Knowledge (XXG)

Hyperfinite equivalence relation

Source 📝

940:-algebra of all subsets of the real line), the above shows us that unlike equivalence relations which admit transversals, many examples of group actions which appear naturally in ergodic theory give rise to hyperfinite orbit equivalence relations (in particular, whenever the underlying space is a standard Borel space and the group is countable and amenable). 263:). Therefore, it is natural to ask whether certain equivalence relations, which are not necessarily finite, can be approximated by finite equivalence relations. This turns out to be a notion which is both rich enough to encapsulate many natural equivalence relations appearing in mathematics, yet restrictive enough to allow deep theorems to develop. 286:
in general, and therefore it is not clear that this process generates Borel approximations. Indeed, there are countable Borel equivalence relations that are not hyperfinite, and so in particular the process described above will fail to generate Borel equivalence relations approximating the larger
818:
Under certain conditions, it is known that a countable increasing union of hyperfinite equivalence relations is hyperfinite. For example, if the union of the equivalence relations has a property known as "Borel-boundedness" (which roughly means that any Borel assignment of functions
510:
is equipped with the σ-algebra of all its subsets). Moreover, it turns out that any hyperfinite equivalence relation is equal to the orbit equivalence relation generated by some Borel action of the integers, making this an equivalent definition to hyperfiniteness that is often more
684:
being countable; the equivalence relation on the real line identifying every two points is Borel and can be reduced to any other Borel equivalence relation, and in particular to any hyperfinite Borel equivalence relation, but it has an uncountable class, so it cannot be
919:
that admits a Borel transversal is a finite equivalence relation on a subset of full measure (this is essentially Feldman-Moore, together with Vitali's argument in his classical proof of the non-existence of a nontrivial invariant measure on the
855:
to points on the space can be "eventually bounded" by such a Borel assignment which is constant on equivalence classes), then it is hyperfinite. However, it is unknown whether every such union satisfies this property.
383: 706:
on which it is hyperfinite. Explicitly, this means that one can remove a collection of equivalence classes which is meagre, and get that the equivalence relation is hyperfinite on the remaining space.
853: 203: 678: 879:, the theory is much better understood. For instance, if the equivalence relation is generated by a Borel action of a countable amenable group, the resulting orbit equivalence relation is " 504: 567: 433: 815:
Another open problem in the area is whether a countable increasing union of hyperfinite equivalence relations is hyperfinite. This is often referred to as the union problem.
775: 938: 741: 230: 915: 599: 457:
Any Borel action of the integers on a standard Borel space generates a hyperfinite orbit equivalence relation (recall that a Borel action of a countable group
259:, and in particular those which are countable. Among these, finite equivalence relations are considered to be the simplest (for instance, they admit Borel 807:
on a standard Borel space induces a hyperfinite orbit equivalence relation. While this is still an open problem, some partial results are known.
317: 1261: 883:-hyperfinite", meaning that it is hyperfinite on a subset of the space of full measure (it is worthwhile to note that the action need not be 450:
Any countable Borel equivalence relation that admits a Borel transversal is hyperfinite; this can be shown by a simple application of the
884: 1323: 1094:
Connes, Alain; Feldman, Joel; Weiss, Benjamin (1995), "An amenable equivalence relation is generated by a single transformation",
1125: 1318: 1166:
Dougherty, Randall; Jackson, Steve; Kechris, Alexander S. (1994), "The structure of hyperfinite Borel equivalence relations",
822: 278:
of every class into classes of size two, then joining two classes in the new equivalence relation which are within the same
282:-class to form a partition with classes of size four, and so forth. The key observation is that this process requires the 157: 604: 260: 962: 957: 693: 386: 256: 40: 778: 689: 713:
admits a Borel action on a standard Borel space which induces an equivalence relation that is not hyperfinite.
471: 888: 451: 124:
is an uncountable standard Borel space, the equivalence relation will be uncountable when considered as a
17: 777:
by the shift maps is not hyperfinite. This fact is often considered to be a combinatorial variant of the
1224:
Jackson, Steve; Kechris, Alexander S.; Louveau, Alain (2002), "Countable Borel equivalence relations",
540: 1270:
Marquis, Timothée; Sabok, Marcin (2020), "Hyperfiniteness of boundary actions of hyperbolic groups",
307: 296:
Any finite Borel equivalence relation is hyperfinite. Indeed, it is a finite approximation of itself.
