Knowledge (XXG)

Hyperbolic 3-manifold

Source 📝

180:) onto which it retracts, and whose thick part is compact (note that all manifolds have a convex core, but in general it is not compact). The simplest case is when the manifold does not have "cusps" (i.e. the fundamental group does not contain parabolic elements), in which case the manifold is geometrically finite if and only if it is the quotient of a closed, convex subset of hyperbolic space by a group acting cocompactly on this subset. 369:(i.e. vertices which lie on the sphere at infinity). In this setting the gluing construction does not always yield a complete manifold. Completeness is detected by a system of equations involving the dihedral angles around the edges adjacent to an ideal vertex, which are commonly called Thurston's gluing equations. In case the gluing is complete the ideal vertices become 95:). After the proof of the Geometrisation conjecture, understanding the topological properties of hyperbolic 3-manifolds is thus a major goal of 3-dimensional topology. Recent breakthroughs of Kahn–Markovic, Wise, Agol and others have answered most long-standing open questions on the topic but there are still many less prominent ones which have not been solved. 221:. Suppose that there is a side-pairing between the 2-dimensional faces of these polyhedra (i.e. each such face is paired with another, distinct, one so that they are isometric to each other as 2-dimensional hyperbolic polygons), and consider the space obtained by gluing the paired faces together (formally this is obtained as a 488:
properties of hyperbolic 3-manifolds are the objects of a series of conjectures by Waldhausen and Thurston, which were recently all proven by Ian Agol following work of Jeremy Kahn, Vlad Markovic, Frédéric Haglund, Dani Wise and others. The first part of the conjectures were logically related to the
423:
In contrast to the explicit constructions above it is possible to deduce the existence of a complete hyperbolic structure on a 3-manifold purely from topological information. This is a consequence of the Geometrisation conjecture and can be stated as follows (a statement sometimes referred to as the
384:
It is also possible to construct a finite-volume, complete hyperbolic manifold when the gluing is not complete. In this case the completion of the metric space obtained is a manifold with a torus boundary and under some (not generic) conditions it is possible to glue a hyperbolic solid torus on each
98:
In dimension 2 almost all closed surfaces are hyperbolic (all but the sphere, projective plane, torus and Klein bottle). In dimension 3 this is far from true: there are many ways to construct infinitely many non-hyperbolic closed manifolds. On the other hand, the heuristic statement that "a generic
487:
The topological properties of 3-manifolds are sufficiently intricate that in many cases it is interesting to know that a property holds virtually for a class of manifolds, that is for any manifold in the class there exists a finite covering space of the manifold with the property. The virtual
681:, so that the isolated points are volumes of compact manifolds, the manifolds with exactly one cusp are limits of compact manifolds, and so on. Together with results of Jørgensen the theorem also proves that any convergent sequence must be obtained by Dehn surgeries on the limit manifold. 347:, which is a discrete subgroup of isometries of hyperbolic space. Taking a torsion-free finite-index subgroup one obtains a hyperbolic manifold (which can be recovered by the previous construction, gluing copies of the original Coxeter polytope in a manner prescribed by an appropriate 90:
Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for
111:
theorem), and since all 3-manifolds are obtained as surgeries on a link in the 3-sphere this gives a more precise sense to the informal statement. Another sense in which "almost all" manifolds are hyperbolic in dimension 3 is that of random models. For example, random
478:
Another consequence of the Geometrisation conjecture is that any closed 3-manifold which admits a Riemannian metric with negative sectional curvatures admits in fact a Riemannian metric with constant sectional curvature -1. This is not true in higher dimensions.
414:
gives rise to particularly interesting hyperbolic manifolds. On the other hand, they are in some sense "rare" among hyperbolic 3-manifolds (for example hyperbolic Dehn surgery on a fixed manifold results in a non-arithmetic manifold for almost all parameters).
385:
boundary component so that the resulting space has a complete hyperbolic metric. Topologically, the manifold is obtained by hyperbolic Dehn surgery on the complete hyperbolic manifold which would result from a complete gluing.
