Knowledge (XXG)

Hyperplane

Source 📝

33: 1494: 738:
As an example, a point is a hyperplane in 1-dimensional space, a line is a hyperplane in 2-dimensional space, and a plane is a hyperplane in 3-dimensional space. A line in 3-dimensional space is not a hyperplane, and does not separate the space into two parts (the complement of such a line is
1068:
In projective space, a hyperplane does not divide the space into two parts; rather, it takes two hyperplanes to separate points and divide up the space. The reason for this is that the space essentially "wraps around" so that both sides of a lone hyperplane are connected to each other.
733: 626: 511: 1178:. The intersection of P and H is defined to be a "face" of the polyhedron. The theory of polyhedra and the dimension of the faces are analyzed by looking at these intersections involving hyperplanes. 993: 890: 1049:
is a set of points with the property that for any two points of the set, all the points on the line determined by the two points are contained in the set. Projective geometry can be viewed as
1176: 931: 1057:(points at infinity) added. An affine hyperplane together with the associated points at infinity forms a projective hyperplane. One special case of a projective hyperplane is the 807: 772: 216:, there is no concept of half-planes. In greatest generality, the notion of hyperplane is meaningful in any mathematical space in which the concept of the dimension of a 840: 291:, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can be given in 516:
In the case of a real affine space, in other words when the coordinates are real numbers, this affine space separates the space into two half-spaces, which are the
387: 330:
Several specific types of hyperplanes are defined with properties that are well suited for particular purposes. Some of these specializations are described here.
407: 65: 1425: 1146:
A hyperplane H is called a "support" hyperplane of the polyhedron P if P is contained in one of the two closed half-spaces bounded by H and
1737: 310:, and therefore must pass through the origin) and "affine hyperplanes" (which need not pass through the origin; they can be obtained by 637: 1528: 533: 1478: 1352: 1329: 1294: 1257: 415: 1418: 517: 1138:
of codimension 2 obtained by intersecting the hyperplanes, and whose angle is twice the angle between the hyperplanes.
1344: 1207: 1089: 1732: 936: 845: 1717: 1513: 1108: 1202: 179: 1411: 157: 149: 1722: 1448: 1022:
of codimension 1, only possibly shifted from the origin by a vector, in which case it is referred to as a
525: 319: 200:
In other kinds of ambient spaces, some properties from Euclidean space are no longer relevant. For example, in
137: 1149: 895: 1727: 1656: 1651: 1631: 521: 53: 1641: 1636: 1616: 1131: 1100: 1003: 311: 164: 141: 76: 1646: 1626: 1621: 1317: 777: 355: 315: 129: 125: 1197: 217: 745: 1523: 1518: 1227: 1046: 1042: 250: 145: 57: 1697: 1538: 1493: 1286:
The Foundations of Topological Analysis: A Straightforward Introduction: Book 2 Topological Ideas
1135: 1126:
between two non-parallel hyperplanes of a Euclidean space is the angle between the corresponding
296: 816: 36:
Two intersecting planes: Two-dimensional planes are the hyperplanes in three-dimensional space.
1533: 1386: 1367: 1348: 1325: 1303: 1290: 1253: 1192: 194: 133: 1284: 1463: 1311: 1096: 999: 288: 213: 175: 98: 95: 49: 365: 1508: 1453: 1280: 1104: 1078: 1054: 1050: 1027: 1023: 1019: 359: 307: 276: 153: 121: 109: 91: 88: 314:
of a vector hyperplane). A hyperplane in a Euclidean space separates that space into two
1590: 1575: 1123: 392: 209: 1711: 1580: 1127: 1082: 223:
The difference in dimension between a subspace and its ambient space is known as its
205: 190: 84: 1088:
in n-dimensional Euclidean space are separated by a hyperplane, a result called the
1600: 1565: 1458: 1187: 351: 343: 284: 280: 201: 72: 32: 1685: 1468: 1370: 810: 347: 264: 225: 204:, there is no concept of distance, so there are no reflections or motions. In a 1680: 1085: 1007: 292: 182: 69: 1661: 1570: 1483: 1434: 1394: 1375: 80: 61: 17: 1389: 1114:
The datapoint and its predicted value via a linear model is a hyperplane.
1585: 1548: 1473: 742:
Any hyperplane of a Euclidean space has exactly two unit normal vectors:
295:
as the solution of a single (due to the "codimension 1" constraint)
242: 186: 168: 41: 1595: 306:
is a vector space, one distinguishes "vector hyperplanes" (which are
1552: 998:
Affine hyperplanes are used to define decision boundaries in many
322:
that fixes the hyperplane and interchanges those two half spaces.
