Knowledge (XXG)

Hadamard matrix

Source 📝

6004: 2338: 39: 2074: 3023: 1423: 3745:
players plays one match against each of the other players, each match resulting in a win for one of the players and a loss for the other. A tournament is regular if each player wins the same number of matches. A regular tournament is doubly regular if the number of opponents beaten by both of two
3528:
if one can be obtained from the other by negating rows or columns, or by interchanging rows or columns. Up to equivalence, there is a unique Hadamard matrix of orders 1, 2, 4, 8, and 12. There are 5 inequivalent matrices of order 16, 3 of order 20, 60 of order 24, and 487 of order 28. Millions of
2542: 2333:{\displaystyle {\begin{aligned}H_{1}&={\begin{bmatrix}1\end{bmatrix}},\\H_{2}&={\begin{bmatrix}1&1\\1&-1\end{bmatrix}},\\H_{4}&={\begin{bmatrix}1&1&1&1\\1&-1&1&-1\\1&1&-1&-1\\1&-1&-1&1\end{bmatrix}},\end{aligned}}} 2824: 88:
terms, it means that each pair of rows has matching entries in exactly half of their columns and mismatched entries in the remaining columns. It is a consequence of this definition that the corresponding properties hold for columns as well as rows.
3721:
A skew Hadamard matrix remains a skew Hadamard matrix after multiplication of any row and its corresponding column by −1. This makes it possible, for example, to normalize a skew Hadamard matrix so that all elements in the first row equal 1.
1107: 3798:− 3)/4. A skew Hadamard matrix is obtained by introducing an additional player who defeats all of the original players and then forming a matrix with rows and columns labeled by players according to the rule that row 1858: 2349: 4167:
Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers.
2055: 2725: 3893:
The circulant Hadamard matrix conjecture, however, asserts that, apart from the known 1 × 1 and 4 × 4 examples, no such matrices exist. This was verified for all but 26 values of
3512:
In 2005, Hadi Kharaghani and Behruz Tayfeh-Rezaie published their construction of a Hadamard matrix of order 428. As a result, the smallest order for which no Hadamard matrix is presently known is 668.
3018:{\displaystyle {\begin{aligned}F_{1}&={\begin{bmatrix}0&1\end{bmatrix}}\\F_{n}&={\begin{bmatrix}0_{1\times 2^{n-1}}&1_{1\times 2^{n-1}}\\F_{n-1}&F_{n-1}\end{bmatrix}}.\end{aligned}}} 503: 385: 3830:. This correspondence in reverse produces a doubly regular tournament from a skew Hadamard matrix, assuming the skew Hadamard matrix is normalized so that all elements of the first row equal 1. 991: 777: 3100: 2829: 2079: 1672: 888: 3516:
By 2014, there were 12 multiples of 4 less than 2000 for which no Hadamard matrix of that order was known. They are: 668, 716, 892, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, and 1964.
3450:
Sylvester's 1867 construction yields Hadamard matrices of order 1, 2, 4, 8, 16, 32, etc. Hadamard matrices of orders 12 and 20 were subsequently constructed by Hadamard (in 1893). In 1933,
1793: 1897: 245: 1059: 3719: 3949: 1712: 3441: 1967: 1752: 3628: 1594: 1924: 1620: 314: 2785: 2577: 1418:{\displaystyle \sum _{i=0}^{n-1}a_{k,i}a_{l,i}=\sum _{i=0}^{n-1}h_{0,j}h_{k,i}h_{0,j}h_{l,i}=\sum _{i=0}^{n-1}h_{0,j}^{2}h_{k,i}h_{l,i}=\sum _{i=0}^{n-1}h_{k,i}h_{l,i}=0.} 5662: 3288: 3137: 677: 3489:
The smallest order that cannot be constructed by a combination of Sylvester's and Paley's methods is 92. A Hadamard matrix of this order was found using a computer by
2597: 3211: 1565: 1545: 1505: 803: 651: 3244: 1525: 625: 567: 3393: 3366: 3164: 2816: 2752: 1482: 1454: 4290: 3648: 3578: 3558: 1099: 1079: 4617: 5069:
JPL: In 1961, mathematicians from NASA’s Jet Propulsion Laboratory and Caltech worked together to construct a Hadamard Matrix containing 92 rows and columns
4769: 5876: 4020:– an amateur-radio digital protocol designed to work in difficult (low signal-to-noise ratio plus multipath propagation) conditions on shortwave bands. 6050: 131: 2628:
zero. The elements in the first column and the first row are all positive. The elements in all the other rows and columns are evenly divided between
5095: 3316: 5967: 5068: 1799: 5007: 4758: 5886: 5652: 2537:{\displaystyle H_{2^{k}}={\begin{bmatrix}H_{2^{k-1}}&H_{2^{k-1}}\\H_{2^{k-1}}&-H_{2^{k-1}}\end{bmatrix}}=H_{2}\otimes H_{2^{k-1}},} 4257: 2004: 3794:− 1 other players together defeat the same number of common opponents. This common number of defeated opponents must therefore be ( 3338:. The Hadamard conjecture has also been attributed to Paley, although it was considered implicitly by others prior to Paley's work. 2650: 81: 5687: 3506: 5234: 4559: 4399:Đoković, Dragomir Ž; Golubitsky, Oleg; Kotsireas, Ilias S. (2014). "Some new orders of Hadamard and Skew-Hadamard matrices". 442: 330: 6040: 4060: 4023: 3990: 3861:
matrix is manifestly regular, and therefore a circulant Hadamard matrix would have to be of square order. Moreover, if an
3498: 896: 682: 150: 4236: 3038: 5451: 5088: 4749:
Georgiou, S.; Koukouvinos, C.; Seberry, J. (2003). "Hadamard matrices, orthogonal designs and construction algorithms".
3841:
are real Hadamard matrices whose row and column sums are all equal. A necessary condition on the existence of a regular
1625: 811: 5526: 4050: 1760: 5682: 5204: 1864: 3790:− 3)/4. The same result should be obtained if the pairs are counted differently: the given player and any of the 5786: 5657: 5571: 4329: 3838: 3726: 3509:, that has yielded many additional orders. Many other methods for constructing Hadamard matrices are now known. 5891: 5781: 5489: 5169: 5063: 4803: 433: 202: 5926: 5855: 5737: 5597: 5194: 5081: 3955: 996: 324:
whose transpose is thus its inverse. Multiplying by the length again gives the equality above. As a result,
3677: 3630:
entries randomly deleted, then with overwhelming likelihood, one can perfectly recover the original matrix
3447:. This result is used to produce Hadamard matrices of higher order once those of smaller orders are known. 5796: 5379: 5184: 4169: 4047:
Feedback delay networks – Digital reverberation devices which use Hadamard matrices to blend sample values
3029: 2625: 2064:. This observation can be applied repeatedly and leads to the following sequence of matrices, also called 1987: 1970: 3913: 1677: 5742: 5479: 5329: 5324: 5159: 5134: 5129: 4031: 3406: 3167: 2727:, we can describe an alternative construction of Sylvester's Hadamard matrix. First consider the matrix 1932: 1717: 569:, then there is at least one scalar product of 2 rows which has to be 0. The scalar product is a sum of 138: 6003: 146: 1570:
Row 2 has to be orthogonal to row 1, so the number of products of entries of the rows resulting in 1,
540:
of the nonexistence of Hadamard matrices with dimensions other than 1, 2, or a multiple of 4 follows:
5936: 5294: 5124: 5104: 4188: 4097: 4054: 3650:
from the damaged one. The algorithm of recovery has the same computational cost as matrix inversion.
3583: 3537:, there are 4 inequivalent matrices of order 16, 3 of order 20, 36 of order 24, and 294 of order 28. 3530: 3525: 3490: 1573: 586: 574: 127: 1903: 1599: 291: 5957: 5931: 5509: 5314: 5304: 3986: 3974: 3951:
for some w, its weight. A weighing matrix with its weight equal to its order is a Hadamard matrix.
2757: 281: 2550: 6008: 5962: 5952: 5906: 5901: 5830: 5766: 5632: 5369: 5364: 5299: 5289: 5154: 4959: 4820: 4789: 4693: 4646: 4502: 4461: 4426: 4408: 4381: 4207: 4122: 4102: 4084: 4066: 3471: 3455: 2645: 2629: 537: 4141: 4044:. The mask element used in coded aperture spectrometers is often a variant of a Hadamard matrix. 3540:
Hadamard matrices are also uniquely recoverable, in the following sense: If an Hadamard matrix
3658:
Many special cases of Hadamard matrices have been investigated in the mathematical literature.
3259: 3108: 656: 6045: 6019: 5806: 5801: 5791: 5771: 5732: 5727: 5556: 5551: 5536: 5531: 5522: 5517: 5464: 5359: 5309: 5254: 5224: 5219: 5199: 5189: 5149: 5003: 4754: 4685: 4080: 4070: 4041: 3494: 2600: 2582: 321: 3910:. A weighing matrix is a square matrix in which entries may also be zero and which satisfies 3183: 1550: 1530: 1490: 782: 630: 6014: 5982: 5911: 5850: 5845: 5825: 5761: 5667: 5637: 5622: 5607: 5602: 5541: 5494: 5469: 5459: 5430: 5349: 5344: 5319: 5249: 5229: 5139: 5119: 4984: 4951: 4926: 4899: 4872: 4845: 4812: 4781: 4727: 4677: 4636: 4626: 4568: 4533: 4492: 4453: 4418: 4373: 4338: 4299: 4266: 4197: 3982: 3219: 2617: 1510: 595: 546: 62: 4741: 4582: 4350: 4313: 4219: 3371: 3344: 3142: 2794: 2730: 5712: 5647: 5627: 5612: 5592: 5576: 5474: 5405: 5395: 5354: 5209: 5042: 4737: 4578: 4346: 4309: 4215: 4117: 4107: 3907: 2606:
In this manner, Sylvester constructed Hadamard matrices of order 2 for every non-negative
265: 4053:
of experiments for investigating the dependence of some measured quantity on a number of
1459: 1431: 130:
with entries of absolute value less than or equal to 1 and so is an extremal solution of
5972: 5916: 5896: 5881: 5840: 5717: 5677: 5642: 5566: 5505: 5484: 5425: 5415: 5400: 5334: 5279: 5269: 5264: 5174: 4037: 3997: 3959: 3633: 3563: 3543: 2633: 1084: 1064: 512: 406: 193: 119: 97: 42: 5053: 4732: 4715: 38: 6034: 5977: 5835: 5776: 5707: 5697: 5692: 5617: 5546: 5420: 5410: 5339: 5259: 5244: 5179: 4989: 4972: 4930: 4904: 4887: 4877: 4860: 4697: 4538: 4521: 4506: 4465: 4327:
Williamson, J. (1944). "Hadamard's determinant theorem and the sum of four squares".