225:). It carries a hyperbolic metric which is well-defined outside of the image of the 1-skeletons of the polyhedra. This metric extends to a hyperbolic metric on the whole space if the two following conditions are satisfied: 511:) Any hyperbolic 3-manifold of finite volume is virtually Haken; that is, it contains an embedded closed surface such that the embedding induces an injective map between fundamental groups. 341: 123:, which states that the hyperbolic structure of a hyperbolic 3-manifold of finite volume is uniquely determined by its homotopy type. In particular, geometric invariants such as the 575:
The hyperbolic volume can be used to order the space of all hyperbolic manifold. The set of manifolds corresponding to a given volume is at most finite, and the set of volumes is
607: 679: 217:
The oldest construction of hyperbolic manifolds, which dates back at least to Poincaré, goes as follows: start with a finite collection of 3-dimensional hyperbolic finite
461: 172:
The thick-thin decomposition is valid for all hyperbolic 3-manifolds, though in general the thin part is not as described above. A hyperbolic 3-manifold is said to be
1992: 388:
It is not known whether all hyperbolic 3-manifolds of finite volume can be constructed in this way. In practice however this is how computational software (such as
284: 254: 1183: 647: 627: 1987: 1085: 1274: 1298: 1493: 107:
is hyperbolic. Moreover, almost all Dehn surgeries on a hyperbolic knot yield a hyperbolic manifold. A similar result is true of links (Thurston's
883: 1363: 1062: 1589: 1010:
Petronio, Carlo; Porti, Joan (2000). "Negatively oriented ideal triangulations and a proof of Thurston's hyperbolic Dehn filling theorem".
365:
In the previous construction the manifolds obtained are always compact. To obtain manifolds with cusps one has to use polytopes which have
837: 463:-injectively immersed torus is homotopic to a boundary component) then its interior carries a complete hyperbolic metric of finite volume. 1642: 1170: 1926: 500:) The fundamental group of any hyperbolic manifold of finite volume contains a (non-free) surface group (the fundamental group of a 1691: 405: 1283: 1674: 188:
This is the larger class of hyperbolic 3-manifolds for which there is a satisfying structure theory. It rests on two theorems:
468: 533:
Another conjecture (also proven by Agol) which implies 1-3 above but a priori has no relation to 4 is the following :
301:
A variation on this construction is by using hyperbolic Coxeter polytopes (polytopes whose dihedral angles are of the form
2050: 1886: 2040: 1871: 1594: 1368: 538: 429: 471:: such manifolds are always irreducible, and they carry a complete hyperbolic metric if and only if the monodromy is a 1916: 497: 203:
which provides a classification of hyperbolic structure on the interior of a compact manifold by its "end invariants".
1921: 1891: 1599: 1555: 1536: 1303: 1247: 508: 489: 521:
Any hyperbolic 3-manifold of finite volume has a finite cover whose fundamental group surjects onto a non-abelian
1458: 1323: 222: 200: 75: 2045: 1843: 1708: 1400: 1242: 141: 304: 291: 99:
3-manifold tends to be hyperbolic" is verified in many contexts. For example, any knot which is not either a
1540: 1510: 1434: 1424: 1380: 1210: 1163: 564: 360: 120: 108: 1308: 373:
in the manifold. An example of a noncompact, finite volume hyperbolic manifold obtained in this way is the
116:
of genus at least 2 are almost surely hyperbolic (when the complexity of the gluing map goes to infinity).
