Knowledge

hCONDELs

Source 📝

132:. Sialic acid is known to play a crucial part in cell signaling pathways and interaction processes. The loss of this gene is evident in the undetectable levels of sialic acid in humans but highly present in mouse, pig, chimpanzee and other mammal tissues and may provide more insight into the historic background of human evolution. 639:
Green, R. E.; Krause, J.; Briggs, A. W.; Maricic, T.; Stenzel, U.; Kircher, M.; Patterson, N.; Li, H.; Zhai, W.; Fritz, M. H. Y.; Hansen, N. F.; Durand, E. Y.; Malaspinas, A. S.; Jensen, J. D.; Marques-Bonet, T.; Alkan, C.; Prüfer, K.; Meyer, M.; Burbano, H. A.; Good, J. M.; Schultz, R.; Aximu-Petri,
80:
hCONDELs in humans cover approximately 0.14% of chimpanzee genome. The number of hCONDELs currently identified is 583 using the genome-wide comparison method; however, validation of these predicated regions of deletions through polymerase chain reaction methods produces 510 hCONDELs. The remainder of
85:
genome. hCONDELs, on average, remove about 95 base pairs (bp) of highly conserved sequences from the human genome. The median size of these 510 validated CONDELs is about 2,804 bp, thus showing a diverse range in length of the characteristic deletions. Another noticeable characteristic of hCONDELs
62:
genomes. Chimpanzee sequences highly conserved in other species were then identified by pairwise alignment of chimpanzee with macaque, mouse and chicken sequences with BLASTZ followed by multiple alignment of the pairwise alignments done with MULTIZ. The highly conserved chimpanzee sequences were
491:
Gibbs, R. A.; Gibbs, J.; Rogers, M. G.; Katze, R.; Bumgarner, G. M.; Weinstock, E. R.; Mardis, K. A.; Remington, R. L.; Strausberg, J. C.; Venter, R. K.; Wilson, M. A.; Batzer, C. D.; Bustamante, E. E.; Eichler, M. W.; Hahn, R. C.; Hardison, K. D.; Makova, W.; Miller, A.; Milosavljevic, R. E.;
135:
The mechanisms and time of occurrence of hCONDELs are not entirely understood but given that conserved non-coding sequences play a major developmental role through regulation of genes, their loss in regions of deletions, it is expected that their loss in hCONDELs will result in developmental
39:
The group of CONDELs of a specific organism is specified by prefixing the CONDELs with the first letter of the organism. For instance, hCONDELs refer to the group of CONDELs found in humans whereas mCONDELs and cCONDELs refer to mouse and chimpanzee CONDELs respectively.
204:(SVZ) of the septum. The loss of this SVZ enhancer region in an hCONDEL may provide further insights into the role of DNA sequence changes that may have resulted in evolution of the human brain and may provide a better understanding of the evolution of humans. 67:
to identify conserved regions not present in humans. This identified 583 regions of deletions that were then referred to as hCONDELs. 510 of these identified hCONDELs were then validated computationally with 39 of these being validated by
224:
Woolfe, A.; Goodson, M.; Goode, D. K.; Snell, P.; McEwen, G. K.; Vavouri, T.; Smith, S. F.; North, P.; Callaway, H.; Kelly, K.; Walter, K.; Abnizova, I.; Gilks, W.; Edwards, Y. J. K.; Cooke, J. E.; Elgar, G. (2005).
115:
Of the 510 identified hCONDELs, only one of these deletions has been shown to remove a 92 bp sequence that is part of a protein-coding region in the human sequence. The deletion that affects the protein
168:
in humans compared to its close relatives, including chimpanzees. The 60.7kb hCONDEL which is located near the AR locus has been found to be responsible for removing a 5 kb sequence that codes for an
336:
McLean, C. Y.; Reno, P. L.; Pollen, A. A.; Bassan, A. I.; Capellini, T. D.; Guenther, C.; Indjeian, V. B.; Lim, X.; Menke, D. B.; Schaar, B. T.; Wenger, A. M.; Bejerano, G.; Kingsley, D. M. (2011).