33: 29: 869: 796: 271: 1196:
Gao, Su; Jackson, Steve (2007), "Countable abelian groups and hyperfinite equivalence relations",
1297: 1279: 1213: 1185: 1155: 1137: 1113: 1081: 407: 275: 944:
Similarly, a countable increasing union of hyperfinite equivalence relations on such a space is
746: 1257: 125: 98: 923: 1289: 1249: 1233: 1205: 1175: 1147: 1103: 1076:
Conley, Clinton; Jackson, Steve; Marks, Andrew; Seward, Brandon; Tucker-Drob, Robin (2020),
59: 719: 208: 900: 699:
The action of a finitely-generated hyperbolic group on its Gromov boundary is hyperfinite.
283: 804: 800: 710: 584: 1180: 1312: 1301: 1117: 515: 114: 1217: 1189: 1159: 466: 63: 70: 239:
Intuitively, this means that there is a sequence finite equivalence relations on
21: 1293: 299:
A subequivalence relation of a hyperfinite equivalence relation is hyperfinite.
1237: 1209: 1108: 703: 110: 397:
into finite Borel equivalence relations, thereby proving its hyperfiniteness.
274:
of finite equivalence relations. This can be done, for instance, by taking a
255:
A major area of research in descriptive set theory is the classification of
74: 1151: 795:
The above examples seem to indicate that Borel actions of "tame" countable
696:
on a standard Borel space induces a hyperfinite orbit equivalence relation.
518:
on a standard Borel space induces a hyperfinite orbit equivalence relation.
378:{\displaystyle F_{0}\subseteq F_{1}\subseteq F_{2}\subseteq ...\subseteq G} 876: 78: 39:
with countable classes, that can, in a certain sense, be approximated by
105:
with itself, when equipped with the product σ-algebra. We will say that
266:
It is also worthwhile to note that any countable equivalence relation
1126:"Cardinal characteristics and countable Borel equivalence relations" 680:). Note that the above does not hold if we remove the assumption of 525:
is a countable Borel equivalence relation on a standard Borel space
142:
be a countable Borel equivalence relation on a standard Borel space
1284: 1253: 1086: 232:
is an increasing sequence of finite Borel equivalence relations on
1142: 385:
into finite subgroups naturally gives rise to a filtration of the
1078:
Borel asymptotic dimension and hyperfinite equivalence relations
702:
Any countable Borel equivalence relation can be restricted to a
533:
is a hyperfinite equivalence relation on a standard borel space
1248:, Lecture Notes in Mathematics, vol. 1852, Springer, 1038: 310:
group acting Borel-measurably on a standard Borel space
1049: 435:
is hyperfinite and of finite index (meaning that every
848:{\displaystyle f:\mathbb {N} \rightarrow \mathbb {N} } 1005: 926: 903: 825: 749: 722: 607: 587: 543: 474: 410: 320: 211: 160: 891:). Since every countable Borel equivalence relation 601:
as above is a Borel reduction whenever it satisfies