31: 1130:. The product of the transformations in the two hyperplanes is a 728:{\displaystyle a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}>b.\ } 1407: 621:{\displaystyle a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}<b\ } 813:), then one can define the affine subspace with normal vector 185:, and the hyperplanes are the hypersurfaces consisting of all 506:{\displaystyle a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}=b.\ } 1403: 1065:, which is defined with the set of all points at infinity. 1250:
Projective Geometry: From Foundations to Applications
1152: 939: 898: 848: 819: 780: 748: 640: 536: 418: 395: 368: 1335:
Victor V. Prasolov & VM Tikhomirov (1997, 2001)
87:. Two lower-dimensional examples of hyperplanes are 1673: 1609: 1547: 1501: 1441: 1228:"Excerpt from Convex Analysis, by R.T. Rockafellar" 358:, such a hyperplane can be described with a single 1170: 988:{\displaystyle {\hat {n}}\cdot (x-{\tilde {b}})=0} 987: 925: 885:{\displaystyle {\tilde {b}}\in \mathbb {R} ^{n+1}} 884: 834: 801: 766: 727: 620: 505: 401: 381: 362:of the following form (where at least one of the 1271:Polytopes, Rings and K-Theory by Bruns-Gubeladze 1248:Beutelspacher, Albrecht; Rosenbaum, Ute (1998), 1026:. Such a hyperplane is the solution of a single 1002:algorithms such as linear-combination (oblique) 809:equipped with the conventional inner product ( 1419: 124:, each of which separates the space into two 8: 1018:In a vector space, a vector hyperplane is a 27:Subspace of n-space whose dimension is (n-1) 1426: 1412: 1404: 1289:. Cambridge University Press. p. 13. 1252:, Cambridge University Press, p. 10, 263: − 1, or equivalently, of 1151: 965: 964: 941: 940: 938: 911: 907: 906: 897: 870: 866: 865: 850: 849: 847: 821: 820: 818: 787: 783: 782: 779: 753: 752: 747: 707: 697: 678: 668: 655: 645: 639: 603: 593: 574: 564: 551: 541: 535: 485: 475: 456: 446: 433: 423: 417: 394: 373: 367: 1171:{\displaystyle H\cap P\neq \varnothing } 524:of the hyperplane, and are given by the 112:, in which case the hyperplanes are the 1341:Translations of Mathematical Monographs 1219: 1165: 1099:, hyperplanes are a key tool to create 926:{\displaystyle x\in \mathbb {R} ^{n+1}} 7: 104:Most commonly, the ambient space is 802:{\displaystyle \mathbb {R} ^{n+1}} 25: 167:, the ambient space might be the 132:across a hyperplane is a kind of 1492: 774:. In particular, if we consider 229:. A hyperplane has codimension 1324:, page 7, Krieger, Huntington 976: 970: 955: 946: 855: 826: 767:{\displaystyle \pm {\hat {n}}} 758: 1: 1345:American Mathematical Society 1208:Supporting hyperplane theorem 1090:hyperplane separation theorem 83:is one less than that of the 326:Special types of hyperplanes 1109:natural language processing 409:is an arbitrary constant): 259:is a subspace of dimension 1754: 1738:Multi-dimensional geometry 1203:Arrangement of hyperplanes 835:{\displaystyle {\hat {n}}} 189:through a point which are 1694: 1490: 1339:, page 22, volume 200 in 144:between points), and the 48:is a generalization of a 138:geometric transformation 1101:support vector machines 842:and origin translation 54:three-dimensional space 1172: 1039:Projective hyperplanes 1034:Projective hyperplanes 989: 927: 886: 836: 803: 768: 729: 622: 507: 403: 383: 178:, or more generally a 165:non-Euclidean geometry 152:by the reflections. A 37: 1318:Heinrich Guggenheimer 1173: 990: 928: 887: 837: 804: 769: 730: 623: 508: 