Wykręt, Dorota; Rypień, Aleksandra; Dulski, Mateusz; Grelowski, Michał; Wrzalik, Roman; Kwiatkowska, Dorota (June 2017).
1350:, do not normally absorb much moisture, but are able to carry significant moisture on their surface when exposed to liquid water. 1486:
Ni, Feng; Qiu, Nianxiang; Xiao, Peng; Zhang, Chang Wei; Jian, Yukun; Liang, Yun; Xie, Weiping; Yan, Luke; Chen, Tao (July 2020).
616: 2999: 1918:
Elbaum, Rivka; Abraham, Yael (June 2014). "Insights into the microstructures of hygroscopic movement in plant seed dispersal".
1312: 856:
during the day, then inward, closing it at night, as the relative humidity shifts in response to the daily temperature change.
1720: 2351:"Gradient of structural traits drives hygroscopic movements of scarious bracts surrounding Helichrysum bracteatum capitulum" 2240:"The Function of the Hilum in Some Papilionaceae in Relation to the Ripening of the Seed and the Permeability of the Testa" 998:
movements between layers, their microfibril structures having a large angle disparity (microfibril angle (MFA) γ = 75–90°).
1405:
O/(cm h), more than twice the collection rate of tree frogs under comparable conditions, i.e. 100% RH (relative humidity).
1418:
Biomimetic design of hygromorphic wood composites and hygro-actuated building systems have been modeled and evaluated.
3034: 3024: 2740: 1451: 527:
their webs. One aquatic reptile species is able to travel beyond aquatic limitations, onto land, due to its hygroscopic
857: 2752: 1401:). Subsequent material optimizations developed artificial hydrophilic surfaces with collection rates of 25 mg H 514:. Some deliquescent compounds are used in the chemical industry to remove water produced by chemical reactions (see 1441: 683: 269: 85:
Hygroscopy is essential for many plant and animal species' attainment of hydration, nutrition, reproduction and/or
2851: 2015:"Hygroscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions" 3044: 3039: 1436: 1328: 547: 366: 273:
Apparatus for the determination of the hygroscopicity of fertilizer, Fixed Nitrogen Research Laboratory, c. 1930
2629:"Hygrochastic capsule dehiscence supports safe site strategies in New Zealand alpine Veronica (Plantaginaceae)" 2597: 2410:"The Dispersal Effectiveness of the Achene-Pappus Units of Selected Compositae in Steady Winds with Convection" 2293:"Three-dimensional functional gradients direct stem curling in the resurrection plant Selaginella lepidophylla" 925: 2563: 2498: 2013:
Singla, Saranshu; Amarpuri, Gaurav; Dhopatkar, Nishad; Blackledge, Todd A.; Dhinojwala, Ali (May 22, 2018).
1324: 483: 1116: 1081: 446:
if exposed to it. Unlike hygroscopy, however, deliquescence involves absorbing sufficient water to form an
3014: 2946: 823: 652: 52: 2291:
Brulé, Véronique; Rafsanjani, Ahmad; Asgari, Meisam; Western, Tamara L.; Pasini, Damiano (October 2019).
678: 424: 2727: 1295:
Hygroscopy also plays an important role in the engineering of plastic materials. Some plastics, e. g.
443: 3019: 2896: 2692: 2542: 2184: 2026: 1927: 960: 665: 535: 1488:"Tillandsia-Inspired Hygroscopic Photothermal Organogels for Efficient Atmospheric Water Harvesting" 3049: 2885:"Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments" 1234: 1189: 1143: 1107: 1102:) depends upon hygro-responsive twisting for its dispersal. Its seed pod contains two hygroscopic 491: 479: 475: 346:), are so hygroscopic that they readily dissolve in the water they absorb: this property is called 335: 221: 60: 2812:
James L. Ford, Richard Wilson, in Handbook of Thermal Analysis and Calorimetry, 1999, Section 2.13
1214:
families have similar methods of dispersal, though method of implementation varies within family:
395:
that curls the cover toward the laminated side. This is similar to the function of a thermostat's
2966: 2259: 2160: 2104: 1992: 1515: 1220: 1175: 1098: 1087: 943:
are resin-sealed seed encapsulations that require the heat of fire to physically melt the resin,
829: 736: 551: 459: 388: 150: 1963:"Cutaneous water collection by a moisture-harvesting lizard, the thorny devil (Moloch horridus)" 78:
materials are sufficiently hygroscopic that they dissolve in the water they absorb, forming an
2922: 2826: 2795: 2785: 2710: 2658: 2578: 2479: 2380: 2322: 2152: 2096: 2052: 1984: 1943: 1893: 1841: 1592: 1507: 1280: 1262: 978: 702: 499: 431: 408:
of the solution that is formed is less than the partial pressure of water vapour in the air.
169:
word, it no longer refers to a viewing or imaging mode. It did begin that way, with the word
2958: 2912: 2904: 2700: 2648: 2640: 2568: 2558: 2550: 2469: 2461: 2421: 2370: 2362: 2312: 2304: 2251: 2142: 2086: 2042: 2034: 1974: 1935: 1883: 1875: 1831: 1823: 1779: 1760: 1703: 1582: 1574: 1499: 1203: 1153: 989: 845: 748: 742: 495: 487: 455: 451: 447: 412: 396: 377: 343: 339: 331: 314: 108: 79: 1961:
Comanns, Philipp; Withers, Philip C.; Esser, Falk J.; Baumgartner, Werner (November 2016).
1009: 2737: 2350: 1660: 1062: 952: 707: 511: 467: 2883:
Guo, Youhong; Guan, Weixin; Lei, Chuxin; Lu, Hengyi; Shi, Wen; Yu, Guihua (19 May 2022).