1244:Kechris, Alexander S.; Miller, Benjamin D. (2004), 198:{\displaystyle E=\bigcup _{n\in \mathbb {N} }F_{n}} 983: 932: 909: 847: 769: 735: 673:{\displaystyle \forall x,y\in X,f(x)Ef(y)\iff xEy} 672: 593: 561: 498: 427: 377: 243:, each finer then its predecessors, approximating 224: 197: 1168:Transactions of the American Mathematical Society 895:on a standard non-atomic Borel probability space 803:conjectured that any Borel action of a countable 514:More generally, any Borel action of a countable 1060: 864:Under the assumption that the underlying space 120:The above names might be misleading, since if 1027: 109:is finite (respectively, countable) if E has 8: 1016: 979: 977: 58:be a standard Borel space, that is; it is a 994: 875:and that one is willing to remove sets of 799:induce hyperfinite equivalence relations. 660: 656: 1283: 1179: 1141: 1124:Coskey, Samuel; Schneider, Scott (2017), 1107: 1085: 925: 902: 841: 840: 833: 832: 824: 759: 754: 748: 727: 721: 606: 586: 542: 473: 409: 351: 338: 325: 319: 216: 210: 189: 179: 178: 171: 159: 499:{\displaystyle a:G\times X\rightarrow X} 404:is a countable equivalence relation and 973: 1050:Dougherty, Jackson & Kechris 1994 270:can be written down as an increasing 7: 1096:Ergodic Theory and Dynamical Systems 1006:Jackson, Kechris & Louveau 2002 608: 14: 1181:10.1090/S0002-9947-1994-1149121-0 984:Connes, Feldman & Weiss 1995 562:{\displaystyle f:X\rightarrow Y} 26:hyperfinite equivalence relation 743:on two generators on the space 837: 657: 653: 647: 638: 632: 553: 490: 439:-class contains finitely many 85:be an equivalence relation on 1: 1226:Journal of Mathematical Logic 716:The action of the free group 1130:Mathematical Logic Quarterly 581:is hyperfinite (recall that 62:which arises by equipping a 1246:Topics in orbit equivalence 1061:Coskey & Schneider 2017 428:{\displaystyle E'\subset E} 257:Borel equivalence relations 41:Borel equivalence relations 1340: 1294:10.1007/s00208-020-02001-9 963:Borel equivalence relation 958:Hyperfinite type II factor 790: 461:on a standard Borel space 387:orbit equivalence relation 43:that have finite classes. 1324:Equivalence (mathematics) 1238:10.1142/S0219061302000138 1210:10.1007/s00222-015-0603-y 1109:10.1017/S014338570000136X 1028:Kechris & Miller 2004 868:is equipped with a Borel 860:Measure-theoretic results 770:{\displaystyle 2^{F_{2}}} 291:Examples and non-examples 97:is a Borel subset of the 1198:Inventiones Mathematicae 1017:Marquis & Sabok 2020 889:quasi-measure preserving 690:finitely-generated group 569:is a Borel reduction of 933:{\displaystyle \sigma } 709:Any group which is not 1319:Descriptive set theory 1152:10.1002/malq.201400111 995:Gao & Jackson 2007 948:-hyperfinite as well. 934: 911: 849: 771: 737: 688:Any Borel action of a 674: 595: 563: 500: 465:is a Borel-measurable 429: 379: 287:equivalence relation. 226: 199: 128:of ordered pairs from 18:descriptive set theory 1272:Mathematische Annalen 935: 912: 850: 779:Banach–Tarski paradox 772: 738: 736:{\displaystyle F_{2}} 675: 596: 564: 501: 452:Feldman-Moore theorem 430: 380: 227: 225:{\displaystyle F_{n}} 200: 20:and related areas of 924: 910:{\displaystyle \mu } 901: 823: 747: 720: 605: 585: 541: 472: 408: 318: 314:. Then a filtration 209: 158: 77:(and forgetting the 34:equivalence relation 30:standard Borel space 870:probability measure 146:. We will say that 89:. We will say that 1039:Conley et al. 2020 930: 907: 885:measure-preserving 845: 791:Weiss's conjecture 767: 733: 670: 591: 559: 496: 425: 375: 247:arbitrarily well. 222: 195: 184: 1263:978-3-540-22603-1 811:The union problem 694:polynomial