3854: 3451: 3253: 142: 85: 78: 66: 4824: 4793: 4430: 4385: 4304: 4285: 5860: 5817: 5722: 5435: 5374: 5284: 5164: 4112: 4076: 3746:
distinct players is the same for all pairs of distinct players. Since each of the
3483: 3323: 2065: 154: 31: 17: 4631: 4612: 4342: 4963: 3754:− 1)/2 matches played results in a win for one of the players, each player wins ( 5702: 5672: 5440: 5274: 5144: 4017: 3467: 3214: 3178: 3171: 285: 123: 54: 5059: 4596:
Turyn, R. J. (1969). "Sequences with small correlation". In Mann, H. B. (ed.).
3032:
that the image of the Hadamard matrix under the above homomorphism is given by
5753: 5214: 4955: 4850: 4833: 4785: 4681: 4497: 4480: 4457: 3249: 70: 4689: 4202: 4183: 77:
terms, this means that each pair of rows in a Hadamard matrix represents two
5987: 5561: 4573: 4554: 4364:
Kharaghani, H.; Tayfeh-Rezaie, B. (2005). "A Hadamard matrix of order 428".
4234:
Hadamard, J. (1893). "Résolution d'une question relative aux déterminants".
3858: 3534: 185: 165: 162: 5030: 4270: 1853:{\displaystyle \alpha +{\frac {n}{2}}-\beta =\beta +{\frac {n}{2}}-\alpha } 3326:
in the theory of Hadamard matrices is one of existence. Specifically, the
5921: 4027: 158: 74: 4914: 4939: 4816: 4665: 4650: 4641: 4211: 3297: 2607: 5023: 4664:
Geramita, Anthony V.; Pullman, Norman J.; Wallis, Jennifer S. (1974).
4422: 4377: 4861:"Doubly regular tournaments are equivalent to skew Hadamard matrices" 4522:"Doubly regular tournaments are equivalent to skew hadamard matrices" 118:
among parallelotopes spanned by vectors whose entries are bounded in
115: 3105:
This construction demonstrates that the rows of the Hadamard matrix
3993:
are complex Hadamard matrices in which the entries are taken to be
3529:
inequivalent matrices are known for orders 32, 36, and 40. Using a
2616:
Sylvester's matrices have a number of special properties. They are
5026:
of all orders up to 100, including every type with order up to 28;
4751:
Designs 2002: Further computational and constructive design theory
4413: 3482:
is a prime power that is congruent to 1 modulo 4. His method uses
37: 5073: 5046: 3725:
Reid and Brown in 1972 showed that there exists a doubly regular
2791:-bit numbers arranged in ascending counting order. We may define 1986:
Examples of Hadamard matrices were actually first constructed by
521:
The order of a Hadamard matrix must be 1, 2, or a multiple of 4.
5056:
to obtain all orders up to 1000, except 668, 716, 876 & 892.
5036: 4004:
has been used by some authors to refer specifically to the case
3958:
to be a matrix in which the entries are complex numbers of unit
3758:− 1)/2 matches (and loses the same number). Since each of the ( 5077: 4444:
Wanless, I.M. (2005). "Permanents of matrices of signed ones".
2050:{\displaystyle {\begin{bmatrix}H&H\\H&-H\end{bmatrix}}} 3502: 69:
whose entries are either +1 or −1 and whose rows are mutually
46: 3474:
to 3 modulo 4 and that produces a Hadamard matrix of order 2(
2720:{\displaystyle (\{1,-1\},\times )\mapsto (\{0,1\}),\oplus \}} 1428:
Row 1 and row 2, like all other rows except row 0, must have
573:
values each of which is either 1 or −1, therefore the sum is
3733:
if and only if there exists a skew Hadamard matrix of order
3341:
A generalization of Sylvester's construction proves that if
137:
Certain Hadamard matrices can almost directly be used as an
4801:
Kimura, Hiroshi (1989). "New Hadamard matrix of order 24".
1547:
denote the number of 1s of row 2 beneath −1s in row 1. Let
1527:
denote the number of −1s of row 2 beneath 1s in row 1. Let
4026:(BRR) – a technique used by statisticians to estimate the 1507:
denote the number of 1s of row 2 beneath 1s in row 1. Let
3762:− 1)/2 players defeated by a given player also loses to ( 4973:"Classification of hadamard matrices of order 24 and 28" 2644:
If we map the elements of the Hadamard matrix using the
1929:
But we have as the number of 1s in row 1 the odd number
1567:
denote the number of −1s of row 2 beneath −1s in row 1.
3737: + 1. In a mathematical tournament of order 3256:, by contrast, is constructed from the Hadamard matrix 4073:
and under-determined linear systems (inverse problems)
2899: 2854: 2378: 2210: 2147: 2104: 2013: 498:{\displaystyle |\operatorname {det} (M)|\leq n^{n/2}.} 380:{\displaystyle \operatorname {det} (H)=\pm \,n^{n/2},} 4255:
Paley, R. E. A. C. (1933). "On orthogonal matrices".
3916: 3680: 3636: 3586: 3566: 3546: 3409: 3374: 3347: 3262: 3222: 3186: 3145: 3111: 3041: 2827: 2797: 2760: 2733: 2653: 2585: 2553: 2352: 2077: 2007: 1935: 1906: 1867: 1802: 1763: 1720: 1680: 1628: 1602: 1576: 1553: 1533: 1513: 1493: 1462: 1434: 1110: 1087: 1067: 999: 899: 814: 785: 685: 659: 633: 598: 549: 508:
Equality in this bound is attained for a real matrix
445: 333: 294: 205: 986:{\displaystyle A=(a_{i,j})_{i,j\in \{0,1,...,n-1\}}} 772:{\displaystyle H=(h_{i,j})_{i,j\in \{0,1,...,n-1\}}} 276:. To see that this is true, notice that the rows of 5945: 5869: 5815: 5751: 5585: 5503: 5449: 5388: 5112: 4063:
for investigating noise factor impacts on responses
3095:{\displaystyle H_{2^{n}}=F_{n}^{\textsf {T}}F_{n}.} 4915:"A construction for generalized hadamard matrices" 3981:. Complex Hadamard matrices arise in the study of 3943: 3766:− 3)/2 other players, the number of player pairs ( 3713: 3642: 3622: 3572: 3552: 3435: 3387: 3360: 3282: 3238: 3205: 3158: 3131: 3094: 3017: 2810: 2779: 2746: 2719: 2591: 2571: 2536: 2332: 2049: 1961: 1918: 1891: 1852: 1787: 1746: 1706: 1667:{\displaystyle n/2=\alpha +\gamma =\beta +\delta } 1666: 1614: 1588: 1559: 1539: 1519: 1499: 1476: 1448: 1417: 1093: 1073: 1053: 985: 882: 797: 771: 671: 645: 619: 561: 497: 379: 308: 239: 122:by 1. Equivalently, a Hadamard matrix has maximal 4284:Baumert, L.; Golomb, S. W.; Hall, M. Jr. (1962). 883:{\displaystyle \sum _{i=0}^{n-1}h_{k,i}h_{l,i}=0} 4676:(1). Cambridge University Press (CUP): 119–122. 2632:. Sylvester matrices are closely connected with 4670:Bulletin of the Australian Mathematical Society 4040:spectrometry – an instrument for measuring the 4938:Seberry, J.; Wysocki, B.; Wysocki, T. (2005). 1788:{\displaystyle \alpha +\delta =\beta +\gamma } 5089: 4291:Bulletin of the American Mathematical Society 4286:"Discovery of an Hadamard Matrix of Order 92" 1892:{\displaystyle \alpha -\beta =\beta -\alpha } 8: 4618:Journal of the American Mathematical Society 3458:, which produces a Hadamard matrix of order 2714: 2702: 2690: 2672: 2657: 978: 942: 764: 728: 4940:"On some applications of Hadamard matrices" 2624: ≥ 1 (2  > 1), have 5663:Fundamental (linear differential equation) 5096: 5082: 5074: 4998:Yarlagadda, R. K.; Hershey, J. E. (1997). 