2131:"Passive water collection with the integument: mechanisms and their biomimetic potential" 2075:"Passive water collection with the integument: mechanisms and their biomimetic potential" 2900: 2696: 2546: 2030: 1931: 1169: 2947:"From adaptive plant materials toward hygro-actuated wooden building systems: A review" 2917: 2884: 2653: 2628: 2573: 2530: 2474: 2449: 2426: 2409: 2375: 2317: 2292: 2255: 2047: 2014: 1888: 1863: 1836: 1811: 1587: 1562: 1257: 1148: 1030: 948: 931: 849: 698: 405: 86: 2962: 1764: 1202:
that bend with changes in humidity, enabling them to disperse over the ground, termed
3008: 2970: 1519: 1316: 1240: 1111: 1103: 507: 463: 370: 351: 327: 310: 232: 64: 2211: 2164: 2108: 1996: 1699: 1939: 1446: 1353: 1343: 1199: 919: 853: 818: 244:
in the condensation of the water-vapour of the air on the cold surface of a glass;
194:(the ability to do so). Nowadays an instrument for measuring humidity is called a 30:
This article is about a chemical property. For the underwater optical device, see
2945:
Zhan, Tianyi; Li, Rui; Liu, Zhiting; Peng, Hui; Lyu, Jianxiong (10 March 2023).
1694: 1398: 1378: 1347: 956: 776: 543: 534:
Plants benefit from hygroscopy via hydration and reproduction – demonstrated by
515: 359: 2908: 2554: 2531:"Dandelion pappus morphing is actuated by radially patterned material swelling" 2038: 1275: 161: 155: 2799: 1461: 1456: 1159: 1025: 887: 877: 660: 634: 528: 471: 400: 376:
When added to foods or other materials for the express purpose of maintaining
321: 195: 90: 56: 35: 31: 17: 1698:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 1707: 1487: 1357: 1320: 1137: 1075: 1066: 1057: 1043: 900: 881: 872: 836: 503: 381: 278: 68: 2926: 2714: 2662: 2582: 2483: 2384: 2326: 2308: 2156: 2100: 2056: 1988: 1947: 1897: 1845: 1827: 1596: 1511: 1503: 721: 2781:
Handbook of non-ferrous metal powders : technologies and applications
1879: 2644: 2366: 1382: 1039: 944: 907: 868: 770: 670: 644: 639: 439: 362: 306: 294: 178:
because they were suitable for making a hygroscope. Eventually, the word
48: 2843: 2263: 2239: 693:
Some toads use hygroscopic secretions to reduce evaporative water loss,
2705: 2680: 2147: 2130: 2091: 2074: 1979: 1962: 1121: 1051: 1047: 984: 896: 761: 298: 286: 256:
in the absorption of water from the air by concentrated sulphuric acid;
214:
Early hygroscopy literature began circa 1880. Studies by Victor Jodin (
2779: 2465: 1578: 1279:
Hygroscopic qualities of various materials illustrated in graph form;
1135:
rates in arid environs. Hygrochasy is commonly associated with family
1385:
are examples of sweeteners used to create moister and chewier cakes.
1369: 1164: 1069: 753: 2499:"Playing with Wildfire: 5 Amazing Adaptations of Pyrophytic Plants" 2219:. National Park Service Scientific Monograph Series. pp. 69–73 237:
Recueil de l'lnstitut Botanique Léo Errera, Université de Bruxelles
2681:"Origami-like unfolding of hydro-actuated ice plant seed capsules" 1374: 1308: 1296: 1274: 1182: 1168: 1115: 1080: 1008: 964: 892: 841: 803: 720: 706: 435: 430:
Deliquescence, like hygroscopy, is also characterized by a strong
290: 282: 268: 183: 45: 1142:, the ice plant, as > 98% of its species utilize post-wetting 411:
While some similar forces are at work here, it is different from
1029:
family have hygroscopically-influenced dispersion, coordinating
1003: 947:. Such seed encapsulations may "reduce seed loss or damage from 913: 861: 757: 302: 1106:
fibre layers, nearly orthogonal, joining at the valves. During
871:
hygroresponsive seed release. Examples are the woody fruits of
669:). This spider, as typical, coats its threads with a self-made 1414:
environmental moisture away from the glue-substrate boundary.
1266:
seed pod reportedly propels its seed up to 15 metres distance.
647:
with capacity sufficient for the plant's growing requirements.
320:
If a compound dissolves in water, then it is considered to be
247:
in the capillarity of hair, wool, cotton, wood shavings, etc.;
2994: 423:"Deliquescence" redirects here. For the album by Swans, see 1368:
The use of different substances' hygroscopic properties in
141: 135: 114: 126: 1641:. London, England: Williams and Norgate. pp. 147–150 542:", translated in 1907 as "Lectures on Plant Physiology" ( 120: 2454:
New Phytologist: International Journal of Plant Science
1862:
Watkins, Jr, James E; Testo, Weston L (11 April 2022).
1567:
New Phytologist: International Journal of Plant Science
663:
found in spider webs, e.g. from the orb-weaver spider (
2627:
Pufal, Gesine; Garnock-Jones, Phil (September 2010).
1812:"Hygromorphs: from pine cones to biomimetic bilayers" 1307:
Many engineering polymers are hygroscopic, including
190:(tending to retain moisture) lived on, and thus also 132: 129: 2448:
Huss, Jessica C.; Gierlinger, Notburga (June 2021).
1612:
Hygroscopic: Webster's Timeline History, 1880 - 2007
1561:
Huss, Jessica C.; Gierlinger, Notburga (June 2021).