1881: 1500: 1395: 1215: 541:) Any hyperbolic 3-manifold of finite volume has a finite cover which is a surface bundle over the circle. 79: 1530: 1525: 28: 585: 196:
which states that such a manifold is homeomorphic to the interior of a compact manifold with boundary;
2035: 1861: 1799: 1647: 1351: 1341: 1313: 1288: 1198: 1029: 916: 694: 690: 348: 173: 1999: 1972: 1681: 1559: 1544: 1473: 1232: 899: 92: 48: 652: 1941: 1896: 1793: 1664: 1468: 1293: 1156: 1019: 971: 953: 932: 424:"hyperbolisation theorem", which was proven by Thurston in the special case of Haken manifolds): 411: 374: 370: 160: 113: 1478: 563:. For the manifolds obtained as quotients this amounts to them being convergent in the pointed 1876: 1856: 1851: 1758: 1669: 1483: 1463: 1318: 1257: 1120: 1058: 560: 472: 439: 144:. It states that a hyperbolic 3-manifold of finite volume has a decomposition into two parts: 124: 44: 40: 119:
The relevance of the hyperbolic geometry of a 3-manifold to its topology also comes from the
2014: 1808: 1763: 1686: 1657: 1515: 1448: 1443: 1438: 1428: 1220: 1203: 1110: 1094: 1080: 1050: 996: 963: 924: 860: 393: 344: 193: 56: 1132: 1072: 895: 874: 693:
surface groups of given genus can converge to a doubly degenerate surface group, as in the
266: 236: 1957: 1866: 1696: 1652: 1418: 1128: 1068: 1046: 907:
Gromov, Mikhail; Thurston, William (1987). "Pinching constants for hyperbolic manifolds".
891: 870: 609:. More precisely, Thurston's hyperbolic Dehn surgery theorem implies that a manifold with 1033: 920: 1823: 1748: 1718: 1616: 1609: 1549: 1520: 1390: 1385: 1346: 632: 612: 501: 260: 100: 64: 60: 52: 2029: 2009: 1833: 1828: 1813: 1803: 1753: 1730: 1604: 1564: 1505: 1453: 1252: 1001: 984: 936: 1115: 1098: 975: 1936: 1931: 1773: 1740: 1713: 1621: 1262: 576: 515: 514:
Any hyperbolic 3-manifold of finite volume has a finite cover with a nonzero first
366: 295: 865: 848: 1045:. Graduate Texts in Mathematics. Vol. 149 (2nd ed.). Berlin, New York: 1779: 1768: 1725: 1626: 1227: 378: 230: 140:
In this case one important tool to understand the geometry of a manifold is the
20: 78:
proved by Perelman. The study of Kleinian groups is also an important topic in
55:: in this case the manifold can be realised as a quotient of the 3-dimensional 2004: 1962: 1788: 1701: 1333: 1237: 1054: 580: 522: 104: 71: 1124: 1818: 1783: 1488: 1375: 967: 433: 1982: 1977: 1967: 1358: 1179: 890:. Lecture Notes in Mathematics. Vol. 842. Springer. pp. 40–53. 218: 36: 24: 70:
Hyperbolic 3-manifolds of finite volume have a particular importance in
1148: 928: 847:
Callahan, Patrick J.; Hildebrand, Martin V.; Weeks, Jeffrey R. (1999).
389: 152:
part, where the injectivity radius is larger than an absolute constant;
1099:"Three-dimensional manifolds, Kleinian groups and hyperbolic geometry" 1574: 1024: 51:
equal to −1. It is generally required that this metric be also
377:
which is constructed by gluing faces of a regular ideal hyperbolic
958: 1152: 836:
Aschenbrenner, Matthias; Friedl, Stefan; Wilton, Henry (2015).
842:. EMS Series of Lectures in Mathematics. European Math. Soc. 884:"Hyperbolic manifolds according to Thurston and Jørgensen" 808: 712: 229:
for each (non-ideal) vertex in the gluing the sum of the
16:
Manifold of dimension 3 equipped with a hyperbolic metric
294:
which is obtained by gluing opposite faces of a regular
784: 208:
Construction of hyperbolic 3-manifolds of finite volume
655: 635: 615: 588: 442: 307: 269: 239: 944:
Maher, Joseph (2010). "Random Heegaard splittings".