4716:"Hadamard matrices of the Williamson type" 4184:"Hadamard matrices and their applications" 3877:would necessarily have to be of the form 4 3330:proposes that a Hadamard matrix of order 4 524: 4988: 4903: 4876: 4849: 4731: 4640: 4630: 4613:"Cyclotomic integers and finite geometry" 4572: 4537: 4526:Journal of Combinatorial Theory, Series A 4496: 4412: 4303: 4201: 3926: 3925: 3924: 3915: 3687: 3686: 3685: 3679: 3635: 3603: 3597: 3585: 3565: 3545: 3427: 3414: 3408: 3379: 3373: 3352: 3346: 3272: 3267: 3261: 3227: 3221: 3191: 3185: 3150: 3144: 3121: 3116: 3110: 3083: 3073: 3072: 3071: 3066: 3051: 3046: 3040: 2988: 2970: 2948: 2937: 2917: 2906: 2894: 2881: 2849: 2836: 2828: 2826: 2802: 2796: 2771: 2759: 2738: 2732: 2652: 2584: 2552: 2517: 2512: 2499: 2470: 2465: 2442: 2437: 2415: 2410: 2390: 2385: 2373: 2362: 2357: 2351: 2205: 2192: 2142: 2129: 2099: 2086: 2078: 2076: 2008: 2006: 1939: 1934: 1905: 1866: 1834: 1809: 1801: 1762: 1730: 1719: 1690: 1679: 1632: 1627: 1601: 1575: 1552: 1532: 1512: 1492: 1466: 1461: 1438: 1433: 1397: 1381: 1365: 1354: 1335: 1319: 1309: 1298: 1282: 1271: 1252: 1236: 1220: 1204: 1188: 1177: 1158: 1142: 1126: 1115: 1109: 1086: 1066: 1039: 1023: 1004: 998: 929: 913: 898: 862: 846: 830: 819: 813: 784: 715: 699: 684: 658: 632: 597: 548: 482: 478: 466: 446: 444: 364: 360: 355: 332: 302: 295: 293: 231: 215: 214: 213: 204: 108:Hadamard matrix has the maximum possible 4481:"Geometric search for Hadamard matrices" 779:, then it has the property that for any 49:in 2005, using Sylvester's construction. 45:demonstrates the Hadamard conjecture at 5968:Matrix representation of conic sections 4888:"On the existence of Hadamard matrices" 4768:Goethals, J. M.; Seidel, J. J. (1970). 4714:Baumert, L. D.; Hall, Marshall (1965). 4133: 3869:circulant Hadamard matrix existed with 3533:notion of equivalence that also allows 3317:(more unsolved problems in mathematics) 240:{\displaystyle HH^{\textsf {T}}=nI_{n}} 61:, named after the French mathematician 5000:Hadamard Matrix Analysis and Synthesis 1596:, has to match those resulting in −1, 1054:{\displaystyle a_{i,j}=h_{0,j}h_{i,j}} 132:Hadamard's maximal determinant problem 3714:{\displaystyle H^{\textsf {T}}+H=2I.} 3524:Two Hadamard matrices are considered 3305:Is there a Hadamard matrix of order 4 7: 5062:to generate Hadamard Matrices using 4770:"A skew Hadamard matrix of order 36" 4753:. Boston: Kluwer. pp. 133–205. 4600:. New York: Wiley. pp. 195–228. 4555:"Character sums and difference sets" 2787:matrix whose columns consist of all 280:are all orthogonal vectors over the 4237:Bulletin des Sciences Mathématiques 4182:Hedayat, A.; Wallis, W. D. (1978). 3944:{\displaystyle WW^{\textsf {T}}=wI} 3505:. They used a construction, due to 3290:by a slightly different procedure. 3248:This code is also referred to as a 1707:{\displaystyle \gamma =n/2-\alpha } 1081:has all 1s in row 0. We check that 4258:Journal of Mathematics and Physics 3436:{\displaystyle H_{n}\otimes H_{m}} 3334:exists for every positive integer 1962:{\displaystyle n/2=\alpha +\beta } 1747:{\displaystyle \delta =n/2-\beta } 25: 4886:Seberry Wallis, Jennifer (1976). 4838:Annals of Mathematical Statistics 4834:"On Hotelling's Weighing Problem" 4733:10.1090/S0025-5718-1965-0179093-2 3954:Another generalization defines a 6051:Unsolved problems in mathematics 6002: 4520:Reid, K.B.; Brown, Ezra (1972). 4401:Journal of Combinatorial Designs 4366:Journal of Combinatorial Designs 3395:are Hadamard matrices of orders 413:, whose entries are bounded by | 320:through by this length gives an 5870:Used in science and engineering 4859:Reid, K. B.; Brown, E. (1972). 4666:"Families of weighing matrices" 4305:10.1090/S0002-9904-1962-10761-7 4142:"Hadamard Matrices and Designs" 3623:{\displaystyle O(n^{2}/\log n)} 3300:Unsolved problem in mathematics 2060:is a Hadamard matrix of order 2 1589:{\displaystyle \alpha +\delta } 5113:Explicitly constrained entries 5047:"Library of Hadamard Matrices" 4560:Pacific Journal of Mathematics 4446:Linear and Multilinear Algebra 3906:One basic generalization is a 3617: 3590: 3443:is a Hadamard matrix of order 2705: 2687: 2684: 2681: 2654: 1998:. Then the partitioned matrix 1994:be a Hadamard matrix of order 1919:{\displaystyle \alpha =\beta } 1615:{\displaystyle \beta +\gamma } 926: 906: 712: 692: 467: 463: 457: 447: 346: 340: 309:{\displaystyle {\sqrt {n}}\,.} 180:be a Hadamard matrix of order 1: 5887:Fundamental (computer vision) 4632:10.1090/S0894-0347-99-00298-2 4343:10.1215/S0012-7094-44-01108-7 4024:Balanced repeated replication 3991:Butson-type Hadamard matrices 2780:{\displaystyle n\times 2^{n}} 151:balanced repeated replication 4990:10.1016/0012-365X(93)E0169-5 4931:10.1016/0378-3758(80)90021-X 4905:10.1016/0097-3165(76)90062-5 4878:10.1016/0097-3165(72)90098-2 4539:10.1016/0097-3165(72)90098-2 4485:Theoretical Computer Science 3782:and to the given player is ( 2572:{\displaystyle 2\leq k\in N} 1981: 1674:, from which we can express 434:Hadamard's determinant bound 5653:Duplication and elimination 5452:eigenvalues or eigenvectors 4832:Mood, Alexander M. (1964). 3889:Circulant Hadamard matrices 3309:for every positive integer 1622:. Due to (*), we also have 1101:is also a Hadamard matrix: 6067: 5586:With specific applications 5215:Discrete Fourier Transform 4913:Seberry, Jennifer (1980). 3520:Equivalence and uniqueness 3139:can be viewed as a length 192:is closely related to its 100:spanned by the rows of an 29: 5996: 5877:Cabibbo–Kobayashi–Maskawa 5504:Satisfying conditions on 4956:10.1007/s00184-005-0415-y 4786:10.1017/S144678870000673X 4682:10.1017/s0004972700040703 4498:10.1016/j.tcs.2019.01.025 4458:10.1080/03081080500093990 4330:Duke Mathematical Journal 3839:Regular Hadamard matrices 3834:Regular Hadamard matrices 3283:{\displaystyle H_{2^{n}}} 3132:{\displaystyle H_{2^{n}}} 893:Now we define the matrix 672:{\displaystyle n\times n} 4919:J. Statist. Plann. Infer 4865:J. Combin. Theory Ser. A 4804:Graphs and Combinatorics 4061:Robust parameter designs 3849:Hadamard matrix is that 2640:Alternative construction 2592:{\displaystyle \otimes } 1982:Sylvester's construction 1484:entries of −1 each. (*) 394:) is the determinant of 149:), and are also used in 5235:Generalized permutation 4971:Spence, Edward (1995). 4851:10.1214/aoms/1177730883 4574:10.2140/pjm.1965.15.319 4087:for quantum algorithms. 4002:complex Hadamard matrix 3956:complex Hadamard matrix 3206:{\displaystyle 2^{n-1}} 1560:{\displaystyle \delta } 1540:{\displaystyle \gamma } 1500:{\displaystyle \alpha } 798:{\displaystyle k\neq l} 646:{\displaystyle m\geq 1} 420: | ≤ 1, for each 6009:Mathematics portal 5024:Skew Hadamard matrices 4598:Error Correcting Codes 4271:10.1002/sapm1933121311 4203:10.1214/aos/1176344370 4170:Philosophical Magazine 4051:Plackett–Burman design 4012:Practical applications 3945: 3715: 3662:Skew Hadamard matrices 3644: 3624: 3574: 3554: 3437: 3389: 3362: 3284: 3240: 3239:{\displaystyle F_{n}.} 3207: 3160: 3133: 3096: 3019: 2812: 2781: 2748: 2721: 2593: 2573: 2538: 2334: 2051: 1988:James Joseph Sylvester 1963: 1920: 1893: 1854: 1789: 1748: 1708: 1668: 1616: 1590: 1561: 1541: 1521: 1520:{\displaystyle \beta } 1501: 1478: 1450: 1419: 1376: 1293: 1199: 1137: 1095: 1075: 1055: 987: 884: 841: 799: 773: 673: 653:, and there exists an 647: 621: 620:{\displaystyle n=4m+2} 563: 562:{\displaystyle n>1} 518:is a Hadamard matrix. 