729:) fruit bearing hygroscopic, humidity absorbing seed 250:
in the imbibition of water from the air by gelatine;
182:
ceased to be used for any such instrument in modern
138: 123: 27:
Phenomenon of attracting and holding water molecules
1360:) can absorb up to 9.5% of its weight in moisture. 1198:The seeds of some flowering herbs and grasses have 1033:with favorable environmental conditions, common in 117: 111: 2753:"Seed-Plant-Reproductive-Part: Dispersal by water" 2344: 2342: 2340: 2338: 2336: 1283:on the X-axis and moisture content on the Y-axis. 697:being an example. The venomous secretion from its 2759:. Britannica. 2023. pp. Seed: Self-dispersal 2564:20.500.11820/b89b6b81-c97c-4145-a0a7-253119cd0c66 34:. For modern humidity-measuring instruments, see 2210:Steenbergh, Warren F.; Lowe, Charles H. (1977). 2185:"Valve Regulates Water Permeability: Tree lupin" 852:of hygroscopic bracts bend outward exposing the 506:, which is also an application for concentrated 760:that controls seed embryo moisture levels. The 2995:Video on the deliquescense of calcium chloride 502:for water, these substances are often used as 2741:U.S. Department of Agriculture Forest Service 2674: 2672: 1822:(39). The Royal Society Publishing: 951–957. 1218:family examples are the common stork's-bill ( 8: 2778:Neĭkov, Oleg Domianovich (7 December 2018). 2068: 2066: 1146:; such dispersal is also observed in family 817:Hygroscopic bi-layered cell arrays act as a 44:is the phenomenon of attracting and holding 2408:Sheldon, J. C.; Burrows, F. M. (May 1973). 2124: 2122: 2120: 2118: 1810:Reyssat, E.; Mahadevan, L. (July 1, 2009). 1784:. Oxford: Clarendon Press. pp. 405–417 1778:Jost, Ludwig; Gibson, R. J. Harvey (1907). 715:(red clover) next to a U.S. dime for scale. 594:) with hygroscopic skin, shown out of water 2728:Fire Effects Information System, Species: 2403: 2401: 1857: 1855: 1805: 1803: 1801: 1799: 1256:Some plants use hygroscopic movements for 3000:The movement of hygroscopic organic salts 2916: 2704: 2652: 2572: 2562: 2473: 2425: 2374: 2316: 2146: 2090: 2046: 2008: 2006: 1978: 1887: 1835: 1586: 784:Hygroscopic-assisted propagation examples 610:) with hygroscopic coated capture threads 2622: 2620: 2618: 2524: 2522: 2520: 2443: 2441: 2439: 2437: 2286: 2284: 2282: 2280: 2250:(70). Oxford University Press: 241–256. 2178: 2176: 2174: 1610:Parker, Phillip M., ed. (May 17, 2010). 1299:, are hygroscopic while others are not. 1110:the large 90° microfibril angle between 317:and a wide variety of other substances. 2940: 2938: 2936: 1627: 1625: 1623: 1621: 1556: 1492:Angewandte Chemie International Edition 1473: 1129:) flowers and multi-stage seed capsules 564: 2297:Journal of the Royal Society Interface 1816:Journal of the Royal Society Interface 1753:International Journal of Pharmaceutics 1554: 1552: 1550: 1548: 1546: 1544: 1542: 1540: 1538: 1536: 2825:, Van Nostrand Reinhold Company Inc. 380:, hygroscopic materials are known as 7: 1481: 1479: 1477: 959:, can be interpreted as a result of 810:Xerochrysum (Helichrysum) bracteatum 540:Vorlesungen Über Pflanzenphysiologie 253:in the deliquescence of common salt; 2951:Construction and Building Materials 2596:Eastman, John (February 18, 2015). 281:fibers (such as cotton and paper), 2821:Schwartz, S., Goodman, S. (1982). 2427:10.1111/j.1469-8137.1973.tb04415.x 2256:10.1093/oxfordjournals.aob.a083393 1695:Compendium of Chemical Terminology 1671:from the original on April 8, 2017 1160:Delosperma nakurense (Engl.) Herre 1061:. As example, the flight-enabling 450:. Most deliquescent materials are 347: 313:, many fertilizer chemicals, many 25: 2963:10.1016/j.conbuildmat.2023.130479 2854:from the original on May 13, 2017 2183:AskNature Team (March 23, 2020). 1721:"Does cloud seeding really work?" 2823:Plastics Materials and Processes 1614:. ICON Group International, Inc. 945:enabling serotinous seed release 615: 599: 583: 567: 227:Annales de Chimie et de Physique 107: 2450:"Functional packaging of seeds" 2135:Journal of Experimental Biology 2079:Journal of Experimental Biology 1967:Journal of Experimental Biology 1725:Chemical & Engineering News 1563:"Functional packaging of seeds" 929:)). Typical in lodgepole pine ( 277:Hygroscopic substances include 259:in the behaviour of quicklime". 