404: 384: 382:{\displaystyle a_{i}} 356:Cartesian coordinates 279:or more generally an 237:Technical description 50:two-dimensional plane 35: 1610:Dimensions by number 1198:Ham sandwich theorem 1150: 937: 896: 846: 817: 778: 746: 638: 534: 518:connected components 416: 393: 366: 68:, a hyperplane is a 1733:Projective geometry 1322:Applicable Geometry 1142:Support hyperplanes 1047:projective subspace 1043:projective geometry 172:-dimensional sphere 58:mathematical spaces 1718:Euclidean geometry 1539:Degrees of freedom 1442:Dimensional spaces 1387:Weisstein, Eric W. 1368:Weisstein, Eric W. 1168: 1134:whose axis is the 1103:for such tasks as 1014:Vector hyperplanes 985: 923: 892:as the set of all 882: 832: 799: 764: 725: 618: 503: 399: 389:s is non-zero and 379: 334:Affine hyperplanes 299:of degree 1. 297:algebraic equation 254:-dimensional space 148:of all motions is 38: 1705: 1704: 1514:Lebesgue covering 1479:Algebraic variety 1312:Allyn & Bacon 1304:Charles W. Curtis 1193:Decision boundary 973: 949: 858: 829: 761: 724: 617: 502: 402:{\displaystyle b} 340:affine hyperplane 180:pseudo-Riemannian 118: − 1) 16:(Redirected from 1745: 1502:Other dimensions 1496: 1464:Projective space 1428: 1421: 1414: 1405: 1400: 1399: 1381: 1380: 1300: 1272: 1269: 1263: 1262: 1245: 1239: 1238: 1232: 1224: 1177: 1175: 1174: 1169: 1097:machine learning 1063:ideal hyperplane 1055:vanishing points 1000:machine learning 994: 992: 991: 986: 975: 974: 966: 951: 950: 942: 932: 930: 929: 924: 922: 921: 910: 891: 889: 888: 883: 881: 880: 869: 860: 859: 851: 841: 839: 838: 833: 831: 830: 822: 808: 806: 805: 800: 798: 797: 786: 773: 771: 770: 765: 763: 762: 754: 734: 732: 731: 726: 722: 712: 711: 702: 701: 683: 682: 673: 672: 660: 659: 650: 649: 627: 625: 624: 619: 615: 608: 607: 598: 597: 579: 578: 569: 568: 556: 555: 546: 545: 512: 510: 509: 504: 500: 490: 489: 480: 479: 461: 460: 451: 450: 438: 437: 428: 427: 408: 406: 405: 400: 388: 386: 385: 380: 378: 377: 318:, and defines a 308:linear subspaces 289:projective space 267: 1 in  232: 214:projective space 176:hyperbolic space 171: 160:of half-spaces. 119: 107: 96:zero-dimensional 21: 1753: 1752: 1748: 1747: 1746: 1744: 1743: 1742: 1723:Affine geometry 1708: 1707: 1706: 1701: 1690: 1669: 1605: 1543: 1497: 1488: 1454:Euclidean space 1437: 1432: 1385: 1384: 1366: 1365: 1362: 1297: 1281:Binmore, Ken G. 1279: 1276: 1275: 1270: 1266: 1260: 1247: 1246: 1242: 1230: 1226: 1225: 1221: 1216: 1184: 1148: 1147: 1144: 1120: 1118:Dihedral angles 1105:computer vision 1079:convex geometry 1075: 1051:affine geometry 1036: 1028:linear equation 1016: 935: 934: 905: 894: 893: 864: 844: 843: 815: 814: 781: 776: 775: 744: 743: 703: 693: 674: 664: 651: 641: 636: 635: 599: 589: 570: 560: 547: 537: 532: 531: 481: 471: 452: 442: 429: 419: 414: 413: 391: 390: 369: 364: 363: 360:linear equation 344:affine subspace 336: 328: 277:Euclidean space 239: 230: 169: 154:convex polytope 113: 110:Euclidean space 105: 94:in a plane and 89:one-dimensional 28: 23: 22: 15: 12: 11: 5: 1751: 1749: 1741: 1740: 1735: 1730: 1728:Linear algebra 1725: 1720: 1710: 1709: 1703: 1702: 1695: 1692: 1691: 1689: 1688: 1683: 1677: 1675: 1671: 1670: 1668: 1667: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1613: 1611: 1607: 1606: 1604: 1603: 1598: 1593: 1591:Cross-polytope 1588: 1583: 1578: 1576:Hyperrectangle 1573: 1568: 1563: 1557: 1555: 1545: 1544: 1542: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1505: 