410:
The construction of arithmetic Kleinian groups from
1950: 1909: 1842: 1739: 1635: 1582: 1573: 1409: 1332: 1271: 1191: 355:
Gluing ideal tetrahedra and hyperbolic Dehn surgery
184:
Manifolds with finitely generated fundamental group
673: 641: 621: 601: 455: 335: 278: 248: 159:part, which is a disjoint union of solid tori and 127:can be used to define new topological invariants. 629:cusps is a limit of a sequence of manifolds with 263:of the polyhedra to which it belongs is equal to 233:of the polyhedra to which it belongs is equal to 428:If a compact 3-manifold with toric boundary is 426: 796: 290:A notable example of this construction is the 1164: 1103:Bulletin of the American Mathematical Society 772: 8: 1086:The geometry and topology of three-manifolds 555:A sequence of Kleinian groups is said to be 343:). Such a polytope gives rise to a Kleinian 849:"A census of cusped hyperbolic 3-manifolds" 259:for each edge in the gluing the sum of the 1579: 1171: 1157: 1149: 1114: 1023: 1000: 957: 864: 760: 748: 654: 634: 614: 593: 587: 447: 441: 329: 328: 311: 306: 268: 238: 176:if it contains a convex submanifold (its 724: 336:{\displaystyle \pi /m,m\in \mathbb {N} } 985:"Volumes of hyperbolic three-manifolds" 809:Aschenbrenner, Friedl & Wilton 2015 713:Aschenbrenner, Friedl & Wilton 2015 705: 546:The space of all hyperbolic 3-manifolds 213:Hyperbolic polyhedra, reflection groups 820: 983:Neumann, Walter; Zagier, Don (1985). 785:Callahan, Hildebrand & Weeks 1999 736: 7: 1142:3-dimensional geometry and topology 1043:Foundations of hyperbolic manifolds 492:. In order of strength they are: 14: 602:{\displaystyle \omega ^{\omega }} 888:Séminaire N. Bourbaki, 1979-1980 525:(such groups are usually called 406:Arithmetic hyperbolic 3-manifold 1116:10.1090/S0273-0979-1982-15003-0 571:Jørgensen–Thurston theory 467:A particular case is that of a 396:) stores hyperbolic manifolds. 39:of dimension 3 equipped with a 1211:Differentiable/Smooth manifold 469:surface bundle over the circle 168:Geometrically finite manifolds 1: 1144:. Princeton University Press. 866:10.1090/s0025-5718-99-01036-4 763:, Theorems 10.1.2 and 10.1.3. 1041:Ratcliffe, John G. (2006) . 1002:10.1016/0040-9383(85)90004-7 674:{\displaystyle 0\leq l<m} 539:virtually fibered conjecture 1917:Classification of manifolds 498:surface subgroup conjecture 419:The hyperbolisation theorem 74:as follows from Thurston's 2067: 1140:Thurston, William (1997). 1089:. Princeton lecture notes. 797:Gromov & Thurston 1987 509:Virtually Haken conjecture 490:virtually Haken conjecture 403: 358: 136:Manifolds of finite volume 1993:over commutative algebras 1055:10.1007/978-0-387-47322-2 773:Petronio & Porti 2000 201:ending lamination theorem 76:geometrisation conjecture 1709:Riemann curvature tensor 909:Inventiones Mathematicae 882:Gromov, Michael (1981). 