499: 381: 310: 241: 50: 4774:J. Austral. Math. Soc 4553:Turyn, R. J. (1965). 4077:Quantum Hadamard gate 4055:independent variables 4032:statistical estimator 3946: 3716: 3645: 3625: 3575: 3555: 3438: 3390: 3388:{\displaystyle H_{m}} 3363: 3361:{\displaystyle H_{n}} 3285: 3241: 3208: 3168:error-correcting code 3161: 3159:{\displaystyle 2^{n}} 3134: 3097: 3020: 2813: 2811:{\displaystyle F_{n}} 2782: 2749: 2747:{\displaystyle F_{n}} 2722: 2630:positive and negative 2594: 2574: 2539: 2335: 2052: 1964: 1921: 1894: 1855: 1790: 1749: 1709: 1669: 1617: 1591: 1562: 1542: 1522: 1502: 1479: 1451: 1420: 1350: 1267: 1173: 1111: 1096: 1076: 1056: 988: 885: 815: 800: 774: 674: 648: 622: 564: 500: 382: 311: 288:and each have length 242: 139:error-correcting code 41: 6041:Combinatorial design 4611:Schmidt, B. (1999). 4189:Annals of Statistics 4098:Combinatorial design 3962:and which satisfies 3914: 3678: 3634: 3584: 3564: 3544: 3407: 3372: 3345: 3260: 3220: 3184: 3143: 3109: 3039: 2825: 2795: 2758: 2731: 2651: 2583: 2551: 2350: 2075: 2005: 1933: 1904: 1865: 1800: 1761: 1718: 1678: 1626: 1600: 1574: 1551: 1531: 1511: 1491: 1460: 1432: 1108: 1085: 1065: 997: 897: 812: 783: 683: 657: 631: 596: 547: 443: 331: 292: 272:is the transpose of 203: 5958:Linear independence 5205:Diagonally dominant 3987:quantum computation 3975:conjugate transpose 3774: ) such that 3403:respectively, then 3328:Hadamard conjecture 3322:The most important 3294:Hadamard conjecture 3078: 3028:It can be shown by 1477:{\displaystyle n/2} 1449:{\displaystyle n/2} 1314: 27:Mathematics concept 18:Hadamard conjecture 5963:Matrix exponential 5953:Jordan normal form 5787:Fisher information 5658:Euclidean distance 5572:Totally unimodular 5002:. Boston: Kluwer. 4817:10.1007/BF01788676 4479:Kline, J. (2019). 4172:, 34:461–475, 1867 4123:Quantum logic gate 4103:Hadamard transform 4085:Hadamard transform 4067:Compressed sensing 3985:and the theory of 3941: 3711: 3666:A Hadamard matrix 3640: 3620: 3570: 3550: 3456:Paley construction 3433: 3385: 3358: 3280: 3236: 3203: 3156: 3129: 3092: 3062: 3015: 3013: 3002: 2867: 2808: 2777: 2744: 2717: 2646:group homomorphism 2589: 2569: 2534: 2486: 2330: 2328: 2317: 2175: 2112: 2047: 2041: 1959: 1916: 1889: 1850: 1785: 1744: 1704: 1664: 1612: 1586: 1557: 1537: 1517: 1497: 1474: 1446: 1415: 1294: 1091: 1071: 1051: 983: 880: 795: 769: 669: 643: 617: 559: 495: 377: 306: 237: 51: 6028: 6027: 6020:Category:Matrices 5892:Fuzzy associative 5782:Doubly stochastic 5490:Positive-definite 5170:Block tridiagonal 5031:"Hadamard Matrix" 5009:978-0-7923-9826-4 4892:J. Comb. Theory A 4760:978-1-4020-7599-5 4423:10.1002/jcd.21358 4378:10.1002/jcd.20043 4081:quantum computing 4071:signal processing 4042:spectrum of light 3983:operator algebras 3928: 3689: 3643:{\displaystyle H} 3573:{\displaystyle n} 3553:{\displaystyle H} 3215:generating matrix 3075: 2601:Kronecker product 1978: 1977: 1842: 1817: 1456:entries of 1 and 1094:{\displaystyle A} 1074:{\displaystyle A} 322:orthogonal matrix 300: 217: 147:Reed–Muller codes 16:(Redirected from 6058: 6015:List of matrices 6007: 6006: 5983:Row echelon form 5927:State transition 5856:Seidel adjacency 5738:Totally positive 5598:Alternating sign 5195:Complex Hadamard 5098: 5091: 5084: 5075: 5050: 5034: 5013: 4994: 4992: 4983:(1–3): 185–242. 4967: 4950:(2–3): 221–239. 4934: 4909: 4907: 4882: 4880: 4855: 4853: 4828: 4797: 4764: 4745: 4735: 4702: 4701: 4661: 4655: 4654: 4644: 4634: 4608: 4602: 4601: 4593: 4587: 4586: 4576: 4550: 4544: 4543: 4541: 4517: 4511: 4510: 4500: 4476: 4470: 4469: 4441: 4435: 4434: 4416: 4396: 4390: 4389: 4361: 4355: 4354: 4324: 4318: 4317: 4307: 4281: 4275: 4274: 4265:(1–4): 311–320. 4252: 4246: 4245: 4231: 4225: 4223: 4205: 4196:(6): 1184–1238. 4179: 4173: 4165:J.J. Sylvester. 4163: 4157: 4156: 4154: 4152: 4146: 4138: 3950: 3948: 3947: 3942: 3931: 3930: 3929: 3720: 3718: 3717: 3712: 3692: 3691: 3690: 3649: 3647: 3646: 3641: 3629: 3627: 3626: 3621: 3607: 3602: 3601: 3579: 3577: 3576: 3571: 3559: 3557: 3556: 3551: 3442: 3440: 3439: 3434: 3432: 3431: 3419: 3418: 3394: 3392: 3391: 3386: 3384: 3383: 3367: 3365: 3364: 3359: 3357: 3356: 3301: 3289: 3287: 3286: 3281: 3279: 3278: 3277: 3276: 3245: 3243: 3242: 3237: 3232: 3231: 3212: 3210: 3209: 3204: 3202: 3201: 3179:minimum distance 3165: 3163: 3162: 3157: 3155: 3154: 3138: 3136: 3135: 3130: 3128: 3127: 3126: 3125: 3101: 3099: 3098: 3093: 3088: 3087: 3077: 3076: 3070: 3058: 3057: 3056: 3055: 3024: 3022: 3021: 3016: 3014: 3007: 3006: 2999: 2998: 2981: 2980: 2961: 2960: 2959: 2958: 2930: 2929: 2928: 2927: 2886: 2885: 2872: 2871: 2841: 2840: 2817: 2815: 2814: 2809: 2807: 2806: 2786: 2784: 2783: 2778: 2776: 2775: 2753: 2751: 2750: 2745: 2743: 2742: 2726: 2724: 2723: 2718: 2598: 2596: 2595: 2590: 2578: 2576: 2575: 2570: 2543: 2541: 2540: 2535: 2530: 2529: 2528: 2527: 2504: 2503: 2491: 2490: 2483: 2482: 2481: 2480: 2455: 2454: 2453: 2452: 2428: 2427: 2426: 2425: 2403: 2402: 2401: 2400: 2369: 2368: 2367: 2366: 2339: 2337: 2336: 2331: 2329: 2322: 2321: 2197: 2196: 2180: 2179: 2134: 2133: 2117: 2116: 2091: 2090: 2056: 2054: 2053: 2048: 2046: 2045: 1968: 1966: 1965: 1960: 1943: 1925: 1923: 1922: 1917: 1898: 1896: 1895: 1890: 1859: 1857: 1856: 1851: 1843: 1835: 1818: 1810: 1794: 1792: 1791: 1786: 1754:and substitute: 1753: 1751: 1750: 1745: 1734: 1713: 1711: 1710: 1705: 1694: 1673: 1671: 1670: 1665: 1636: 1621: 1619: 1618: 1613: 1595: 1593: 1592: 1587: 1566: 1564: 1563: 1558: 1546: 1544: 1543: 1538: 1526: 1524: 1523: 1518: 1506: 1504: 1503: 1498: 1483: 1481: 1480: 1475: 1470: 1455: 1453: 1452: 1447: 1442: 1424: 1422: 1421: 1416: 1408: 1407: 1392: 1391: 1375: 1364: 1346: 1345: 1330: 1329: 1313: 1308: 1292: 1281: 1263: 1262: 1247: 1246: 1231: 1230: 1215: 1214: 1198: 1187: 1169: 1168: 1153: 1152: 1136: 1125: 1100: 1098: 1097: 1092: 1080: 1078: 1077: 1072: 1060: 1058: 1057: 1052: 1050: 1049: 1034: 1033: 1015: 1014: 992: 990: 989: 984: 982: 981: 924: 923: 889: 887: 886: 881: 873: 872: 857: 856: 840: 829: 804: 802: 801: 796: 778: 776: 775: 770: 768: 767: 710: 709: 679:Hadamard matrix 678: 676: 675: 670: 652: 650: 649: 644: 626: 624: 623: 618: 568: 566: 565: 560: 525: 504: 502: 501: 496: 491: 490: 486: 470: 450: 409:matrix of order 386: 384: 383: 378: 373: 372: 368: 315: 313: 312: 307: 301: 296: 246: 244: 243: 238: 236: 235: 220: 219: 218: 157:to estimate the 145:(generalized in 114: 63:Jacques Hadamard 21: 6066: 6065: 6061: 6060: 6059: 6057: 6056: 6055: 6031: 6030: 6029: 6024: 6001: 5992: 5941: 5865: 5811: 5747: 5581: 5499: 5445: 5384: 5185:Centrosymmetric 5108: 5102: 5054:On-line utility 5043:N. J. A. Sloane 5041: 5029: 5020: 5010: 4997: 4970: 4937: 4912: 4885: 4858: 4831: 4800: 4767: 4761: 4748: 4726:(91): 442–447. 