growth 594:{\displaystyle f} 389:of the action of 167: 99:cartesian product 1331: 1304: 1287: 1278:(4): 1129–1153, 1266: 1240: 1220: 1192: 1183: 1162: 1145: 1136:(3–4): 211–227, 1120: 1111: 1090: 1089: 1063: 1058: 1052: 1047: 1041: 1036: 1030: 1025: 1019: 1014: 1008: 1003: 997: 992: 986: 981: 939: 937: 936: 931: 916: 914: 913: 908: 854: 852: 851: 846: 844: 836: 776: 774: 773: 768: 766: 765: 764: 763: 742: 740: 739: 734: 732: 731: 679: 677: 676: 671: 600: 598: 597: 592: 568: 566: 565: 560: 505: 503: 502: 497: 443:-classes), then 434: 432: 431: 426: 418: 384: 382: 381: 376: 356: 355: 343: 342: 330: 329: 231: 229: 228: 223: 221: 220: 204: 202: 201: 196: 194: 193: 183: 182: 60:measurable space 1339: 1338: 1334: 1333: 1332: 1330: 1329: 1328: 1309: 1308: 1307: 1269: 1264: 1243: 1223: 1195: 1165: 1123: 1093: 1075: 1071: 1066: 1059: 1055: 1048: 1044: 1037: 1033: 1026: 1022: 1015: 1011: 1004: 1000: 993: 989: 982: 975: 971: 954: 943: 922: 921: 899: 898: 862: 821: 820: 813: 793: 788: 755: 750: 745: 744: 723: 718: 717: 603: 602: 583: 582: 539: 538: 470: 469: 447:is hyperfinite. 411: 406: 405: 347: 334: 321: 316: 315: 293: 284:axiom of choice 253: 212: 207: 206: 185: 156: 155: 113:(respectively, 49: 12: 11: 5: 1337: 1335: 1327: 1326: 1321: 1311: 1310: 1306: 1305: 1267: 1262: 1254:10.1007/b99421 1241: 1221: 1193: 1163: 1121: 1102:(4): 431–450, 1091: 1072: 1070: 1067: 1065: 1064: 1053: 1042: 1031: 1020: 1009: 998: 987: 972: 970: 967: 966: 965: 960: 953: 950: 929: 906: 861: 858: 843: 839: 835: 831: 828: 812: 809: 805:amenable group 792: 789: 787: 784: 783: 782: 762: 758: 753: 730: 726: 714: 707: 700: 697: 686: 669: 666: 663: 659: 655: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 590: 558: 555: 552: 549: 546: 519: 512: 495: 492: 489: 486: 483: 480: 477: 455: 448: 424: 421: 417: 414: 398: 374: 371: 368: 365: 362: 359: 354: 350: 346: 341: 337: 333: 328: 324: 308:locally finite 300: 297: 292: 289: 252: 249: 219: 215: 192: 188: 181: 177: 174: 170: 166: 163: 48: 45: 13: 10: 9: 6: 4: 3: 2: 1336: 1325: 1322: 1320: 1317: 1316: 1314: 1303: 1299: 1295: 1291: 1286: 1281: 1277: 1273: 1268: 1265: 1259: 1255: 1251: 1247: 1242: 1239: 1235: 1231: 1227: 1222: 1219: 1215: 1211: 1207: 1203: 1199: 1194: 1191: 1187: 1182: 1177: 1173: 1169: 1164: 1161: 1157: 1153: 1149: 1144: 1139: 1135: 1131: 1127: 1122: 1119: 1115: 1110: 1105: 1101: 1097: 1092: 1088: 1083: 1079: 1074: 1073: 1068: 1062: 1057: 1054: 1051: 1046: 1043: 1040: 1035: 1032: 1029: 1024: 1021: 1018: 1013: 1010: 1007: 1002: 999: 996: 991: 988: 985: 980: 978: 974: 968: 964: 961: 959: 956: 955: 951: 949: 947: 941: 927: 918: 904: 894: 890: 886: 882: 878: 874: 871: 867: 859: 857: 829: 826: 816: 810: 808: 806: 802: 798: 786:Open problems 785: 780: 760: 756: 751: 728: 724: 715: 712: 708: 705: 701: 698: 695: 691: 687: 683: 667: 664: 661: 650: 644: 641: 635: 629: 626: 623: 620: 617: 614: 611: 588: 580: 576: 572: 556: 550: 547: 544: 536: 532: 528: 524: 520: 517: 516:abelian group 513: 509: 493: 487: 484: 481: 478: 475: 468: 464: 460: 456: 453: 449: 446: 442: 438: 422: 419: 415: 412: 403: 399: 396: 392: 388: 372: 369: 366: 363: 360: 357: 352: 348: 344: 339: 335: 331: 326: 322: 313: 309: 305: 301: 298: 295: 294: 290: 288: 285: 281: 277: 273: 269: 264: 262: 258: 250: 248: 246: 242: 237: 235: 217: 213: 190: 186: 175: 172: 168: 164: 161: 153: 149: 145: 141: 137: 136:Definition 2. 