557:geometrically convergent 456:{\displaystyle \pi _{1}} 400:Arithmetic constructions 155:and its complement, the 142:thick-thin decomposition 565:Gromov-Hausdorff metric 559:if it converges in the 434:algebraically atoroidal 361:Hyperbolic Dehn surgery 121:Mostow rigidity theorem 109:hyperbolic Dehn surgery 1501:Manifold with boundary 1216:Differential structure 675: 643: 623: 603: 465: 457: 337: 280: 250: 86:Importance in topology 80:geometric group theory 72:3-dimensional topology 968:10.1112/jtopol/jtq031 685:Quasi-Fuchsian groups 676: 644: 624: 604: 551:Geometric convergence 458: 338: 281: 279:{\displaystyle 2\pi } 251: 249:{\displaystyle 4\pi } 33:hyperbolic 3-manifold 29:differential geometry 2051:Riemannian manifolds 1648:Covariant derivative 1199:Topological manifold 695:double limit theorem 653: 633: 613: 586: 440: 436:(meaning that every 349:Schreier coset graph 305: 267: 237: 174:geometrically finite 93:hyperbolic manifolds 49:sectional curvatures 23:, more precisely in 2041:Hyperbolic geometry 1682:Exterior derivative 1284:Atiyah–Singer index 1233:Riemannian manifold 1034:1999math......1045P 946:Journal of Topology 921:1987InMat..89....1G 412:quaternion algebras 292:Seifert–Weber space 114:Heegaard splittings 1988:Secondary calculus 1942:Singularity theory 1897:Parallel transport 1665:De Rham cohomology 1304:Generalized Stokes 929:10.1007/bf01404671 839:3-manifolds groups 671: 639: 619: 599: 483:Virtual properties 453: 375:Gieseking manifold 333: 276: 246: 47:which has all its 2023: 2022: 1905: 1904: 1670:Differential form 1324:Whitney embedding 1258:Differential form 1095:Thurston, William 1081:Thurston, William 1064:978-0-387-33197-3 751:, Theorem 12.7.2. 642:{\displaystyle l} 622:{\displaystyle m} 561:Chabauty topology 473:pseudo-Anosov map 63:of isometries (a 45:Riemannian metric 41:hyperbolic metric 2058: 2015:Stratified space 1973:Fréchet manifold 1687:Interior product 1580: 1277: 1173: 1166: 1159: 1150: 1145: 1136: 1118: 1090: 1076: 1037: 1027: 1006: 1004: 979: 961: 940: 903: 898:. Archived from 878: 868: 859:(225): 321–332. 843: 824: 818: 812: 806: 800: 794: 788: 782: 776: 770: 764: 758: 752: 746: 740: 734: 728: 727:, Corollary 2.5. 722: 716: 710: 680: 678: 677: 672: 648: 646: 645: 640: 628: 626: 625: 620: 608: 606: 605: 600: 598: 597: 462: 460: 459: 454: 452: 451: 345:reflection group 342: 340: 339: 334: 332: 315: 285: 283: 282: 277: 255: 253: 252: 247: 194:tameness theorem 57:hyperbolic space 2066: 2065: 2061: 2060: 2059: 2057: 2056: 2055: 2046:Kleinian groups 2026: 2025: 2024: 2019: 1958:Banach manifold 1951:Generalizations 1946: 1901: 1838: 1735: 1697:Ricci curvature 1653:Cotangent space 1631: 1569: 1411: 1405: 1364:Exponential map 1328: 1273: 1267: 1187: 1177: 1139: 1093: 1079: 1065: 1047:Springer-Verlag 1040: 1009: 982: 952:(4): 997–1025. 943: 906: 881: 846: 835: 832: 827: 819: 815: 807: 803: 795: 791: 783: 779: 771: 767: 759: 755: 747: 743: 735: 731: 723: 719: 711: 707: 703: 687: 651: 650: 631: 630: 611: 610: 589: 584: 583: 573: 553: 548: 485: 443: 438: 437: 421: 408: 402: 363: 357: 303: 302: 265: 264: 261:dihedral angles 235: 234: 215: 210: 186: 170: 138: 133: 88: 17: 12: 11: 5: 2064: 2062: 2054: 2053: 2048: 2043: 2038: 2028: 2027: 2021: 2020: 2018: 2017: 2012: 2007: 2002: 1997: 1996: 1995: 1985: 1980: 1975: 1970: 1965: 1960: 