159:(for moisture or humidity) and 2505:. Encyclopædia Britannica, Inc 1940:10.1016/j.plantsci.2014.03.014 1719:Pelley, Janet (May 30, 2016). 840:(dandelions). In nature these 561:Hygroscopic hydration examples 358:Because of their affinity for 1: 3030:Evolutionary biology concepts 2598:"Seeds that plant themselves" 2497:Petruzzello, Melissa (2023). 2238:Hyde, E. O. C. (April 1954). 2129:Comanns, Philipp (May 2018). 2073:Comanns, Philipp (May 2018). 1765:10.1016/S0378-5173(97)00093-8 1200:hygroscopic appendages (awns) 752:) and several members of the 1781:Lectures on Plant Physiology 1452:Equilibrium moisture content 854:capitulum (see illustration) 2850:. San Diego Plastics, Inc. 1635:Studies in Seeds and Fruits 1232:family, Needle-and-Thread ( 1031:anemochory (wind dispersal) 963:(e.g. Clarke et al., 2013). 923:), e.g. the giant sequoia ( 676:The waxy monkey tree frog ( 498:. Owing to their very high 97:Etymology and pronunciation 3066: 2909:10.1038/s41467-022-30505-2 2555:10.1038/s41467-022-30245-3 2213:Ecology of the Saguaro: II 2191:. The Biomimicry Institute 2039:10.1038/s41467-018-04263-z 1442:Critical relative humidity 1179:) achenes with coiled awns 917:) and the cypress family ( 701:also includes hygroscopic 684:Australian green tree frog 422: 29: 1437:Cloud condensation nuclei 1329:poly(methyl methacrylate) 905:) and the woody cones of 1632:Guppy, Henry B. (1912). 1342:Other polymers, such as 1023:Flowering plants of the 972:cone with open follicles 926:Sequoiadendron giganteum 808:Illustration botanique, 590:The aquatic file snake ( 399:. Inexpensive dial-type 1708:10.1351/goldbook.H02906 1661:"Hygroscopic compounds" 1325:carboxymethyl cellulose 746:), yellow bush lupine ( 659:Another example is the 622:Waxy monkey tree frog ( 484:ferric ammonium citrate 438:and tendency to absorb 373:efforts began in 1946. 225:et de réversibilité," ( 2895:((1):2761): Abstract. 2309:10.1098/rsif.2019.0454 1828:10.1098/rsif.2009.0184 1504:10.1002/anie.202007885 1364:Applications in baking 1284: 1271:Engineering properties 1194: 1180: 1130: 1092: 1017: 973: 824:Xerochrysum bracteatum 821:hinge in some plants, 813: 734:Red and white clover ( 730: 716: 653:Acrochordus granulatus 606:An orb-weaver spider ( 274: 2889:Nature Communications 2685:Nature Communications 2602:indefenseofplants.com 2541:(2498 (2022)): 2498. 2535:Nature Communications 2025:(1890 (2018)): 1890. 2019:Nature Communications 1278: 1186: 1173:Common stork's-bill ( 1172: 1119: 1084: 1016:capitulum and achene 1012: 988:, has a seed bearing 968: 807: 797:) and the wheat awn ( 724: 710: 679:Phyllomedusa sauvagii 624:Phyllomedusa sauvagii 425:Deliquescence (album) 272: 59:from the surrounding 2957:(130479): Abstract. 2784:. Elsevier Science. 1665:hygroscopiccycle.com 1076:centaurea imperialis 1014:Taraxacum officinale 961:convergent evolution 830:Syngonanthus elegans 801:), described below. 666:Larinioides cornutus 608:Larinioides cornutus 536:convergent evolution 413:capillary attraction 342:(and many different 216:Annales Agronomiques 3035:Mineralogy concepts 3025:Chemical properties 2901:2022NatCo..13.2761G 2730:Hesperostipa comata 2697:2011NatCo...2..337H 2691:(337 (2011)): 337. 2547:2022NatCo..13.2498S 2031:2018NatCo...9.1890S 1932:2014PlnSc.223..124E 1880:10.1093/aob/mcac017 1498:(43): 19237–19246. 1235:Hesperostipa comata 1190:Hesperostipa comata 1187:Needle-and Thread ( 858:Bracts are scarious 758:hilar valve (hilum) 756:have a hygroscopic 661:sticky capture silk 552:fertile margins of 492:potassium hydroxide 480:potassium phosphate 476:potassium carbonate 389:composite materials 336:potassium hydroxide 222:Marcellin Berthelot 165:. Unlike any other 2757:www.britannica.com 2736:2017-05-28 at the 2706:10.1038/ncomms1336 2645:10.1093/aob/mcq136 2367:10.1093/aob/mcx015 2148:10.1242/jeb.153130 2092:10.1242/jeb.153130 1980:10.1242/jeb.148791 1285: 1224:) and geraniums ( 1221:Erodium cicutarium 1195: 1181: 1176:Erodium cicutarium 1131: 1099:Bauhinia variegata 1093: 1088:Bauhinia variegata 1018: 1001:Pine cone scales ( 974: 880:species plurimae, 814: 812:; No.1- Capitulum 793:), the ice plant ( 766:Carnegiea gigantea 737:Trifolium pratense 731: 727:Carnegiea gigantea 717: 713:Trifolium pratense 703:glycosaminoglycans 576:Tillandsia bulbosa 554:Onoclea sensibilis 548:R.J. Harvey Gibson 460:magnesium chloride 275: 2791:978-0-08-100543-9 2466:10.1111/nph.17299 1973:(21): 3473–3479. 