4713: 4710: 4708:Further reading 4705: 4663: 4662: 4658: 4610: 4609: 4605: 4595: 4594: 4590: 4552: 4551: 4547: 4519: 4518: 4514: 4478: 4477: 4473: 4443: 4442: 4438: 4398: 4397: 4393: 4363: 4362: 4358: 4326: 4325: 4321: 4283: 4282: 4278: 4254: 4253: 4249: 4233: 4232: 4228: 4181: 4180: 4176: 4164: 4160: 4150: 4148: 4144: 4140: 4139: 4135: 4131: 4118:Weighing matrix 4108:Quincunx matrix 4094: 4014: 3967: 3920: 3912: 3911: 3908:weighing matrix 3904: 3902:Generalizations 3891: 3865: ×  3845: ×  3836: 3681: 3676: 3675: 3664: 3656: 3632: 3631: 3593: 3582: 3581: 3562: 3561: 3542: 3541: 3522: 3454:discovered the 3423: 3410: 3405: 3404: 3375: 3370: 3369: 3348: 3343: 3342: 3320: 3319: 3314: 3303: 3299: 3296: 3268: 3263: 3258: 3257: 3223: 3218: 3217: 3187: 3182: 3181: 3146: 3141: 3140: 3117: 3112: 3107: 3106: 3079: 3047: 3042: 3037: 3036: 3012: 3011: 3001: 3000: 2984: 2982: 2966: 2963: 2962: 2944: 2933: 2931: 2913: 2902: 2895: 2887: 2877: 2874: 2873: 2866: 2865: 2860: 2850: 2842: 2832: 2823: 2822: 2818:recursively by 2798: 2793: 2792: 2767: 2756: 2755: 2734: 2729: 2728: 2649: 2648: 2642: 2634:Walsh functions 2581: 2580: 2549: 2548: 2513: 2508: 2495: 2485: 2484: 2466: 2461: 2456: 2438: 2433: 2430: 2429: 2411: 2406: 2404: 2386: 2381: 2374: 2358: 2353: 2348: 2347: 2327: 2326: 2316: 2315: 2310: 2302: 2294: 2288: 2287: 2279: 2271: 2266: 2260: 2259: 2251: 2246: 2238: 2232: 2231: 2226: 2221: 2216: 2206: 2198: 2188: 2185: 2184: 2174: 2173: 2165: 2159: 2158: 2153: 2143: 2135: 2125: 2122: 2121: 2111: 2110: 2100: 2092: 2082: 2073: 2072: 2040: 2039: 2031: 2025: 2024: 2019: 2009: 2003: 2002: 1984: 1979: 1931: 1930: 1902: 1901: 1863: 1862: 1798: 1797: 1759: 1758: 1716: 1715: 1676: 1675: 1624: 1623: 1598: 1597: 1572: 1571: 1549: 1548: 1529: 1528: 1509: 1508: 1489: 1488: 1458: 1457: 1430: 1429: 1393: 1377: 1331: 1315: 1248: 1232: 1216: 1200: 1154: 1138: 1106: 1105: 1083: 1082: 1063: 1062: 1035: 1019: 1000: 995: 994: 925: 909: 895: 894: 858: 842: 810: 809: 781: 780: 711: 695: 681: 680: 655: 654: 629: 628: 594: 593: 545: 544: 530: 474: 441: 440: 418: 356: 329: 328: 290: 289: 266:identity matrix 261: ×  255: 227: 209: 201: 200: 174: 153:(BRR), used by 109: 104: ×  59:Hadamard matrix 34: 28: 23: 22: 15: 12: 11: 5: 6064: 6062: 6054: 6053: 6048: 6043: 6033: 6032: 6026: 6025: 6023: 6022: 6017: 6012: 5997: 5994: 5993: 5991: 5990: 5985: 5980: 5975: 5973:Perfect matrix 5970: 5965: 5960: 5955: 5949: 5947: 5943: 5942: 5940: 5939: 5934: 5929: 5924: 5919: 5914: 5909: 5904: 5899: 5894: 5889: 5884: 5879: 5873: 5871: 5867: 5866: 5864: 5863: 5858: 5853: 5848: 5843: 5838: 5833: 5828: 5822: 5820: 5813: 5812: 5810: 5809: 5804: 5799: 5794: 5789: 5784: 5779: 5774: 5769: 5764: 5758: 5756: 5749: 5748: 5746: 5745: 5743:Transformation 5740: 5735: 5730: 5725: 5720: 5715: 5710: 5705: 5700: 5695: 5690: 5685: 5680: 5675: 5670: 5665: 5660: 5655: 5650: 5645: 5640: 5635: 5630: 5625: 5620: 5615: 5610: 5605: 5600: 5595: 5589: 5587: 5583: 5582: 5580: 5579: 5574: 5569: 5564: 5559: 5554: 5549: 5544: 5539: 5534: 5529: 5520: 5514: 5512: 5501: 5500: 5498: 5497: 5492: 5487: 5482: 5480:Diagonalizable 5477: 5472: 5467: 5462: 5456: 5454: 5450:Conditions on 5447: 5446: 5444: 5443: 5438: 5433: 5428: 5423: 5418: 5413: 5408: 5403: 5398: 5392: 5390: 5386: 5385: 5383: 5382: 5377: 5372: 5367: 5362: 5357: 5352: 5347: 5342: 5337: 5332: 5330:Skew-symmetric 5327: 5325:Skew-Hermitian 5322: 5317: 5312: 5307: 5302: 5297: 5292: 5287: 5282: 5277: 5272: 5267: 5262: 5257: 5252: 5247: 5242: 5237: 5232: 5227: 5222: 5217: 5212: 5207: 5202: 5197: 5192: 5187: 5182: 5177: 5172: 5167: 5162: 5160:Block-diagonal 5157: 5152: 5147: 5142: 5137: 5135:Anti-symmetric 5132: 5130:Anti-Hermitian 5127: 5122: 5116: 5114: 5110: 5109: 5103: 5101: 5100: 5093: 5086: 5078: 5072: 5071: 5066: 5057: 5051: 5039: 5027: 5019: 5018:External links 5016: 5015: 5014: 5008: 4995: 4968: 4935: 4925:(4): 365–368. 4910: 4898:(2): 188–195. 4883: 4871:(3): 332–338. 4856: 4844:(4): 432–446. 4829: 4811:(1): 235–242. 4798: 4780:(3): 343–344. 4765: 4759: 4746: 4709: 4706: 4704: 4703: 4656: 4625:(4): 929–952. 4603: 4588: 4567:(1): 319–346. 4545: 4532:(3): 332–338. 4512: 4471: 4452:(6): 427–433. 4436: 4407:(6): 270–277. 4391: 4372:(6): 435–440. 4356: 4319: 4298:(3): 237–238. 4276: 4247: 4226: 4174: 4158: 4132: 4130: 4127: 4126: 4125: 4120: 4115: 4110: 4105: 4100: 4093: 4090: 4089: 4088: 4074: 4064: 4058: 4048: 4045: 4038:Coded aperture 4035: 4021: 4013: 4010: 3998:roots of unity 3965: 3940: 3937: 3934: 3923: 3919: 3903: 3900: 3898:less than 10. 3890: 3887: 3835: 3832: 3806:contains 1 if 3778:loses both to 3710: 3707: 3704: 3701: 3698: 3695: 3684: 3663: 3660: 3655: 3652: 3639: 3619: 3616: 3613: 3610: 3606: 3600: 3596: 3592: 3589: 3569: 3549: 3521: 3518: 3430: 3426: 3422: 3417: 3413: 3382: 3378: 3355: 3351: 3315: 3304: 3298: 3295: 3292: 3275: 3271: 3266: 3235: 3230: 3226: 3200: 3197: 3194: 3190: 3153: 3149: 3124: 3120: 3115: 3103: 3102: 3091: 3086: 3082: 3069: 3065: 3061: 3054: 3050: 3045: 3026: 3025: 3010: 3005: 2997: 2994: 2991: 2987: 2983: 2979: 2976: 2973: 2969: 2965: 2964: 2957: 2954: 2951: 2947: 2943: 2940: 2936: 2932: 2926: 2923: 2920: 2916: 2912: 2909: 2905: 2901: 2900: 2898: 2893: 2890: 2888: 2884: 2880: 2876: 2875: 2870: 2864: 2861: 2859: 2856: 2855: 2853: 2848: 2845: 2843: 2839: 2835: 2831: 2830: 2805: 2801: 2774: 2770: 2766: 2763: 2741: 2737: 2716: 2713: 2710: 2707: 2704: 2701: 2698: 2695: 2692: 2689: 2686: 2683: 2680: 2677: 2674: 2671: 2668: 2665: 2662: 2659: 2656: 2641: 2638: 2588: 2568: 2565: 2562: 2559: 2556: 2545: 2544: 2533: 2526: 2523: 2520: 2516: 2511: 2507: 2502: 2498: 2494: 2489: 2479: 2476: 2473: 2469: 2464: 2460: 2457: 2451: 2448: 2445: 2441: 2436: 2432: 2431: 2424: 2421: 2418: 2414: 2409: 2405: 2399: 2396: 2393: 2389: 2384: 2380: 2379: 2377: 2372: 2365: 2361: 2356: 2341: 2340: 2325: 2320: 2314: 2311: 2309: 2306: 2303: 2301: 2298: 2295: 2293: 2290: 2289: 2286: 2283: 2280: 2278: 2275: 2272: 2270: 2267: 2265: 2262: 2261: 2258: 2255: 2252: 2250: 2247: 2245: 2242: 2239: 2237: 2234: 2233: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2211: 2209: 2204: 2201: 2199: 2195: 2191: 2187: 2186: 2183: 2178: 2172: 2169: 2166: 2164: 2161: 2160: 2157: 2154: 2152: 2149: 2148: 2146: 2141: 2138: 2136: 2132: 2128: 2124: 2123: 2120: 2115: 2109: 2106: 2105: 2103: 2098: 2095: 2093: 2089: 2085: 2081: 2080: 2066:Walsh matrices 2058: 2057: 2044: 2038: 2035: 2032: 2030: 2027: 2026: 2023: 2020: 2018: 2015: 2014: 2012: 1983: 1980: 1976: 1975: 1958: 1955: 1952: 1949: 1946: 1942: 1938: 1927: 1926: 1915: 1912: 1909: 1899: 1888: 1885: 1882: 1879: 1876: 1873: 1870: 1860: 1849: 1846: 1841: 1838: 1833: 1830: 1827: 1824: 1821: 1816: 1813: 1808: 1805: 1795: 1784: 1781: 1778: 1775: 1772: 1769: 1766: 1743: 1740: 1737: 1733: 1729: 1726: 1723: 1703: 1700: 1697: 1693: 1689: 1686: 1683: 1663: 1660: 1657: 1654: 1651: 1648: 1645: 1642: 1639: 1635: 1631: 1611: 1608: 1605: 1585: 1582: 1579: 1556: 1536: 1516: 1496: 1473: 1469: 1465: 1445: 1441: 1437: 1426: 1425: 1414: 1411: 1406: 1403: 1400: 1396: 1390: 1387: 