1954: 1952: 1948: 1947: 1945: 1944: 1939: 1934: 1929: 1924: 1919: 1913: 1911: 1907: 1906: 1903: 1902: 1900: 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1859: 1854: 1848: 1846: 1840: 1839: 1837: 1836: 1831: 1826: 1821: 1816: 1811: 1806: 1796: 1791: 1786: 1776: 1771: 1766: 1761: 1756: 1751: 1745: 1743: 1737: 1736: 1734: 1733: 1728: 1723: 1722: 1721: 1711: 1706: 1705: 1704: 1694: 1689: 1684: 1679: 1678: 1677: 1667: 1662: 1661: 1660: 1650: 1645: 1639: 1637: 1633: 1632: 1630: 1629: 1624: 1619: 1614: 1613: 1612: 1602: 1597: 1592: 1586: 1584: 1577: 1571: 1570: 1568: 1567: 1562: 1552: 1547: 1533: 1528: 1523: 1518: 1513: 1511:Parallelizable 1508: 1503: 1498: 1497: 1496: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1431: 1421: 1415: 1413: 1407: 1406: 1404: 1403: 1398: 1393: 1391:Lie derivative 1388: 1386:Integral curve 1383: 1378: 1373: 1372: 1371: 1361: 1356: 1355: 1354: 1347:Diffeomorphism 1344: 1338: 1336: 1330: 1329: 1327: 1326: 1321: 1316: 1311: 1306: 1301: 1296: 1291: 1286: 1280: 1278: 1269: 1268: 1266: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1224: 1223: 1218: 1208: 1207: 1206: 1195: 1193: 1192:Basic concepts 1189: 1188: 1178: 1176: 1175: 1168: 1161: 1153: 1147: 1146: 1137: 1109:(3): 357–381. 1105:. New Series. 1091: 1077: 1063: 1038: 1007: 995:(3): 307–332. 980: 941: 904: 902:on 2016-01-10. 879: 844: 831: 828: 826: 825: 813: 801: 789: 777: 765: 761:Ratcliffe 2006 753: 749:Ratcliffe 2006 741: 729: 717: 704: 702: 699: 691:quasi-fuchsian 686: 683: 670: 667: 664: 661: 658: 649:cusps for any 638: 618: 596: 592: 572: 569: 552: 549: 547: 544: 543: 542: 531: 530: 519: 512: 505: 502:closed surface 484: 481: 450: 446: 420: 417: 404:Main article: 401: 398: 367:ideal vertices 359:Main article: 356: 353: 331: 327: 324: 321: 318: 314: 310: 288: 287: 275: 272: 257: 245: 242: 223:quotient space 214: 211: 209: 206: 205: 204: 197: 185: 182: 169: 166: 165: 164: 153: 137: 134: 132: 129: 101:satellite knot 87: 84: 65:Kleinian group 61:discrete group 15: 13: 10: 9: 6: 4: 3: 2: 2063: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2033: 2031: 2016: 2013: 2011: 2010:Supermanifold 2008: 2006: 2003: 2001: 1998: 1994: 1991: 1990: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1955: 1953: 1949: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1914: 1912: 1908: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1849: 1847: 1845: 1841: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1801: 1797: 1795: 1792: 1790: 1787: 1785: 1781: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1746: 1744: 1742: 1738: 1732: 1731:Wedge product 1729: 1727: 1724: 1720: 1717: 1716: 1715: 1712: 1710: 1707: 1703: 1700: 1699: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1676: 1675:Vector-valued 1673: 1672: 1671: 1668: 1666: 1663: 1659: 1656: 1655: 1654: 1651: 1649: 1646: 1644: 1641: 1640: 1638: 1634: 1628: 1625: 1623: 1620: 1618: 1615: 1611: 1608: 1607: 1606: 1605:Tangent space 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1587: 1585: 1581: 1578: 1576: 1572: 1566: 1563: 1561: 1557: 1553: 1551: 1548: 1546: 1542: 