1579:10.1111/nph.17299 1281:relative humidity 1263:Bauhinia purpurea 1096:The orchid tree ( 979:Banksia attenuata 970:Banksia Attenuata 842:involucral bracts 16:(Redirected from 3057: 3045:Plant physiology 3040:Plant morphology 2982: 2981: 2979: 2977: 2942: 2931: 2930: 2920: 2880: 2874: 2870: 2864: 2863: 2861: 2859: 2840: 2834: 2819: 2813: 2810: 2804: 2803: 2775: 2769: 2768: 2766: 2764: 2749: 2743: 2725: 2719: 2718: 2708: 2676: 2667: 2666: 2656: 2633:Annals of Botany 2624: 2613: 2612: 2610: 2608: 2593: 2587: 2586: 2576: 2566: 2526: 2515: 2514: 2512: 2510: 2494: 2488: 2487: 2477: 2445: 2432: 2431: 2429: 2405: 2396: 2395: 2393: 2391: 2378: 2361:(8): 1365–1383. 2355:Annals of Botany 2346: 2331: 2330: 2320: 2288: 2275: 2274: 2272: 2270: 2244:Annals of Botany 2235: 2229: 2228: 2226: 2224: 2218: 2207: 2201: 2200: 2198: 2196: 2180: 2169: 2168: 2150: 2126: 2113: 2112: 2094: 2070: 2061: 2060: 2050: 2010: 2001: 2000: 1982: 1958: 1952: 1951: 1915: 1909: 1908: 1906: 1904: 1891: 1868:Annals of Botany 1859: 1850: 1849: 1839: 1807: 1794: 1793: 1791: 1789: 1775: 1769: 1768: 1747: 1741: 1740: 1738: 1736: 1716: 1710: 1687: 1681: 1680: 1678: 1676: 1657: 1651: 1650: 1648: 1646: 1640: 1629: 1616: 1615: 1607: 1601: 1600: 1590: 1573:(6): 2154–2163. 1558: 1531: 1530: 1528: 1526: 1483: 1152:with the alpine 749:Lupinus arboreus 743:Trifolium repens 688:Litoria caerulea 650:The file snake ( 645:osmotic pressure 619: 603: 587: 571: 512:phosphoric acids 496:sodium hydroxide 488:ammonium nitrate 456:calcium chloride 448:aqueous solution 397:bimetallic strip 378:moisture content 340:sodium hydroxide 332:calcium chloride 148: 147: 144: 143: 140: 137: 134: 131: 128: 125: 122: 119: 116: 113: 80:aqueous solution 21: 3065: 3064: 3060: 3059: 3058: 3056: 3055: 3054: 3005: 3004: 2991: 2986: 2985: 2975: 2973: 2944: 2943: 2934: 2882: 2881: 2877: 2871: 2867: 2857: 2855: 2842: 2841: 2837: 2820: 2816: 2811: 2807: 2792: 2777: 2776: 2772: 2762: 2760: 2751: 2750: 2746: 2738:Wayback Machine 2726: 2722: 2678: 2677: 2670: 2626: 2625: 2616: 2606: 2604: 2595: 2594: 2590: 2528: 2527: 2518: 2508: 2506: 2496: 2495: 2491: 2447: 2446: 2435: 2414:New Phytologist 2407: 2406: 2399: 2389: 2387: 2348: 2347: 2334: 2290: 2289: 2278: 2268: 2266: 2237: 2236: 2232: 2222: 2220: 2216: 2209: 2208: 2204: 2194: 2192: 2182: 2181: 2172: 2128: 2127: 2116: 2085:(10): Table 1. 2072: 2071: 2064: 2012: 2011: 2004: 1960: 1959: 1955: 1917: 1916: 1912: 1902: 1900: 1861: 1860: 1853: 1809: 1808: 1797: 1787: 1785: 1777: 1776: 1772: 1749: 1748: 1744: 1734: 1732: 1718: 1717: 1713: 1688: 1684: 1674: 1672: 1659: 1658: 1654: 1644: 1642: 1638: 1631: 1630: 1619: 1609: 1608: 1604: 1560: 1559: 1534: 1524: 1522: 1485: 1484: 1475: 1470: 1433: 1404: 1391: 1366: 1305: 1273: 1226:Pelargonium sp. 786: 627: 620: 611: 604: 595: 588: 579: 572: 563: 524: 468:ferric chloride 428: 421: 406:vapour pressure 267: 262: 229:, April 1903). 212: 186:, but the word 151:combining forms 110: 106: 99: 39: 28: 23: 22: 15: 12: 11: 5: 3063: 3061: 3053: 3052: 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3007: 3006: 3003: 3002: 2997: 2990: 2989:External links 2987: 2984: 2983: 2932: 2875: 2865: 2848:sdplastics.com 2835: 2814: 2805: 2790: 2770: 2744: 2720: 2668: 2639:(3): 405–412. 2614: 2588: 2516: 2503:britannica.com 2489: 2460:(6): Table 1. 2433: 2397: 2332: 2276: 2230: 2202: 2170: 2114: 2062: 2002: 1953: 1910: 1851: 1795: 1770: 1759:(2): 227–235. 