133: 131: 127: 123: 118: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 75:Borel subsets 72: 68: 65: 61: 57: 53: 52:Definition 1. 46: 44: 42: 38: 35: 32:X is a Borel 31: 27: 23: 19: 1275: 1271: 1245: 1232:(1): 1–144, 1229: 1225: 1201: 1197: 1171: 1167: 1133: 1129: 1099: 1095: 1077: 1056: 1045: 1034: 1023: 1012: 1001: 990: 945: 942: 896: 892: 880: 877:measure zero 872: 865: 863: 817: 814: 794: 704:comeagre set 685:hyperfinite. 681: 578: 574: 570: 534: 530: 526: 522: 507: 462: 458: 444: 440: 436: 401: 394: 390: 311: 303: 279: 267: 265: 261:transversals 254: 244: 240: 238: 233: 151: 147: 143: 139: 135: 134: 129: 121: 119: 106: 102: 94: 93:is Borel if 90: 86: 82: 66: 64:Polish space 55: 51: 50: 36: 25: 15: 1174:: 193–225, 511:accessible. 152:hyperfinite 117:) classes. 47:Definitions 22:mathematics 1313:Categories 1285:1907.09928 1087:2009.06721 1069:References 887:, or even 251:Discussion 1302:198179841 1143:1103.2312 1118:119385336 928:σ 905:μ 838:→ 658:⟺ 621:∈ 609:∀ 554:→ 491:→ 485:× 420:⊂ 370:⊆ 358:⊆ 345:⊆ 332:⊆ 276:partition 176:∈ 169:⋃ 115:countable 71:σ-algebra 69:with its 1218:24460955 1190:29620563 1160:41429052 952:See also 711:amenable 506:, where 416:′ 302:Suppose 205:, where 79:topology 577:, then 81:). Let 1300:  1260:  1216:  1188:  1158:  1116:  797:groups 467:action 111:finite 1298:S2CID 1280:arXiv 1214:S2CID 1204:(1), 1186:S2CID 1156:S2CID 1138:arXiv 1114:S2CID 1082:arXiv 969:Notes 801:Weiss 692:with 306:is a 272:union 28:on a 1258:ISBN 537:and 138:Let 54:Let 24:, a 1290:doi 1276:377 1250:doi 1234:doi 1206:doi 1202:201 1176:doi 1172:341 1148:doi 1104:doi 897:(X, 573:to 521:If 400:If 393:on 154:if 150:is 126:set 101:of 73:of 16:In 1315:: 1296:, 1288:, 1274:, 1256:, 1228:, 1212:, 1200:, 1184:, 1170:, 1154:, 1146:, 1134:63 1132:, 1128:, 1112:, 1098:, 1080:, 976:^ 529:, 441:E' 236:. 132:. 1292:: 1282:: 1252:: 1236:: 1230:2 1208:: 1178:: 1150:: 1140:: 1106:: 1100:1 1084:: 946:μ 917:) 893:E 881:μ 873:μ 866:X 842:N 834:N 830:: 827:f 781:. 761:2 757:F 752:2 729:2 725:F 682:F 668:y 665:E 662:x 654:) 651:y 648:( 645:f 642:E 639:) 636:x 633:( 630:f 627:, 624:X 618:y 615:, 612:x 589:f 579:F 575:E 571:F 557:Y 551:X 548:: 545:f 535:Y 531:E 527:X 523:F 508:G 494:X 488:X 482:G 479:: 476:a 463:X 459:G 454:. 445:E 437:E 423:E 413:E 402:E 395:X 391:G 373:G 367:. 364:. 361:. 353:2 349:F 340:1 336:F 327:0 323:F 312:X 304:G 280:E 268:E 245:E 241:X 234:X 218:n 214:F 191:n 187:F 180:N 173:n 165:= 162:E 148:E 144:X 140:E 130:X 122:X 107:E 103:X 95:E 91:E 87:X 83:E 67:X 56:X 37:E

Index

descriptive set theory
mathematics
standard Borel space
equivalence relation
Borel equivalence relations
measurable space
Polish space
σ-algebra
Borel subsets
topology
cartesian product
finite
countable
set
Borel equivalence relations
transversals
union
partition
axiom of choice
locally finite
orbit equivalence relation
Feldman-Moore theorem
action
abelian group
finitely-generated group
polynomial growth
comeagre set
amenable
Banach–Tarski paradox
groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.