128:
gene which codes for the cytidine monophosphate-N-acetylneurminic acid hydroxylase-like protein, an enzyme involved in the production of N-glycolylneuraminic acid, one type of
590:
Blanchette, M.; Kent, W. J.; Riemer, C.; Elnitski, L.; Smit, A. F.; Roskin, K. M.; Baertsch, R.; Rosenbloom, K.; Clawson, H.; Green, E. D.; Haussler, D.; Miller, W. (2004).
54:
article by McLean et al. in whole-genome comparison analysis. This involved firstly identifying a subset of 37,251 human deletions (hDELs) through pairwise comparisons of
81:
these hCONDELs are either false-positives or non-existent genes. hCONDELs have been confirmed through PCR with 88 percent of these shown to have been lost from the draft
492:
Palermo, A.; Siepel, J. M.; Sikela, T.; Attaway, S.; Bell, K. E.; Bernard, C. J.; Buhay, M. N.; Chandrabose, M.; Dao, C.; Davis, K. D.; et al. (2007).
31:
and may have played an important role in the development of specific traits and behavior that distinguish closely related organisms from each other.
27:
among closely related relatives. Almost all of these deletions fall within regions that perform non-coding functions. These represent a new class of
90:
regions. Simulations show that hCONDELs are enriched near genes involved in hormone receptor signaling and neural function, and near genes encoding
828:
Chou, H. -H.; Takematsu, H.; Diaz, S.; Iber, J.; Nickerson, E.; Wright, K. L.; Muchmore, E. A.; Nelson, D. L.; Warren, S. T.; Varki, A. (1998).
200:
enhancer binding site. The removal of this region, known to function as a suppressor, specifically increases the proliferation of the
86:(and other groups of identified CONDELs such as those from mouse and chimpanzee) is that they tend to be specifically skewed towards 172:
for the AR locus. Using the mouse construct with LacZ expression showed localization of this hCONDEL region (AR enhancer) to the
197: 91: 888: 640:
A.; Butthof, A.; Höber, B.; Höffner, B.; Siegemund, M.; Weihmann, A.; Nusbaum, C.; Lander, E. S.; Russ, C. (2010).
69: 541:
Schwartz, S.; Kent, W. J.; Smit, A.; Zhang, Z.; Baertsch, R.; Hardison, R. C.; Haussler, D.; Miller, W. (2003).
1048: 939:"Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers" 276:
Dermitzakis, E. T.; Reymond, A.; Scamuffa, N.; Ucla, C.; Kirkness, E.; Rossier, C.; Antonarakis, S. E. (2003).
1043: 887:
Poulin, F.; Nobrega, M. A.; Plajzer-Frick, I.; Holt, A.; Afzal, V.; Rubin, E. M.; Pennacchio, L. A. (2005).
137: 64: 995: 841: 653: 505: 455: 349: 289: 28: 781:"Exploration for Functional Nucleotide Sequence Candidates within Coding Regions of Mammalian Genes" 201: 169: 121: 24: 20: 1019: 937:
Gotea, V.; Visel, A.; Westlund, J. M.; Nobrega, M. A.; Pennacchio, L. A.; Ovcharenko, I. (2010).
919: 315: 1011: 968: 911: 869: 810: 761: 720: 679: 621: 572: 523: 473: 424: 375: 307: 258: 161: 145: 55: 140:
experiments done by Mclean et al. by fusion of mouse constructs fused to basal promoter with
1003: 958: 950: 903: 859: 849: 800: 792: 751: 710: 669: 661: 611: 603: 562: 554: 513: 463: 414: 406: 365: 357: 297: 248: 238: 50: 196:. A 3,181 bp hCONDEL which is located near the GADD45G gene removes a forebrain-specific 999: 845: 830:"A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence" 657: 509: 459: 353: 293: 963: 938: 805: 780: 756: 739: 674: 641: 370: 337: 99: 616: 591: 567: 542: 419: 394: 253: 226: 1037: 864: 829: 165: 117: 923: 715: 699:"Compositional constraints in the extremely GC-poor genome of Plasmodium falciparum" 698: 319: 1023: 986:
Hill, R. S.; Walsh, C. A. (2005). "Molecular insights into human brain evolution".