1503: 1499: 1498: 1491: 1489: 1487: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1445: 1443: 1439: 1438: 1433: 1431: 1430: 1423: 1416: 1408: 1402: 1401: 1382: 1361: 1360:External links 1358: 1357: 1356: 1333: 1315: 1308:Linear Algebra 1301: 1295: 1274: 1273: 1264: 1258: 1240: 1218: 1217: 1215: 1212: 1211: 1210: 1205: 1200: 1195: 1190: 1183: 1180: 1167: 1164: 1161: 1158: 1155: 1143: 1140: 1128:normal vectors 1124:dihedral angle 1119: 1116: 1074: 1071: 1041:, are used in 1035: 1032: 1015: 1012: 1004:decision trees 984: 981: 978: 972: 969: 963: 960: 957: 954: 948: 945: 920: 917: 914: 909: 904: 901: 879: 876: 873: 868: 863: 857: 854: 828: 825: 796: 793: 790: 785: 760: 757: 751: 736: 735: 721: 718: 715: 710: 706: 700: 696: 692: 689: 686: 681: 677: 671: 667: 663: 658: 654: 648: 644: 629: 628: 614: 611: 606: 602: 596: 592: 588: 585: 582: 577: 573: 567: 563: 559: 554: 550: 544: 540: 514: 513: 499: 496: 493: 488: 484: 478: 474: 470: 467: 464: 459: 455: 449: 445: 441: 436: 432: 426: 422: 398: 376: 372: 335: 332: 327: 324: 238: 235: 210:elliptic space 208:space such as 206:non-orientable 193:to a specific 66:plane in space 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1750: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1715: 1713: 1700: 1699: 1693: 1687: 1684: 1682: 1679: 1678: 1676: 1672: 1666: 1664: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1614: 1612: 1608: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1581:Demihypercube 1579: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1558: 1556: 1554: 1550: 1546: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1506: 1504: 1500: 1495: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1446: 1444: 1440: 1436: 1429: 1424: 1422: 1417: 1415: 1410: 1409: 1406: 1397: 1396: 1391: 1388: 1383: 1378: 1377: 1372: 1369: 1364: 1363: 1359: 1354: 1353:0-8218-2038-9 1350: 1347:, Providence 1346: 1342: 1338: 1334: 1331: 1330:0-88275-368-1 1327: 1323: 1319: 1316: 1313: 1309: 1305: 1302: 1298: 1296:0-521-29930-6 1292: 1288: 1287: 1282: 1278: 1277: 1268: 1265: 1261: 1259:9780521483643 1255: 1251: 1244: 1241: 1236: 1235:u.arizona.edu 1229: 1223: 1220: 1213: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1186: 1185: 1181: 1179: 1162: 1159: 1156: 1153: 1141: 1139: 1137: 1133: 1129: 1125: 1117: 1115: 1112: 1110: 1106: 1102: 1098: 1093: 1091: 1087: 1084: 1080: 1072: 1070: 1066: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1033: 1031: 1029: 1025: 1021: 1013: 1011: 1009: 1005: 1001: 996: 982: 979: 967: 961: 958: 952: 943: 918: 915: 912: 902: 899: 877: 874: 871: 861: 852: 823: 812: 794: 791: 788: 755: 749: 740: 719: 716: 713: 708: 704: 698: 694: 690: 687: 684: 679: 675: 669: 665: 661: 656: 652: 646: 642: 634: 633: 632: 612: 609: 604: 600: 594: 590: 586: 583: 580: 575: 571: 565: 561: 557: 552: 548: 542: 538: 530: 529: 528: 527: 523: 519: 497: 494: 491: 486: 482: 476: 472: 468: 465: 462: 457: 453: 447: 443: 439: 434: 430: 424: 420: 412: 411: 410: 396: 374: 370: 361: 357: 353: 349: 345: 341: 333: 331: 325: 323: 321: 317: 313: 309: 305: 300: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 255: 253: 248: 244: 236: 234: 228: 227: 221: 219: 215: 211: 207: 203: 198: 196: 192: 191:perpendicular 188: 184: 181: 177: 173: 166: 161: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 120:-dimensional 117: 111: 108:-dimensional 102: 100: 97: 93: 90: 86: 85:ambient space 82: 78: 74: 71: 67: 63: 60:of arbitrary 59: 55: 51: 47: 43: 34: 30: 19: 1696: 1662: 1601:Hyperpyramid 1566:Hypersurface 1560: 1459:Affine space 1449:Vector space 1393: 1374: 1371:"Hyperplane" 1340: 1336: 1321: 1307: 1285: 1267: 1249: 1243: 1234: 1222: 1188:Hypersurface 1145: 1121: 1113: 1094: 1076: 1073:Applications 1067: 1062: 1058: 1038: 1037: 1017: 997: 741: 739:connected). 