1384: 1380: 1374: 1371: 1368: 1363: 1360: 1357: 1353: 1349: 1344: 1341: 1338: 1334: 1328: 1325: 1322: 1318: 1312: 1307: 1304: 1301: 1297: 1291: 1288: 1285: 1280: 1277: 1274: 1270: 1266: 1261: 1258: 1255: 1251: 1245: 1242: 1239: 1235: 1229: 1226: 1223: 1219: 1213: 1210: 1207: 1203: 1197: 1194: 1191: 1186: 1183: 1180: 1176: 1172: 1167: 1164: 1161: 1157: 1151: 1148: 1145: 1141: 1135: 1132: 1129: 1124: 1121: 1118: 1114: 1090: 1070: 1048: 1045: 1042: 1038: 1032: 1029: 1026: 1022: 1018: 1013: 1010: 1007: 1003: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 944: 941: 938: 935: 932: 928: 922: 919: 916: 912: 908: 905: 902: 891: 890: 879: 876: 871: 868: 865: 861: 855: 852: 849: 845: 839: 836: 833: 828: 825: 822: 818: 794: 791: 788: 766: 763: 760: 757: 754: 751: 748: 745: 742: 739: 736: 733: 730: 727: 724: 721: 718: 714: 708: 705: 702: 698: 694: 691: 688: 668: 665: 662: 642: 639: 636: 616: 613: 610: 607: 604: 601: 558: 555: 552: 532: 531: 528: 523: 513:if and only if 506: 505: 494: 489: 485: 481: 477: 473: 469: 465: 462: 459: 456: 453: 449: 428:between 1 and 416: 388: 387: 376: 371: 367: 363: 359: 354: 351: 348: 345: 342: 339: 336: 305: 299: 253: 248: 247: 234: 230: 226: 223: 212: 208: 173: 170: 120:absolute value 43:Gilbert Strang 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6063: 6052: 6049: 6047: 6044: 6042: 6039: 6038: 6036: 6021: 6018: 6016: 6013: 6011: 6010: 6005: 5999: 5998: 5995: 5989: 5986: 5984: 5981: 5979: 5978:Pseudoinverse 5976: 5974: 5971: 5969: 5966: 5964: 5961: 5959: 5956: 5954: 5951: 5950: 5948: 5946:Related terms 5944: 5938: 5937:Z (chemistry) 5935: 5933: 5930: 5928: 5925: 5923: 5920: 5918: 5915: 5913: 5910: 5908: 5905: 5903: 5900: 5898: 5895: 5893: 5890: 5888: 5885: 5883: 5880: 5878: 5875: 5874: 5872: 5868: 5862: 5859: 5857: 5854: 5852: 5849: 5847: 5844: 5842: 5839: 5837: 5834: 5832: 5829: 5827: 5824: 5823: 5821: 5819: 5814: 5808: 5805: 5803: 5800: 5798: 5795: 5793: 5790: 5788: 5785: 5783: 5780: 5778: 5775: 5773: 5770: 5768: 5765: 5763: 5760: 5759: 5757: 5755: 5750: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5721: 5719: 5716: 5714: 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5691: 5689: 5686: 5684: 5681: 5679: 5676: 5674: 5671: 5669: 5666: 5664: 5661: 5659: 5656: 5654: 5651: 5649: 5646: 5644: 5641: 5639: 5636: 5634: 5631: 5629: 5626: 5624: 5621: 5619: 5616: 5614: 5611: 5609: 5606: 5604: 5601: 5599: 5596: 5594: 5591: 5590: 5588: 5584: 5578: 5575: 5573: 5570: 5568: 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5548: 5545: 5543: 5540: 5538: 5535: 5533: 5530: 5528: 5524: 5521: 5519: 5516: 5515: 5513: 5511: 5507: 5502: 5496: 5493: 5491: 5488: 5486: 5483: 5481: 5478: 5476: 5473: 5471: 5468: 5466: 5463: 5461: 5458: 5457: 5455: 5453: 5448: 5442: 5439: 5437: 5434: 5432: 5429: 5427: 5424: 5422: 5419: 5417: 5414: 5412: 5409: 5407: 5404: 5402: 5399: 5397: 5394: 5393: 5391: 5387: 5381: 5378: 5376: 5373: 5371: 5368: 5366: 5363: 5361: 5358: 5356: 5353: 5351: 5348: 5346: 5343: 5341: 5338: 5336: 5333: 5331: 5328: 5326: 5323: 5321: 5318: 5316: 5313: 5311: 5308: 5306: 5303: 5301: 5298: 5296: 5295:Pentadiagonal 5293: 5291: 5288: 5286: 5283: 5281: 5278: 5276: 5273: 5271: 5268: 5266: 5263: 5261: 5258: 5256: 5253: 5251: 5248: 5246: 5243: 5241: 5238: 5236: 5233: 5231: 5228: 5226: 5223: 5221: 5218: 5216: 5213: 5211: 5208: 5206: 5203: 5201: 5198: 5196: 5193: 5191: 5188: 5186: 5183: 5181: 5178: 5176: 5173: 5171: 5168: 5166: 5163: 5161: 5158: 5156: 5153: 5151: 5148: 5146: 5143: 5141: 5138: 5136: 5133: 5131: 5128: 5126: 5125:Anti-diagonal 5123: 5121: 5118: 5117: 5115: 5111: 5106: 5099: 5094: 5092: 5087: 5085: 5080: 5079: 5076: 5070: 5067: 5065: 5061: 5058: 5055: 5052: 5048: 5044: 5040: 5038: 5032: 5028: 5025: 5022: 5021: 5017: 5011: 5005: 5001: 4996: 4991: 4986: 4982: 4978: 4977:Discrete Math 4974: 4969: 4965: 4961: 4957: 4953: 4949: 4945: 4941: 4936: 4932: 4928: 4924: 4920: 4916: 4911: 4906: 4901: 4897: 4893: 4889: 4884: 4879: 4874: 4870: 4866: 4862: 4857: 4852: 4847: 4843: 4839: 4835: 4830: 4826: 4822: 4818: 4814: 4810: 4806: 4805: 4799: 4795: 4791: 4787: 4783: 4779: 4775: 4771: 4766: 4762: 4756: 4752: 4747: 4743: 4739: 4734: 4729: 4725: 4721: 4717: 4712: 4711: 4707: 4699: 4695: 4691: 4687: 4683: 4679: 4675: 4671: 4667: 4660: 4657: 4652: 4648: 4643: 4638: 4633: 4628: 4624: 4620: 4619: 4614: 4607: 4604: 4599: 4592: 4589: 4584: 4580: 4575: 4570: 4566: 4562: 4561: 4556: 4549: 4546: 4540: 4535: 4531: 4527: 4523: 4516: 4513: 4508: 4504: 4499: 4494: 4490: 4486: 4482: 4475: 4472: 4467: 4463: 4459: 4455: 4451: 4447: 4440: 4437: 4432: 4428: 4424: 4420: 4415: 4410: 4406: 4402: 4395: 4392: 4387: 4383: 4379: 4375: 4371: 4367: 4360: 4357: 4352: 4348: 4344: 4340: 4336: 4332: 4331: 4323: 4320: 4315: 4311: 4306: 4301: 4297: 4293: 4292: 4287: 4280: 4277: 4272: 4268: 4264: 4260: 4259: 4251: 4248: 4243: 4239: 4238: 4230: 4227: 4221: 4217: 4213: 4209: 4204: 4199: 4195: 4191: 4190: 4185: 4178: 4175: 4171: 4168: 4162: 4159: 4143: 4137: 4134: 4128: 4124: 4121: 4119: 4116: 4114: 4111: 4109: 4106: 4104: 4101: 4099: 4096: 4095: 4091: 4086: 4082: 4078: 4075: 4072: 4068: 4065: 4062: 4059: 4056: 4052: 4049: 4046: 4043: 4039: 4036: 4033: 4029: 4025: 4022: 4019: 4016: 4015: 4011: 4009: 4007: 4003: 3999: 3996: 3992: 3988: 3984: 3980: 3976: 3972: 3968: 3961: 3957: 3952: 3938: 3935: 3932: 3921: 3917: 3909: 3901: 3899: 3897: 3888: 3886: 3884: 3880: 3876: 3872: 3868: 3864: 3860: 3856: 3855:square number 3852: 3848: 3844: 3840: 3833: 3831: 3829: 3825: 3821: 3817: 3813: 3810: =  3809: 3805: 3801: 3797: 3793: 3789: 3785: 3781: 3777: 3773: 3769: 3765: 3761: 3757: 3753: 3749: 3744: 3740: 3736: 3732: 3728: 3723: 3708: 3705: 3702: 3699: 3696: 3693: 3682: 3673: 3669: 3661: 3659: 3654:Special cases 3653: 3651: 3637: 3614: 3611: 3608: 3604: 3598: 3594: 3587: 3567: 3547: 3538: 3536: 3535:transposition 3532: 3527: 3519: 3517: 3514: 3510: 3508: 3504: 3500: 3496: 3492: 3487: 3485: 3484:finite fields 3481: 3477: 3473: 3469: 3465: 3461: 3457: 3453: 3452:Raymond Paley 3448: 3446: 3428: 3424: 3420: 3415: 3411: 3402: 3398: 3380: 3376: 3353: 3349: 3339: 3337: 3333: 3329: 3325: 3324:open question 3318: 3312: 3308: 3293: 3291: 3273: 3269: 3264: 3255: 3254:Hadamard code 3251: 3246: 3233: 3228: 3224: 3216: 3198: 3195: 3192: 3188: 3180: 3176: 3173: 3169: 3151: 3147: 3122: 3118: 3113: 3089: 3084: 3080: 3067: 3063: 3059: 3052: 3048: 3043: 3035: 3034: 3033: 3031: 3008: 3003: 2995: 2992: 2989: 2985: 2977: 2974: 2971: 2967: 2955: 2952: 2949: 2945: 2941: 2938: 2934: 2924: 2921: 2918: 2914: 2910: 2907: 2903: 2896: 2891: 2889: 2882: 2878: 2868: 2862: 2857: 2851: 2846: 2844: 2837: 2833: 2821: 2820: 2819: 2803: 2799: 2790: 2772: 2768: 2764: 2761: 2739: 2735: 2711: 2708: 2699: 2696: 2693: 2678: 2675: 2669: 2666: 2663: 2660: 2647: 2639: 2637: 2635: 2631: 2627: 2623: 2619: 2614: 2612: 2609: 2604: 2602: 2586: 2566: 2563: 2560: 2557: 2554: 2531: 2524: 2521: 2518: 2514: 2509: 2505: 2500: 2496: 2492: 2487: 2477: 2474: 2471: 2467: 2462: 2458: 