193: 338:"Human-specific loss of regulatory DNA and the evolution of human-specific traits" 227:"Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development" 243: 907: 152:) locus suggest a role in deletions that affect regulatory sequences in humans. 148:(AR) locus and the growth arrest and DNA-damage-inducible protein GADD45 gamma ( 129: 82: 278:"Evolutionary Discrimination of Mammalian Conserved Non-Genic Sequences (CNGs)" 444:"Human-Specific Changes of Genome Structure Detected by Genomic Triangulation" 173: 854: 796: 665: 518: 493: 468: 443: 302: 277: 177: 1015: 972: 915: 814: 765: 740:"Enrichment of regulatory signals in conserved non-coding genomic sequence" 683: 625: 576: 527: 477: 428: 379: 311: 262: 954: 873: 724: 181: 1007: 592:"Aligning Multiple Genomic Sequences with the Threaded Blockset Aligner" 361: 607: 149: 87: 59: 558: 410: 494:"Evolutionary and Biomedical Insights from the Rhesus Macaque Genome" 395:"Comparing Vertebrate Whole-Genome Shotgun Reads to the Human Genome" 889:"In vivo characterization of a vertebrate ultraconserved enhancer" 697:
Musto, H.; Cacciò, S.; Rodríguez-Maseda, H.; Bernardi, G. (1997).
192:
Many hCONDELs are located around genes expressed during cortical
141: 125: 95: 393:
Chen, R.; Bouck, J. B.; Weinstock, G. M.; Gibbs, R. A. (2001).
23:
within the human genome containing sequences that are highly
136:
consequences that can be observed in human-specific traits.
164:(AR) gene may be responsible for the loss of whiskers and 442:
Harris, R. A.; Rogers, J.; Milosavljevic, A. (2007).
834:Proceedings of the National Academy of Sciences 738:Levy, S.; Hannenhalli, S.; Workman, C. (2001). 8: 331: 329: 219: 217: 48:The term hCONDEL was first used in the 2011 642:"A Draft Sequence of the Neandertal Genome" 962: 863: 853: 804: 755: 714: 673: 615: 566: 517: 467: 418: 369: 301: 252: 242: 160:An hCONDEL located near the locus of the 63:searched against the human genome using 213: 7: 543:"Human–Mouse Alignments with BLASTZ" 703:Memórias do Instituto Oswaldo Cruz 14: 156:Loss of whiskers and penile spine 144:expression for hCONDELs near the 757:10.1093/bioinformatics/17.10.871 779:Suzuki, R.; Saitou, N. (2011). 716:10.1590/S0074-02761997000600020 1: 244:10.1371/journal.pbio.0030007 908:10.1016/j.ygeno.2005.03.003 1065: 70:polymerase chain reaction 44:Identification of CONDELs 855:10.1073/pnas.95.20.11751 184:cells of penile organs. 666:10.1126/science.1188021 519:10.1126/science.1139247 469:10.1126/science.1139477 303:10.1126/science.1087047 188:Expansion of brain size 120:in humans results in a 955:10.1101/gr.104471.109 797:10.1093/dnares/dsr010 138:In situ hybridization 92:fibronectin-type-III 29:regulatory sequences 19:refer to regions of 1008:10.1038/nature04103 1000:2005Natur.437...64H 846:1998PNAS...9511751C 840:(20): 11751–11756. 658:2010Sci...328..710G 510:2007Sci...316..222. 