1538: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1502: 1499: 1495: 1492: 1491: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1436: 1432: 1430: 1426: 1422: 1420: 1417: 1416: 1414: 1408: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1370: 1369:in Lie theory 1367: 1366: 1365: 1362: 1360: 1357: 1353: 1350: 1349: 1348: 1345: 1343: 1340: 1339: 1337: 1335: 1331: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1281: 1279: 1276: 1272:Main results 1270: 1264: 1261: 1259: 1256: 1254: 1253:Tangent space 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1222: 1219: 1217: 1214: 1213: 1212: 1209: 1205: 1202: 1201: 1200: 1197: 1196: 1194: 1190: 1185: 1181: 1174: 1169: 1167: 1162: 1160: 1155: 1154: 1151: 1143: 1138: 1134: 1130: 1126: 1122: 1117: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1087: 1082: 1078: 1074: 1070: 1066: 1060: 1056: 1052: 1048: 1044: 1039: 1035: 1031: 1026: 1021: 1017: 1013: 1008: 1003: 998: 994: 990: 986: 981: 977: 973: 969: 965: 960: 955: 951: 947: 942: 938: 934: 930: 926: 922: 918: 914: 910: 905: 901: 897: 893: 889: 885: 880: 876: 872: 867: 862: 858: 854: 850: 845: 841: 840: 834: 833: 829: 822: 817: 814: 810: 805: 802: 798: 793: 790: 786: 781: 778: 774: 769: 766: 762: 757: 754: 750: 745: 742: 738: 733: 730: 726: 725:Thurston 1982 721: 718: 714: 709: 706: 700: 698: 696: 692: 689:Sequences of 684: 682: 668: 665: 662: 659: 656: 636: 616: 594: 590: 582: 578: 570: 568: 566: 562: 558: 550: 545: 540: 536: 535: 534: 528: 524: 520: 517: 513: 510: 506: 503: 499: 495: 494: 493: 491: 482: 480: 476: 474: 470: 464: 448: 444: 435: 431: 425: 418: 416: 413: 407: 399: 397: 395: 391: 386: 382: 380: 376: 372: 368: 362: 354: 352: 350: 346: 325: 322: 319: 316: 312: 308: 299: 297: 293: 273: 270: 262: 258: 243: 240: 232: 228: 227: 226: 224: 220: 212: 207: 202: 198: 195: 191: 190: 189: 183: 181: 179: 175: 167: 162: 158: 154: 151: 147: 146: 145: 143: 135: 130: 128: 126: 122: 117: 115: 110: 106: 102: 96: 94: 85: 83: 81: 77: 73: 68: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 1937:Moving frame 1932:Morse theory 1922:Gauge theory 1714:Tensor field 1643:Closed/Exact 1622:Vector field 1590:Distribution 1531:Hypercomplex 1526:Quaternionic 1263:Vector field 1221:Smooth atlas 1141: 1106: 1102: 1084: 1042: 1025:math/9901045 1015: 1011: 992: 988: 949: 945: 912: 908: 900:the original 887: 856: 852: 838: 816: 804: 792: 780: 768: 756: 744: 732: 720: 715:, Chapter 7. 708: 688: 577:well-ordered 574: 556: 554: 532: 526: 516:Betti number 486: 477: 466: 427: 422: 409: 387: 383: 364: 300: 296:dodecahedron 289: 231:solid angles 216: 187: 177: 171: 156: 149: 139: 118: 97: 89: 69: 43:, that is a 32: 18: 2036:3-manifolds 1882:Levi-Civita 1872:Generalized 1844:Connections 1794:Lie algebra 1726:Volume form 1627:Vector flow 1600:Pushforward 1595:Lie bracket 1494:Lie algebra 1459:G-structure 1248:Pushforward 1228:Submanifold 821:Gromov 1981 430:irreducible 379:tetrahedron 178:convex core 21:mathematics 2030:Categories 2005:Stratifold 1963:Diffeology 1759:Associated 1560:Symplectic 1545:Riemannian 1474:Hyperbolic 1401:Submersion 1309:Hopf–Rinow 1243:Submersion 1238:Smooth map 1012:Expo. Math 853:Math. Comp 830:References 737:Maher 2010 581:order type 523:free group 381:together. 