1742: 1711: 1682: 1652: 1617: 1602: 1532: 1472: 1471: 1469: 1466: 1465: 1464: 1459: 1454: 1449: 1444: 1439: 1432: 1429: 1428: 1427: 1424: 1411: 1410: 1406: 1402: 1390: 1387: 1365: 1362: 1304: 1301: 1272: 1269: 1268: 1267: 1208: 1207: 1196: 1149:Plantaginaceae 1132: 1094: 1065:of the common 1021: 1020: 1019: 999: 932:Pinus contorta 865: 846:diurnal rhythm 795:Aizoaceae spp. 785: 782: 781: 780: 719: 718: 699:parotoid gland 691: 674: 657: 648: 632:Air plants, a 629: 628: 621: 614: 612: 605: 598: 596: 589: 582: 580: 573: 566: 562: 559: 523: 520: 420: 417: 350:. Not only is 266: 263: 261: 260: 257: 254: 251: 248: 245: 241: 211: 208: 98: 95: 87:seed dispersal 26: 24: 18:Hygroscopicity 14: 13: 10: 9: 6: 4: 3: 2: 3062: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3015:Acrochordidae 3013: 3012: 3010: 3001: 2998: 2996: 2993: 2992: 2988: 2972: 2968: 2964: 2960: 2956: 2952: 2948: 2941: 2939: 2937: 2933: 2928: 2924: 2919: 2914: 2910: 2906: 2902: 2898: 2894: 2890: 2886: 2879: 2876: 2869: 2866: 2853: 2849: 2845: 2839: 2836: 2832: 2831:0-442-22777-9 2828: 2824: 2818: 2815: 2809: 2806: 2801: 2797: 2793: 2787: 2783: 2782: 2774: 2771: 2758: 2754: 2748: 2745: 2742: 2739: 2735: 2732: 2731: 2724: 2721: 2716: 2712: 2707: 2702: 2698: 2694: 2690: 2686: 2682: 2675: 2673: 2669: 2664: 2660: 2655: 2650: 2646: 2642: 2638: 2634: 2630: 2623: 2621: 2619: 2615: 2603: 2599: 2592: 2589: 2584: 2580: 2575: 2570: 2565: 2560: 2556: 2552: 2548: 2544: 2540: 2536: 2532: 2525: 2523: 2521: 2517: 2504: 2500: 2493: 2490: 2485: 2481: 2476: 2471: 2467: 2463: 2459: 2455: 2451: 2444: 2442: 2440: 2438: 2434: 2428: 2423: 2419: 2415: 2411: 2404: 2402: 2398: 2386: 2382: 2377: 2372: 2368: 2364: 2360: 2356: 2352: 2345: 2343: 2341: 2339: 2337: 2333: 2328: 2324: 2319: 2314: 2310: 2306: 2302: 2298: 2294: 2287: 2285: 2283: 2281: 2277: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2234: 2231: 2215: 2214: 2206: 2203: 2190: 2189:asknature.org 2186: 2179: 2177: 2175: 2171: 2166: 2162: 2158: 2154: 2149: 2144: 2140: 2136: 2132: 2125: 2123: 2121: 2119: 2115: 2110: 2106: 2102: 2098: 2093: 2088: 2084: 2080: 2076: 2069: 2067: 2063: 2058: 2054: 2049: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2009: 2007: 2003: 1998: 1994: 1990: 1986: 1981: 1976: 1972: 1968: 1964: 1957: 1954: 1949: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1920:Plant Science 1914: 1911: 1899: 1895: 1890: 1885: 1881: 1877: 1873: 1869: 1865: 1858: 1856: 1852: 1847: 1843: 1838: 1833: 1829: 1825: 1821: 1817: 1813: 1806: 1804: 1802: 1800: 1796: 1783: 1782: 1774: 1771: 1766: 1762: 1758: 1754: 1746: 1743: 1730: 1726: 1722: 1715: 1712: 1709: 1705: 1701: 1697: 1696: 1691: 1686: 1683: 1670: 1666: 1662: 1656: 1653: 1637: 1636: 1628: 1626: 1624: 1622: 1618: 1613: 1606: 1603: 1598: 1594: 1589: 1584: 1580: 1576: 1572: 1568: 1564: 1557: 1555: 1553: 1551: 1549: 1547: 1545: 1543: 1541: 1539: 1537: 1533: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1493: 1489: 1482: 1480: 1478: 1474: 1467: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1434: 1430: 1425: 1421: 1420: 1419: 1415: 1407: 1400: 1396: 1395: 1394: 1388: 1386: 1384: 1380: 1376: 1371: 1363: 1361: 1359: 1355: 1351: 1349: 1345: 1340: 1338: 1334: 1330: 1326: 1322: 1318: 1317:polycarbonate 1314: 1310: 1302: 1300: 1298: 1293: 1289: 1282: 1277: 1270: 1265: 1264: 1259: 1255: 1254: 1253: 1251: 1247: 1243: 1242: 1241:Triticum spp. 1238:) and wheat ( 1237: 1236: 1231: 1227: 1223: 1222: 1217: 1213: 1205: 1201: 1197: 1192: 1191: 1185: 1178: 1177: 1171: 1166: 1162: 1161: 1155: 1151: 1150: 1145: 1141: 1139: 1133: 1128: 1124: 1123: 1118: 1113: 1109: 1105: 1101: 1100: 1095: 1090: 1089: 1085:Orchid tree ( 1083: 1078: 1077: 1071: 1068: 1064: 1060: 1059: 1054: 1053: 1049: 1045: 1041: 1036: 1032: 1028: 1027: 1022: 1015: 1011: 1006: 1005: 1004:pinaceae spp. 1000: 996: 991: 987: 986: 982:, typical of 981: 980: 976: 975: 971: 967: 962: 958: 954: 950: 946: 942: 938: 934: 933: 928: 927: 922: 921: 916: 915: 910: 909: 904: 902: 898: 894: 889: 885: 883: 879: 874: 870: 866: 863: 859: 855: 851: 847: 843: 839: 838: 832: 831: 826: 825: 820: 816: 815: 811: 806: 802: 800: 799:Triticum spp. 796: 792: 783: 778: 773: 772: 767: 763: 759: 755: 754:legume family 751: 750: 745: 744: 739: 738: 733: 732: 728: 723: 714: 709: 704: 700: 696: 692: 689: 685: 681: 680: 675: 672: 668: 667: 662: 658: 655: 654: 649: 646: 641: 638:species, are 637: 636: 631: 630: 625: 618: 613: 609: 602: 597: 593: 592:A. granulatus 586: 581: 577: 570: 565: 560: 558: 556: 555: 549: 545: 541: 537: 532: 530: 521: 519: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 469: 465: 464:zinc chloride 461: 