2449: 2446: 2443: 2439: 2434: 2422: 2419: 2416: 2412: 2407: 2397: 2394: 2391: 2387: 2382: 2375: 2370: 2363: 2359: 2354: 2346: 2345: 2344: 2323: 2318: 2312: 2307: 2304: 2299: 2296: 2291: 2284: 2281: 2276: 2273: 2268: 2263: 2256: 2253: 2248: 2243: 2240: 2235: 2228: 2223: 2218: 2213: 2207: 2202: 2200: 2193: 2189: 2181: 2176: 2170: 2167: 2162: 2155: 2150: 2144: 2139: 2137: 2130: 2126: 2118: 2113: 2107: 2101: 2096: 2094: 2087: 2083: 2071: 2070: 2069: 2067: 2063: 2042: 2036: 2033: 2028: 2021: 2016: 2010: 2001: 2000: 1999: 1997: 1993: 1990:in 1867. Let 1989: 1974: 1972: 1971:contradiction 1956: 1953: 1950: 1947: 1944: 1940: 1936: 1913: 1910: 1907: 1900: 1886: 1883: 1880: 1877: 1874: 1871: 1868: 1861: 1847: 1844: 1839: 1836: 1831: 1828: 1825: 1822: 1819: 1814: 1811: 1806: 1803: 1796: 1782: 1779: 1776: 1773: 1770: 1767: 1764: 1757: 1756: 1755: 1741: 1738: 1735: 1731: 1727: 1724: 1721: 1701: 1698: 1695: 1691: 1687: 1684: 1681: 1661: 1658: 1655: 1652: 1649: 1646: 1643: 1640: 1637: 1633: 1629: 1609: 1606: 1603: 1583: 1580: 1577: 1568: 1554: 1534: 1514: 1494: 1485: 1471: 1467: 1463: 1443: 1439: 1435: 1412: 1409: 1404: 1401: 1398: 1394: 1388: 1385: 1382: 1378: 1372: 1369: 1366: 1361: 1358: 1355: 1351: 1347: 1342: 1339: 1336: 1332: 1326: 1323: 1320: 1316: 1310: 1305: 1302: 1299: 1295: 1289: 1286: 1283: 1278: 1275: 1272: 1268: 1264: 1259: 1256: 1253: 1249: 1243: 1240: 1237: 1233: 1227: 1224: 1221: 1217: 1211: 1208: 1205: 1201: 1195: 1192: 1189: 1184: 1181: 1178: 1174: 1170: 1165: 1162: 1159: 1155: 1149: 1146: 1143: 1139: 1133: 1130: 1127: 1122: 1119: 1116: 1112: 1104: 1103: 1102: 1088: 1068: 1046: 1043: 1040: 1036: 1030: 1027: 1024: 1020: 1016: 1011: 1008: 1005: 1001: 975: 972: 969: 966: 963: 960: 957: 954: 951: 948: 945: 939: 936: 933: 930: 920: 917: 914: 910: 903: 900: 877: 874: 869: 866: 863: 859: 853: 850: 847: 843: 837: 834: 831: 826: 823: 820: 816: 808: 807: 806: 792: 789: 786: 761: 758: 755: 752: 749: 746: 743: 740: 737: 734: 731: 725: 722: 719: 716: 706: 703: 700: 696: 689: 686: 666: 663: 660: 640: 637: 634: 614: 611: 608: 605: 602: 599: 590: 588: 584: 580: 576: 572: 556: 553: 550: 541: 539: 534: 533: 527: 526: 522: 519: 517: 514: 511: 492: 487: 483: 479: 475: 471: 460: 454: 451: 439: 438: 437: 435: 431: 427: 423: 419: 412: 408: 404: 401:Suppose that 399: 397: 393: 374: 369: 365: 361: 357: 352: 349: 343: 337: 334: 327: 326: 325: 323: 319: 303: 297: 287: 283: 279: 275: 271: 267: 264: 260: 256: 232: 228: 224: 221: 210: 206: 199: 198: 197: 195: 191: 187: 183: 179: 171: 169: 167: 164: 160: 156: 155:statisticians 152: 148: 144: 143:Hadamard code 140: 135: 133: 129: 125: 121: 117: 112: 107: 103: 99: 98:parallelotope 96:-dimensional 95: 90: 87: 86:combinatorial 83: 80: 79:perpendicular 76: 72: 68: 67:square matrix 64: 60: 56: 48: 44: 40: 36: 33: 19: 6000: 5932:Substitution 5818:graph theory 5315:Quaternionic 5305:Persymmetric 5239: 4999: 4980: 4976: 4947: 4943: 4922: 4918: 4895: 4891: 4868: 4864: 4841: 4837: 4808: 4802: 4777: 4773: 4750: 4723: 4719: 4673: 4669: 4659: 4622: 4616: 4606: 4597: 4591: 4564: 4558: 4548: 4529: 4525: 4515: 4488: 4484: 4474: 4449: 4445: 4439: 4404: 4400: 4394: 4369: 4365: 4359: 4337:(1): 65–81. 4334: 4328: 4322: 4295: 4289: 4279: 4262: 4256: 4250: 4241: 4235: 4229: 4193: 4187: 4177: 4166: 4161: 4149:. Retrieved 4136: 4113:Walsh matrix 4005: 4001: 3994: 3978: 3970: 3963: 3953: 3905: 3895: 3892: 3882: 3878: 3874: 3873:> 1 then 3870: 3866: 3862: 3850: 3846: 3842: 3837: 3827: 3823: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3791: 3787: 3783: 3779: 3775: 3771: 3767: 3763: 3759: 3755: 3751: 3747: 3742: 3738: 3734: 3730: 3724: 3671: 3667: 3665: 3657: 3539: 3523: 3515: 3511: 3488: 3479: 3475: 3463: 3459: 3449: 3444: 3400: 3396: 3340: 3335: 3331: 3327: 3321: 3310: 3306: 3247: 3174: 3104: 3027: 2788: 2643: 2621: 2615: 2610: 2605: 2599:denotes the 2546: 2342: 2061: 2059: 1995: 1991: 1985: 1928: 1569: 1486: 1427: 1061:. Note that 892: 591: 582: 578: 570: 542: 535: 520: 515: 509: 507: 436:states that 429: 425: 421: 414: 410: 402: 400: 395: 391: 389: 317: 286:real numbers 277: 273: 269: 262: 258: 251: 249: 189: 181: 177: 175: 136: 113:-dimensional 110: 105: 101: 93: 91: 58: 52: 35: 32:Walsh matrix 5907:Hamiltonian 5831:Biadjacency 5767:Correlation 5683:Householder 5633:Commutation 5370:Vandermonde 5365:Tridiagonal 5300:Permutation 5290:Nonnegative 5275:Matrix unit 5155:Bisymmetric 4642:10356/92085 4151:11 February 4147:. UC Denver 4018:Olivia MFSK 4000:. The term 3501:in 1962 at 3468:prime power 993:by setting 196:. In fact: 124:determinant 84:, while in 55:mathematics 6035:Categories 5807:Transition 5802:Stochastic 5772:Covariance 5754:statistics 5733:Symplectic 5728:Similarity 5557:Unimodular 5552:Orthogonal 5537:Involutory 5532:Invertible 5527:Projection 5523:Idempotent 5465:Convergent 5360:Triangular 5310:Polynomial 5255:Hessenberg 5225:Equivalent 5220:Elementary 5200:Copositive 5190:Conference 5150:Bidiagonal 4720:Math. Comp 4244:: 240–246. 3822:and −1 if 3741:, each of 3727:tournament 3526:equivalent 3507:Williamson 3478:+ 1) when 3250:Walsh code 2620:and, when 390:where det( 172:Properties 71:orthogonal 30:See also: 5988:Wronskian 5912:Irregular 5902:Gell-Mann 5851:Laplacian 5846:Incidence 5826:Adjacency 5797:Precision 5762:Centering 5668:Generator 5638:Confusion 5623:Circulant 5603:Augmented 5562:Unipotent 5542:Nilpotent 5518:Congruent 5495:Stieltjes 5470:Defective 5460:Companion 5431:Redheffer 5350:Symmetric 5345:Sylvester 5320:Signature 5250:Hermitian 5230:Frobenius 5140:Arrowhead 5120:Alternant 5060:R-Package 4698:122560830 4690:0004-9727 4507:126730552 4491:: 33–46. 4466:121547091 4414:1301.3671 3964:H H = n I 3859:circulant 3802:, column 3729:of order 3612:⁡ 3560:of order 3472:congruent 3462:+ 1 when 3421:⊗ 3196:− 3030:induction 2993:− 2975:− 2953:− 2942:× 2922:− 2911:× 2765:× 2712:⊕ 2685:↦ 2679:× 2667:− 2618:symmetric 2587:⊗ 2564:∈ 2558:≤ 2522:− 2506:⊗ 2475:− 2459:− 2447:− 2420:− 2395:− 2305:− 2297:− 2282:− 2274:− 2254:− 2241:− 2168:− 2034:− 1957:β 1951:α 1914:β 1908:α 1887:α 1884:− 1881:β 1875:β 1872:− 1869:α 1848:α 1845:− 1829:β 1823:β 1820:− 1804:α 1783:γ 1777:β 1771:δ 1765:α 1742:β 1739:− 1722:δ 1702:α 1699:− 1682:γ 1662:δ 1656:β 1650:γ 1644:α 1610:γ 1604:β 1584:δ 1578:α 1555:δ 1535:γ 1515:β 1495:α 1370:− 1352:∑ 1287:− 1269:∑ 1193:− 1175:∑ 1131:− 1113:∑ 973:− 940:∈ 835:− 817:∑ 790:≠ 759:− 726:∈ 664:× 638:≥ 472:≤ 455:⁡ 353:± 338:⁡ 316:Dividing 186:transpose 166:estimator 163:parameter 75:geometric 6046:Matrices 5816:Used in 5752:Used in 5713:Rotation 5688:Jacobian 5648:Distance 5628:Cofactor 5613:Carleman 5593:Adjugate 5577:Weighing 5510:inverses 5506:products 5475:Definite 5406:Identity 5396:Exchange 5389:Constant 5355:Toeplitz 5240:Hadamard 5210:Diagonal 4825:39169723 4794:14193297 4431:26598685 4386:17206302 4092:See also 4083:and the 4028:variance 3826:defeats 3818:defeats 3470:that is 2579:, where 585:must be 577:for odd 159:variance 141:using a 128:matrices 