105:torus knot 1887:Principal 1862:Ehresmann 1819:Subbundle 1809:Principal 1784:Fibration 1764:Cotangent 1636:Covectors 1489:Lie group 1469:Hermitian 1412:manifolds 1381:Immersion 1376:Foliation 1314:Noether's 1299:Frobenius 1294:De Rham's 1289:Darboux's 1180:Manifolds 1125:0002-9904 959:0809.4881 937:119850633 660:≤ 595:ω 591:ω 445:π 326:∈ 309:π 274:π 244:π 219:polytopes 131:Structure 1983:Orbifold 1978:K-theory 1968:Diffiety 1692:Pullback 1506:Oriented 1484:Kenmotsu 1464:Hadamard 1410:Types of 1359:Geodesic 1184:Glossary 1097:(1982). 1083:(1980). 1018:: 1–35. 989:Topology 976:14179122 915:: 1–12. 537:5. (the 53:complete 37:manifold 25:topology 1927:History 1910:Related 1824:Tangent 1802:)  1782:)  1749:Adjoint 1741:Bundles 1719:density 1617:Torsion 1583:Vectors 1575:Tensors 1558:)  1543:)  1539:,  1537:Pseudo− 1516:Poisson 1449:Finsler 1444:Fibered 1439:Contact 1437:)  1429:Complex 1427:)  1396:Section 1133:0648524 1073:2249478 1030:Bibcode 917:Bibcode 896:0636516 875:1620219 579:and of 390:SnapPea 1892:Vector 1877:Koszul 1857:Cartan 1852:Affine 1834:Vector 1829:Tensor 1814:Spinor 1804:Normal 1800:Stable 1754:Affine 1658:bundle 1610:bundle 1556:Almost 1479:Kähler 1435:Almost 1425:Almost 1419:Closed 1319:Sard's 1275:(list) 1131:  1123:  1071:  1061:  974:  935:  894:  873:  394:Regina 125:volume 2000:Sheaf 1774:Fiber 1550:Rizza 1521:Prime 1352:Local 1342:Curve 1204:Atlas 1020:arXiv 972:S2CID 954:arXiv 933:S2CID 701:Notes 527:large 507:(the 496:(the 371:cusps 161:cusps 150:thick 103:or a 59:by a 35:is a 1867:Form 1769:Dual 1702:flow 1565:Tame 1541:Sub− 1454:Flat 1334:Maps 1121:ISSN 1059:ISBN 666:< 432:and 199:The 192:The 157:thin 148:the 31:, a 27:and 1789:Jet 1111:doi 1051:doi 997:doi 964:doi 925:doi 861:doi 392:or 351:). 67:). 19:In 2032:: 1780:Co 1129:MR 1127:. 1119:. 1101:. 1069:MR 1067:. 1057:. 1049:. 1028:. 1016:18 1014:. 993:24 991:. 987:. 970:. 962:. 948:. 931:. 923:. 913:89 911:. 892:MR 886:. 871:MR 869:. 857:68 855:. 851:. 697:. 567:. 529:). 504:). 475:. 298:. 82:. 1798:( 1778:( 1554:( 1535:( 1433:( 1423:( 1186:) 1182:( 1172:e 1165:t 1158:v 1135:. 1113:: 1107:6 1075:. 1053:: 1036:. 1032:: 1022:: 1005:. 999:: 978:. 966:: 956:: 950:3 939:. 927:: 919:: 877:. 863:: 823:. 811:. 799:. 787:. 775:. 739:. 669:m 663:l 657:0 637:l 617:m 518:. 449:1 330:N 323:m 320:, 317:m 313:/ 286:. 271:2 256:; 241:4 163:.

Index

mathematics
topology
differential geometry
manifold
hyperbolic metric
Riemannian metric
sectional curvatures
complete
hyperbolic space
discrete group
Kleinian group
3-dimensional topology
geometrisation conjecture
geometric group theory
hyperbolic manifolds
satellite knot
torus knot
hyperbolic Dehn surgery
Heegaard splittings
Mostow rigidity theorem
volume
thick-thin decomposition
cusps
geometrically finite
tameness theorem
ending lamination theorem
polytopes
quotient space
solid angles
dihedral angles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.