737: 630: 526:inequalities 515: 352:affine space 339: 337: 329: 303: 301: 285:vector space 281:affine space 272: 271:. The space 268: 260: 256: 251: 246: 240: 224: 222: 220:is defined. 202:affine space 199: 162: 158:intersection 115: 103: 73:hypersurface 45: 39: 29: 1686:Codimension 1665:-dimensions 1586:Hypersphere 1469:Free module 1310:, page 62, 1086:convex sets 1008:perceptrons 811:dot product 348:codimension 316:half spaces 312:translation 293:coordinates 265:codimension 226:codimension 140:preserving 126:half spaces 101:on a line. 18:Hyperplanes 1712:Categories 1681:Hyperspace 1561:Hyperplane 1214:References 933:such that 522:complement 320:reflection 247:hyperplane 197:geodesic. 183:space form 130:reflection 46:hyperplane 1571:Hypercube 1549:Polytopes 1529:Minkowski 1524:Hausdorff 1519:Inductive 1484:Spacetime 1435:Dimension 1395:MathWorld 1376:MathWorld 1314:, Boston. 1166:∅ 1163:≠ 1157:∩ 971:~ 962:− 953:⋅ 947:^ 903:∈ 862:∈ 856:~ 827:^ 759:^ 750:± 688:⋯ 584:⋯ 466:⋯ 275:may be a 187:geodesics 150:generated 81:dimension 64:. Like a 62:dimension 1698:Category 1674:See also 1474:Manifold 1337:Geometry 1283:(1980). 1182:See also 1136:subspace 1132:rotation 1083:disjoint 1059:infinite 1020:subspace 350:1 in an 243:geometry 218:subspace 142:distance 77:subspace 42:geometry 1596:Simplex 1534:Fractal 1320:(1977) 1306:(1968) 520:of the 342:is an 283:, or a 156:is the 122:"flats" 1553:shapes 1390:"Flat" 1351:  1328:  1293:  1256:  1081:, two 1006:, and 723:  616:  501:  249:of an 195:normal 134:motion 99:points 79:whose 1657:Eight 1652:Seven 1632:Three 1509:Krull 1231:(PDF) 1053:with 1045:. A 354:. In 287:or a 146:group 92:lines 1642:Five 1637:Four 1617:Zero 1551:and 1349:ISBN 1326:ISBN 1291:ISBN 1254:ISBN 1122:The 1107:and 1024:flat 714:> 631:and 610:< 245:, a 128:. A 75:, a 70:flat 44:, a 1647:Six 1627:Two 1622:One 1095:In 1077:In 1061:or 346:of 338:An 302:If 241:In 212:or 174:or 163:In 56:to 52:in 40:In 1714:: 1392:. 1373:. 1343:, 1233:. 1111:. 1092:. 1030:. 1010:. 995:. 233:. 1663:n 1427:e 1420:t 1413:v 1398:. 1379:. 1355:. 1332:. 1299:. 1237:. 1160:P 1154:H 983:0 980:= 977:) 968:b 959:x 956:( 944:n 919:1 916:+ 913:n 908:R 900:x 878:1 875:+ 872:n 867:R 853:b 824:n 795:1 792:+ 789:n 784:R 756:n 720:. 717:b 709:n 705:x 699:n 695:a 691:+ 685:+ 680:2 676:x 670:2 666:a 662:+ 657:1 653:x 647:1 643:a 613:b 605:n 601:x 595:n 591:a 587:+ 581:+ 576:2 572:x 566:2 562:a 558:+ 553:1 549:x 543:1 539:a 498:. 495:b 492:= 487:n 483:x 477:n 473:a 469:+ 463:+ 458:2 454:x 448:2 444:a 440:+ 435:1 431:x 425:1 421:a 397:b 375:i 371:a 304:V 273:V 269:V 261:n 257:V 252:n 231:1 170:n 136:( 116:n 114:( 106:n 20:)

Index

Hyperplanes

geometry
two-dimensional plane
three-dimensional space
mathematical spaces
dimension
plane in space
flat
hypersurface
subspace
dimension
ambient space
one-dimensional
lines
zero-dimensional
points
Euclidean space
"flats"
half spaces
reflection
motion
geometric transformation
distance
group
generated
convex polytope
intersection
non-Euclidean geometry
n-dimensional sphere

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.