457: 453: 449: 445: 441: 437: 433: 426: 419:Deliquescence 418: 416: 414: 409: 407: 402: 398: 392: 390: 385: 383: 379: 374: 372: 371:cloud seeding 368: 364: 361: 356: 353: 352:sulfuric acid 349: 348:deliquescence 345: 341: 337: 334:, as well as 333: 329: 328:Zinc chloride 325: 323: 318: 316: 312: 311:sulfuric acid 308: 304: 300: 296: 292: 288: 284: 280: 271: 264: 258: 255: 252: 249: 246: 243: 242: 240: 238: 234: 230: 228: 223: 219: 217: 209: 207: 205: 201: 197: 193: 189: 185: 181: 177: 172: 168: 164: 163: 158: 157: 152: 146: 104: 96: 94: 92: 88: 83: 81: 77: 73: 70: 66: 65:boiling point 62: 58: 54: 50: 47: 43: 37: 33: 19: 2974:. Retrieved 2954: 2950: 2892: 2888: 2878: 2868: 2856:. Retrieved 2847: 2838: 2822: 2817: 2808: 2780: 2773: 2761:. Retrieved 2756: 2747: 2729: 2723: 2688: 2684: 2636: 2632: 2605:. Retrieved 2601: 2591: 2538: 2534: 2507:. Retrieved 2502: 2492: 2457: 2453: 2417: 2413: 2388:. Retrieved 2358: 2354: 2300: 2296: 2267:. Retrieved 2247: 2243: 2233: 2221:. Retrieved 2212: 2205: 2193:. Retrieved 2188: 2138: 2134: 2082: 2078: 2022: 2018: 1970: 1966: 1956: 1923: 1919: 1913: 1901:. Retrieved 1874:(5): i–iii. 1871: 1867: 1819: 1815: 1786:. Retrieved 1780: 1773: 1756: 1752: 1745: 1733:. Retrieved 1728: 1724: 1714: 1693: 1685: 1673:. Retrieved 1664: 1655: 1643:. Retrieved 1634: 1611: 1605: 1570: 1566: 1523:. Retrieved 1495: 1491: 1447:Efflorescent 1416: 1412: 1392: 1367: 1354:Type-6 nylon 1352: 1344:polyethylene 1341: 1336: 1332: 1306: 1294: 1290: 1286: 1261: 1250:Hesperostipa 1249: 1245: 1239: 1233: 1229: 1225: 1219: 1215: 1212:angiospermae 1211: 1209: 1188: 1174: 1158: 1147: 1136: 1126: 1120: 1104:sclerenchyma 1097: 1086: 1074: 1056: 1038: 1034: 1024: 1013: 1002: 995:Banksia spp. 994: 985:Banksia spp. 983: 977: 969: 940: 936: 930: 924: 920:Cupressaceae 918: 912: 906: 891: 876: 835: 828: 822: 809: 798: 794: 790: 787: 769: 765: 747: 741: 735: 726: 712: 695:Anaxyrus sp. 694: 687: 677: 664: 651: 633: 623: 607: 591: 575: 553: 539: 533: 525: 454:, including 429: 410: 393: 386: 375: 357: 326: 319: 276: 236: 231: 226: 220: 215: 213: 203: 199: 191: 187: 179: 175: 170: 166: 160: 154: 102: 100: 84: 76:Deliquescent 75: 74: 41: 40: 3020:Biomimetics 2509:22 February 2390:12 February 2269:11 February 2195:10 February 1926:: 124–133. 1903:23 February 1788:22 February 1700:hydrophilic 1379:brown sugar 1348:polystyrene 1216:Geraniaceae 1122:Ruschia sp. 1091:) seed pods 957:gymnosperms 953:angiosperms 768:), another 574:Air plant ( 544:Ludwig Jost 516:drying tube 401:hygrometers 367:cloud seeds 360:atmospheric 322:hydrophilic 188:hygroscopic 176:hygroscopic 91:biomimetics 61:environment 51:via either 3050:Tillandsia 3009:Categories 2800:1077290174 2420:(3): 666. 2223:4 February 1735:29 January 1667:. IBERGY. 1645:5 February 1525:26 January 1468:References 1462:Hydrophobe 1457:Hydrophile 1399:biomimicry 1258:Ballochory 1204:herpochory 1193:) seedbuds 1144:dehiscence 1108:dehiscence 1026:Asteraceae 949:granivores 937:Eucalyptus 914:Pinus spp. 888:Proteaceae 878:Eucalyptus 869:serotinous 791:Pinus spp. 777:imbibition 682:) and the 635:Tillandsia 529:integument 504:desiccants 472:carnallite 444:atmosphere 382:humectants 233:Léo Errera 196:hygrometer 192:hygroscopy 180:hygroscope 171:hygroscope 103:hygroscopy 57:adsorption 53:absorption 42:Hygroscopy 36:hygrometer 32:Hydroscope 2971:256593092 1520:225188835 1358:polyamide 1333:plexiglas 1321:cellulose 1138:Aizoaceae 1127:Aizoaceae 1067:dandelion 1058:Taraxacum 1044:Leontodon 901:Xylomelum 882:Melaleuca 873:Myrtaceae 837:Taraxacum 819:capitulum 725:Saguaro ( 711:Seeds of 640:epiphytes 442:from the 279:cellulose 101:The word 69:viscosity 49:molecules 2976:18 March 2927:35589809 2858:April 7, 2852:Archived 2734:Archived 2715:21654637 2663:20587583 2583:35523798 2484:33629369 2385:28334385 2327:31662070 2264:42907240 2165:46893569 2157:29789349 2109:46893569 2101:29789349 2057:29789602 1997:22725331 1989:27807218 1948:24767122 1898:35211726 1846:19570796 1675:April 7, 1669:Archived 1597:33629369 1512:33448559 1431:See also 1389:Research 1383:molasses 1303:Polymers 1154:Veronica 1112:endocarp 1040:Erigeron 990:follicle 908:Pinaceae 771:eudicots 671:hydrogel 508:sulfuric 500:affinity 440:moisture 432:affinity 363:moisture 307:methanol 295:glycerol 265:Overview 2918:9120194 2897:Bibcode 2844:"NYLON" 2833:, p.547 2763:5 March 2693:Bibcode 2654:2924830 2607:1 March 2574:9076835 2543:Bibcode 2475:8252473 2376:5604587 2318:6833318 2303:(159). 