460:2007Sci...316..235H 362:10.1038/nature09774 354:2011Natur.471..216M 294:2003Sci...302.1033D 288:(5647): 1033–1035. 202:subventricular zone 122:frameshift mutation 608:10.1101/gr.1933104 180:follicles and the 652:(5979): 710–722. 559:10.1101/gr.809403 504:(5822): 222–234. 454:(5822): 235–237. 411:10.1101/gr.203601 405:(11): 1807–1816. 162:androgen receptor 146:androgen receptor 1056: 1028: 1027: 983: 977: 976: 966: 934: 928: 927: 893: 884: 878: 877: 867: 857: 825: 819: 818: 808: 776: 770: 769: 759: 735: 729: 728: 718: 694: 688: 687: 677: 636: 630: 629: 619: 587: 581: 580: 570: 538: 532: 531: 521: 488: 482: 481: 471: 439: 433: 432: 422: 390: 384: 383: 373: 333: 324: 323: 305: 273: 267: 266: 256: 246: 221: 111:Sialic acid loss 106:Impact in humans 102:C2-set domains. 1064: 1063: 1059: 1058: 1057: 1055: 1054: 1053: 1049:Human evolution 1034: 1033: 1032: 1031: 994:(7055): 64–67. 985: 984: 980: 943:Genome Research 936: 935: 931: 891: 886: 885: 881: 827: 826: 822: 778: 777: 773: 750:(10): 871–877. 737: 736: 732: 696: 695: 691: 638: 637: 633: 596:Genome Research 589: 588: 584: 547:Genome Research 540: 539: 535: 490: 489: 485: 441: 440: 436: 399:Genome Research 392: 391: 387: 348:(7337): 216–9. 335: 334: 327: 275: 274: 270: 223: 222: 215: 210: 190: 158: 113: 108: 78: 76:Characteristics 46: 37: 12: 11: 5: 1062: 1060: 1052: 1051: 1046: 1044:Human genetics 1036: 1035: 1030: 1029: 978: 949:(5): 565–577. 929: 902:(6): 774–781. 879: 820: 791:(3): 177–187. 771: 744:Bioinformatics 730: 709:(6): 835–841. 689: 631: 602:(4): 708–715. 582: 553:(1): 103–107. 533: 483: 434: 385: 325: 268: 212: 211: 209: 206: 189: 186: 157: 154: 112: 109: 107: 104: 100:immunoglobulin 77: 74: 45: 42: 36: 33: 13: 10: 9: 6: 4: 3: 2: 1061: 1050: 1047: 1045: 1042: 1041: 1039: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 982: 979: 974: 970: 965: 960: 956: 952: 948: 944: 940: 933: 930: 925: 921: 917: 913: 909: 905: 901: 897: 890: 883: 880: 875: 871: 866: 861: 856: 851: 847: 843: 839: 835: 831: 824: 821: 816: 812: 807: 802: 798: 794: 790: 786: 782: 775: 772: 767: 763: 758: 753: 749: 745: 741: 734: 731: 726: 722: 717: 712: 708: 704: 700: 693: 690: 685: 681: 676: 671: 667: 663: 659: 655: 651: 647: 643: 635: 632: 627: 623: 618: 613: 609: 605: 601: 597: 593: 586: 583: 578: 574: 569: 564: 560: 556: 552: 548: 544: 537: 534: 529: 525: 520: 515: 511: 507: 503: 499: 495: 487: 484: 479: 475: 470: 465: 461: 457: 453: 449: 445: 438: 435: 430: 426: 421: 416: 412: 408: 404: 400: 396: 389: 386: 381: 377: 372: 367: 363: 359: 355: 351: 347: 343: 339: 332: 330: 326: 321: 317: 313: 309: 304: 299: 295: 291: 287: 283: 279: 272: 269: 264: 260: 255: 250: 245: 240: 236: 232: 228: 220: 218: 214: 207: 205: 203: 199: 195: 187: 185: 183: 179: 175: 171: 167: 166:penile spines 163: 155: 153: 151: 147: 143: 139: 133: 131: 127: 123: 119: 118:coding region 110: 105: 103: 101: 97: 93: 89: 84: 75: 73: 71: 66: 61: 57: 53: 52: 43: 41: 34: 32: 30: 26: 22: 18: 991: 987: 981: 946: 942: 932: 899: 895: 882: 837: 833: 823: 788: 785:DNA Research 784: 774: 747: 743: 733: 706: 702: 692: 649: 645: 634: 599: 595: 585: 550: 546: 536: 501: 497: 486: 451: 447: 437: 402: 398: 388: 345: 341: 285: 281: 271: 234: 231:PLOS Biology 230: 194:neurogenesis 191: 159: 134: 114: 79: 49: 47: 38: 35:Nomenclature 16: 15: 130:sialic acid 83:Neanderthal 1038:Categories 208:References 174:mesenchyme 56:chimpanzee 237:(1): e7. 