5917:Overlap 5882:Density 5841:Edmonds 5718:Seifert 5678:Hessian 5643:Coxeter 5567:Unitary 5485:Hurwitz 5416:Of ones 5401:Hilbert 5335:Skyline 5280:Metzler 5270:Logical 5265:Integer 5175:Boolean 5107:classes 4944:Metrika 4742:0179093 4651:2646093 4583:0179098 4351:0009590 4314:0148686 4220:0523759 4212:2958712 3973:is the 3960:modulus 3531:coarser 3491:Baumert 3466:is any 3166:linear 2608:integer 432:. Then 407:complex 257:is the 194:inverse 82:vectors 65:, is a 5836:Degree 5777:Design 5708:Random 5698:Payoff 5693:Moment 5618:Cartan 5608:Bézout 5547:Normal 5421:Pascal 5411:Lehmer 5340:Sparse 5260:Hollow 5245:Hankel 5180:Cauchy 5105:Matrix 5006:  4962:  4823:  4792:  4757:  4740:  4696:  4688:  4649:  4581:  4505:  4464:  4429:  4384:  4349:  4312:  4218:  4210:  3969:where 3497:, and 3495:Golomb 3252:. The 3177:, and 2754:, the 250:where 184:. The 126:among 116:volume 5897:Gamma 5861:Tutte 5723:Shear 5436:Shift 5426:Pauli 5375:Walsh 5285:Moore 5165:Block 4964:40646 4960:S2CID 4821:S2CID 4790:S2CID 4694:S2CID 4647:JSTOR 4503:S2CID 4462:S2CID 4427:S2CID 4409:arXiv 4382:S2CID 4208:JSTOR 4145:(PDF) 4129:Notes 4030:of a 4008:= 4. 3885:odd. 3881:with 3853:be a 3786:− 1)( 3213:with 2626:trace 627:with 581:, so 538:proof 529:Proof 405:is a 282:field 161:of a 73:. In 5703:Pick 5673:Gram 5441:Zero 5145:Band 5037:OEIS 5004:ISBN 4755:ISBN 4686:ISSN 4153:2023 4079:for 4069:for 3857:. A 3672:skew 3580:has 3499:Hall 3399:and 3368:and 3172:rank 2547:for 2343:and 1714:and 1487:Let 587:even 554:> 536:The 268:and 176:Let 92:The 57:, a 5792:Hat 5525:or 5508:or 5035:in 4985:doi 4981:140 4952:doi 4927:doi 4900:doi 4873:doi 4846:doi 4813:doi 4782:doi 4728:doi 4678:doi 4637:hdl 4627:doi 4569:doi 4534:doi 4493:doi 4489:778 4454:doi 4419:doi 4374:doi 4339:doi 4300:doi 4267:doi 4198:doi 3977:of 3814:or 3674:if 3670:is 3609:log 3503:JPL 3170:of 592:If 575:odd 543:If 452:det 335:det 284:of 188:of 53:In 47:MIT 6037:: 5045:. 4979:. 4975:. 4958:. 4948:62 4946:. 4942:. 4921:. 4917:. 4896:21 4894:. 4890:. 4869:12 4867:. 4863:. 4842:17 4840:. 4836:. 4819:. 4807:. 4788:. 4778:11 4776:. 4772:. 4738:MR 4736:. 4724:19 4722:. 4718:. 4692:. 4684:. 4674:10 4672:. 4668:. 4645:. 4635:. 4623:12 4621:. 4615:. 4579:MR 4577:. 4565:15 4563:. 4557:. 4530:12 4528:. 4524:. 4501:. 4487:. 4483:. 4460:. 4450:53 4448:. 4425:. 4417:. 4405:22 4403:. 4380:. 4370:13 4368:. 4347:MR 4345:. 4335:11 4333:. 4310:MR 4308:. 4296:68 4294:. 4288:. 4263:12 4261:. 4242:17 4240:. 4216:MR 4214:. 4206:. 4192:. 4186:. 3989:. 3770:, 3493:, 3486:. 3445:nm 2636:. 2613:. 2603:. 2068:. 1973:. 1969:, 1413:0. 805:: 589:. 424:, 417:ij 398:. 168:. 134:. 5922:S 5380:Z 5097:e 5090:t 5083:v 5064:R 5049:. 5033:. 5012:. 4993:. 4987:: 4966:. 4954:: 4933:. 4929:: 4923:4 4908:. 4902:: 4881:. 4875:: 4854:. 4848:: 4827:. 4815:: 4809:5 4796:. 4784:: 4763:. 4744:. 4730:: 4700:. 4680:: 4653:. 4639:: 4629:: 4585:. 4571:: 4542:. 4536:: 4509:. 4495:: 4468:. 4456:: 4433:. 4421:: 4411:: 4388:. 4376:: 4353:. 4341:: 4316:. 4302:: 4273:. 4269:: 4224:. 4222:. 4200:: 4194:6 4155:. 4057:. 4034:. 4006:q 3995:q 3979:H 3971:H 3966:n 3939:I 3936:w 3933:= 3927:T 3922:W 3918:W 3896:u 3883:u 3879:u 3875:n 3871:n 3867:n 3863:n 3851:n 3847:n 3843:n 3828:i 3824:j 3820:j 3816:i 3812:j 3808:i 3804:j 3800:i 3796:n 3792:n 3788:n 3784:n 3780:i 3776:j 3772:j 3768:i 3764:n 3760:n 3756:n 3752:n 3750:( 3748:n 3743:n 3739:n 3735:n 3731:n 3709:. 3706:I 3703:2 3700:= 3697:H 3694:+ 3688:T 3683:H 3668:H 3638:H 3618:) 3615:n 3605:/ 3599:2 3595:n 3591:( 3588:O 3568:n 3548:H 3480:q 3476:q 3464:q 3460:q 3429:m 3425:H 3416:n 3412:H 3401:m 3397:n 3381:m 3377:H 3354:n 3350:H 3336:k 3332:k 3313:? 3311:k 3307:k 3302:: 3274:n 3270:2 3265:H 3234:. 3229:n 3225:F 3199:1 3193:n 3189:2 3175:n 3152:n 3148:2 3123:n 3119:2 3114:H 3090:. 3085:n 3081:F 3074:T 3068:n 3064:F 3060:= 3053:n 3049:2 3044:H 3009:. 3004:] 2996:1 2990:n 2986:F 2978:1 2972:n 2968:F 2956:1 2950:n 2946:2 2939:1 2935:1 2925:1 2919:n 2915:2 2908:1 2904:0 2897:[ 2892:= 2883:n 2879:F 2869:] 2863:1 2858:0 2852:[ 2847:= 2838:1 2834:F 2804:n 2800:F 2789:n 2773:n 2769:2 2762:n 2740:n 2736:F 2715:} 2709:, 2706:) 2703:} 2700:1 2697:, 2694:0 2691:{ 2688:( 2682:) 2676:, 2673:} 2670:1 2664:, 2661:1 2658:{ 2655:( 2622:k 2611:k 2567:N 2561:k 2555:2 2532:, 2525:1 2519:k 2515:2 2510:H 2501:2 2497:H 2493:= 2488:] 2478:1 2472:k 2468:2 2463:H 2450:1 2444:k 2440:2 2435:H 2423:1 2417:k 2413:2 2408:H 2398:1 2392:k 2388:2 2383:H 2376:[ 2371:= 2364:k 2360:2 2355:H 2324:, 2319:] 2313:1 2308:1 2300:1 2292:1 2285:1 2277:1 2269:1 2264:1 2257:1 2249:1 2244:1 2236:1 2229:1 2224:1 2219:1 2214:1 2208:[ 2203:= 2194:4 2190:H 2182:, 2177:] 2171:1 2163:1 2156:1 2151:1 2145:[ 2140:= 2131:2 2127:H 2119:, 2114:] 2108:1 2102:[ 2097:= 2088:1 2084:H 2062:n 2043:] 2037:H 2029:H 2022:H 2017:H 2011:[ 1996:n 1992:H 1954:+ 1948:= 1945:2 1941:/ 1937:n 1911:= 1878:= 1840:2 1837:n 1832:+ 1826:= 1815:2 1812:n 1807:+ 1780:+ 1774:= 1768:+ 1736:2 1732:/ 1728:n 1725:= 1696:2 1692:/ 1688:n 1685:= 1659:+ 1653:= 1647:+ 1641:= 1638:2 1634:/ 1630:n 1607:+ 1581:+ 1472:2 1468:/ 1464:n 1444:2 1440:/ 1436:n 1410:= 1405:i 1402:, 1399:l 1395:h 1389:i 1386:, 1383:k 1379:h 1373:1 1367:n 1362:0 1359:= 1356:i 1348:= 1343:i 1340:, 1337:l 1333:h 1327:i 1324:, 1321:k 1317:h 1311:2 1306:j 1303:, 1300:0 1296:h 1290:1 1284:n 1279:0 1276:= 1273:i 1265:= 1260:i 1257:, 1254:l 1250:h 1244:j 1241:, 1238:0 1234:h 1228:i 1225:, 1222:k 1218:h 1212:j 1209:, 1206:0 1202:h 1196:1 1190:n 1185:0 1182:= 1179:i 1171:= 1166:i 1163:, 1160:l 1156:a 1150:i 1147:, 1144:k 1140:a 1134:1 1128:n 1123:0 1120:= 1117:i 1089:A 1069:A 1047:j 1044:, 1041:i 1037:h 1031:j 1028:, 1025:0 1021:h 1017:= 1012:j 1009:, 1006:i 1002:a 979:} 976:1 970:n 967:, 964:. 961:. 958:. 955:, 952:1 949:, 946:0 943:{ 937:j 934:, 931:i 927:) 921:j 918:, 915:i 911:a 907:( 904:= 901:A 878:0 875:= 870:i 867:, 864:l 860:h 854:i 851:, 848:k 844:h 838:1 832:n 827:0 824:= 821:i 793:l 787:k 765:} 762:1 756:n 753:, 750:. 747:. 744:. 741:, 738:1 735:, 732:0 729:{ 723:j 720:, 717:i 713:) 707:j 704:, 701:i 697:h 693:( 690:= 687:H 667:n 661:n 641:1 635:m 615:2 612:+ 609:m 606:4 603:= 600:n 583:n 579:n 571:n 557:1 551:n 516:M 510:M 493:. 488:2 484:/ 480:n 476:n 468:| 464:) 461:M 458:( 448:| 430:n 426:j 422:i 415:M 411:n 403:M 396:H 392:H 375:, 370:2 366:/ 362:n 358:n 350:= 347:) 344:H 341:( 318:H 304:. 298:n 278:H 274:H 270:H 263:n 259:n 254:n 252:I 233:n 229:I 225:n 222:= 216:T 211:H 207:H 190:H 182:n 178:H 111:n 106:n 102:n 94:n 20:)

Index

Hadamard conjecture
Walsh matrix

Gilbert Strang
MIT
mathematics
Jacques Hadamard
square matrix
orthogonal
geometric
perpendicular
vectors
combinatorial
parallelotope
volume
absolute value
determinant
matrices
Hadamard's maximal determinant problem
error-correcting code
Hadamard code
Reed–Muller codes
balanced repeated replication
statisticians
variance
parameter
estimator
transpose
inverse
identity matrix

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.