2048:5964112 2027:Bibcode 1928:Bibcode 1889:9007092 1837:2838359 1588:8252473 1337:perspex 1331:(PMMA, 1246:Erodium 1230:Poaceae 1052:Sonchus 1048:Senecio 1037:genera 941:Banksia 897:Banksia 862:abaxial 844:have a 762:saguaro 740:) and ( 522:Biology 299:ethanol 287:caramel 210:History 149:) uses 2969:  2925:  2915:  2829:  2798:  2788:  2713:  2661:  2651:  2581:  2571:  2482:  2472:  2383:  2373:  2325:  2315:  2262:  2163:  2155:  2141:(10). 2107:  2099:  2055:  2045:  1995:  1987:  1946:  1896:  1886:  1844:  1834:  1595:  1585:  1518:  1510:  1381:, and 1370:baking 1327:, and 1248:, and 1070:achene 1063:pappus 939:, and 911:(e.g. 899:spp., 895:spp., 890:(e.g. 886:) and 875:(e.g. 848:. The 494:, and 204:-meter 200:hygro- 167:-scopy 162:-scopy 156:hygro- 2967:S2CID 2873:1895. 2260:JSTOR 2217:(PDF) 2161:S2CID 2105:S2CID 1993:S2CID 1690:IUPAC 1639:(PDF) 1516:S2CID 1375:honey 1309:nylon 1297:nylon 1165:septa 893:Hakea 850:whorl 452:salts 436:water 344:salts 315:salts 291:honey 283:sugar 184:usage 46:water 2978:2023 2923:PMID 2860:2017 2827:ISBN 2796:OCLC 2786:ISBN 2765:2023 2711:PMID 2659:PMID 2609:2023 2579:PMID 2511:2023 2480:PMID 2392:2023 2381:PMID 2323:PMID 2271:2023 2225:2023 2197:2023 2153:PMID 2097:PMID 2053:PMID 1985:PMID 1944:PMID 1905:2023 1894:PMID 1842:PMID 1790:2023 1737:2023 1731:(22) 1677:2017 1647:2023 1593:PMID 1527:2023 1508:PMID 1346:and 1210:Two 1140:spp. 1055:and 955:and 903:spp. 884:spp. 827:and 546:and 510:and 434:for 338:and 330:and 303:wood 2959:doi 2955:369 2913:PMC 2905:doi 2701:doi 2649:PMC 2641:doi 2637:106 2569:PMC 2559:hdl 2551:doi 2470:PMC 2462:doi 2458:230 2422:doi 2371:PMC 2363:doi 2359:119 2313:PMC 2305:doi 2252:doi 2143:doi 2139:221 2087:doi 2083:221 2043:PMC 2035:doi 1975:doi 1971:219 1936:doi 1924:223 1884:PMC 1876:doi 1872:129 1832:PMC 1824:doi 1761:doi 1757:152 1704:doi 1702:". 1583:PMC 1575:doi 1571:230 1500:doi 1356:(a 1339:). 1313:ABS 1228:); 935:), 518:). 206:). 153:of 55:or 3011:: 2965:. 2953:. 2949:. 2935:^ 2921:. 2911:. 2903:. 2893:13 2891:. 2887:. 2846:. 2794:. 2755:. 2709:. 2699:. 2687:. 2683:. 2671:^ 2657:. 2647:. 2635:. 2631:. 2617:^ 2600:. 2577:. 2567:. 2557:. 2549:. 2539:13 2537:. 2533:. 2519:^ 2501:. 2478:. 2468:. 2456:. 2452:. 2436:^ 2418:72 2416:. 2412:. 2400:^ 2379:. 2369:. 2357:. 2353:. 2335:^ 2321:. 2311:. 2301:16 2299:. 2295:. 2279:^ 2258:. 2248:18 2246:. 2242:. 2187:. 2173:^ 2159:. 2151:. 2137:. 2133:. 2117:^ 2103:. 2095:. 2081:. 2077:. 2065:^ 2051:. 2041:. 2033:. 2021:. 2017:. 2005:^ 1991:. 1983:. 1969:. 1965:. 1942:. 1934:. 1922:. 1892:. 1882:. 1870:. 1866:. 1854:^ 1840:. 1830:. 1818:. 1814:. 1798:^ 1755:. 1729:94 1727:. 1723:. 1692:, 1663:. 1620:^ 1591:. 1581:. 1569:. 1565:. 1535:^ 1514:. 1506:. 1496:59 1494:. 1490:. 1476:^ 1377:, 1335:, 1323:, 1319:, 1315:, 1311:, 1252:. 1050:, 1046:, 1042:, 1035:A. 531:. 490:, 486:, 482:, 478:, 474:, 470:, 466:, 462:, 458:, 384:. 324:. 309:, 305:, 301:, 297:, 293:, 289:, 285:, 202:+ 115:aɪ 93:. 82:. 67:, 2980:. 2961:: 2929:. 2907:: 2899:: 2862:. 2802:. 2767:. 2717:. 2703:: 2695:: 2689:2 2665:. 2643:: 2611:. 2585:. 2561:: 2553:: 2545:: 2513:. 2486:. 2464:: 2430:. 2424:: 2394:. 2365:: 2329:. 2307:: 2273:. 2254:: 2227:. 2199:. 2167:. 2145:: 2111:. 2089:: 2059:. 2037:: 2029:: 2023:9 1999:. 1977:: 1950:. 1938:: 1930:: 1907:. 1878:: 1848:. 1826:: 1820:6 1792:. 1767:. 1763:: 1739:. 1706:: 1679:. 1649:. 1599:. 1577:: 1529:. 1502:: 1403:2 1125:( 779:. 764:( 686:( 626:) 578:) 427:. 198:( 145:/ 142:i 139:p 136:ə 133:k 130:s 127:ɒ 124:r 121:ɡ 118:ˈ 112:h 109:/ 105:( 38:. 20:)

Index

Hygroscopicity
Hydroscope
hygrometer
water
molecules
absorption
adsorption
environment
boiling point
viscosity
aqueous solution
seed dispersal
biomimetics
/hˈɡrɒskəpi/
combining forms
hygro-
-scopy
usage
hygrometer
Marcellin Berthelot
Léo Errera

cellulose
sugar
caramel
honey
glycerol
ethanol
wood
methanol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.