178:vibrissae 25:conserved 21:deletions 1016:16136130 973:20363979 924:21888183 916:15885503 896:Genomics 815:21586532 766:11673231 684:20448178 626:15060014 577:12529312 528:17431167 478:17431168 429:11691844 380:21390129 320:35299360 312:14526086 263:15630479 182:mesoderm 170:enhancer 17:hCONDELs 1024:4406401 996:Bibcode 964:2860159 874:9751737 842:Bibcode 806:3111233 725:9566216 675:5100745 654:Bibcode 646:Science 506:Bibcode 498:Science 456:Bibcode 448:Science 371:3071156 350:Bibcode 290:Bibcode 282:Science 150:GADD45G 124:in the 88:GC poor 72:(PCR). 60:macaque 1022:  1014:  988:Nature 971:  961:  922:  914:  872:  862:  813:  803:  764:  723:  682:  672:  624:  617:383317 614:  575:  568:430961 565:  526:  476:  427:  420:311156 417:  378:  368:  342:Nature 318:  310:  261:  254:526512 251:  98:-like 51:Nature 1020:S2CID 920:S2CID 892:(PDF) 865:21712 316:S2CID 1012:PMID 969:PMID 912:PMID 870:PMID 811:PMID 762:PMID 721:PMID 680:PMID 622:PMID 573:PMID 524:PMID 474:PMID 425:PMID 376:PMID 308:PMID 259:PMID 198:p300 142:LacZ 126:CMAH 96:CD80 94:-or 65:BLAT 58:and 1004:doi 992:437 959:PMC 951:doi 904:doi 860:PMC 850:doi 801:PMC 793:doi 752:doi 711:doi 670:PMC 662:doi 650:328 612:PMC 604:doi 563:PMC 555:doi 514:doi 502:316 464:doi 452:316 415:PMC 407:doi 366:PMC 358:doi 346:471 298:doi 286:302 249:PMC 239:doi 176:of 1040:: 1018:. 1010:. 1002:. 990:. 967:. 957:. 947:20 945:. 941:. 918:. 910:. 900:85 898:. 894:. 868:. 858:. 848:. 838:95 836:. 832:. 809:. 799:. 789:18 787:. 783:. 760:. 748:17 746:. 742:. 719:. 707:92 705:. 701:. 678:. 668:. 660:. 648:. 644:. 620:. 610:. 600:14 598:. 594:. 571:. 561:. 551:13 549:. 545:. 522:. 512:. 500:. 496:. 472:. 462:. 450:. 446:. 423:. 413:. 403:11 401:. 397:. 374:. 364:. 356:. 344:. 340:. 328:^ 314:. 306:. 296:. 284:. 280:. 257:. 247:. 233:. 229:. 216:^ 1026:. 1006:: 998:: 975:. 953:: 926:. 906:: 876:. 852:: 844:: 817:. 795:: 768:. 754:: 727:. 713:: 686:. 664:: 656:: 628:. 606:: 579:. 557:: 530:. 516:: 508:: 480:. 466:: 458:: 431:. 409:: 382:. 360:: 352:: 322:. 300:: 292:: 265:. 241:: 235:3

Index

deletions
conserved
regulatory sequences
Nature
chimpanzee
macaque
BLAT
polymerase chain reaction
Neanderthal
GC poor
fibronectin-type-III
CD80
immunoglobulin
coding region
frameshift mutation
CMAH
sialic acid
In situ hybridization
LacZ
androgen receptor
GADD45G
androgen receptor
penile spines
enhancer
mesenchyme
vibrissae
mesoderm
neurogenesis
p300
subventricular zone

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.