Knowledge (XXG)

Hadwiger conjecture (combinatorial geometry)

Source đź“ť

23: 337:, the problem is equivalent to one of illumination: how many floodlights must be placed outside of an opaque convex body in order to completely illuminate its exterior? For the purposes of this problem, a body is only considered to be illuminated if for each point of the boundary of the body, there is at least one floodlight that is separated from the body by all of the 391:: every two-dimensional bounded convex set may be covered with four smaller copies of itself, with the fourth copy needed only in the case of parallelograms. However, the conjecture remains open in higher dimensions except for some special cases. The best known asymptotic upper bound on the number of smaller copies needed to cover a given body is 378:
of the original hypercube or parallelepiped; because these shapes have 2 vertices, 2 smaller copies are necessary. This number is also sufficient: a cube or parallelepiped may be covered by 2 copies, scaled by a factor of 1/2. Hadwiger's conjecture is that parallelepipeds are the worst case for this
341:
intersecting the body on this point; thus, although the faces of a cube may be lit by only two floodlights, the planes tangent to its vertices and edges cause it to need many more lights in order for it to be fully illuminated. For any convex body, the number of floodlights needed to completely
366: + 1). However, covering a square by smaller squares (with parallel sides to the original) requires four smaller squares, as each one can cover only one of the larger square's four corners. In higher dimensions, covering a 467: 316: 604: 663: 929: 82: 689: 610:
is better than the asymptotic one. In three dimensions it is known that 16 copies always suffice, but this is still far from the conjectured bound of 8 copies.
510: 490: 55: 886: 884:
Huang, Han; Slomka, Boaz A.; Tkocz, Tomasz; Vritsiou, Beatrice-Helen (2022), "Improved bounds for Hadwiger's covering problem via thin-shell estimates",
823: 87: 397: 1015: 613:
The conjecture is known to hold for certain special classes of convex bodies, including, in dimension three, centrally symmetric polyhedra and
806: 782: 137: 17: 241: 350:
As shown in the illustration, a triangle may be covered by three smaller copies of itself, and more generally in any dimension a
818: 1020: 1005: 774: 515: 121:. There also exists an equivalent formulation in terms of the number of floodlights needed to illuminate the body. 614: 114: 665:, while for bodies with a smooth surface (that is, having a single tangent plane per boundary point), at most 117:
with the original body, and that furthermore, the upper bound of 2 is necessary if and only if the body is a
853:; Markus, Alexander S. (1960), "A certain problem about the covering of convex sets with homothetic ones", 960: 704: 692: 206: 94: 965: 194: 342:
illuminate it turns out to equal the number of smaller copies of the body that are needed to cover it.
1010: 762: 334: 26:
A triangle can be covered by three smaller copies of itself; a square requires four smaller copies
984: 895: 828: 379:
problem, and that any other convex body may be covered by fewer than 2 smaller copies of itself.
128:, who included it on a list of unsolved problems in 1957; it was, however, previously studied by 624: 915: 802: 778: 375: 974: 938: 905: 838: 963:(1955), "Ăśberdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns", 952: 159:
remains unsolved even in three dimensions, though the two dimensional case was resolved by
60: 948: 325:
is a parallelepiped, in which case all 2 of the scalars may be chosen to be equal to 1/2.
187: 110: 668: 374:
by smaller homothetic copies of the same shape requires a separate copy for each of the
850: 766: 495: 475: 371: 141: 118: 40: 943: 999: 988: 867: 794: 338: 125: 176: 102: 22: 179: 156: 919: 821:; Tiba, Marius (2023), "Towards Hadwiger's Conjecture via Bourgain Slicing", 367: 842: 462:{\displaystyle \displaystyle 4^{n}\exp \left({\frac {-cn}{\log(n)}}\right)} 144:—and in some sources the geometric Hadwiger conjecture is also called the 618: 927:
Lassak, Marek (1988), "Covering the boundary of a convex set by tiles",
910: 979: 351: 29: 900: 833: 797:(2005). "3.3 Levi–Hadwiger Covering Problem and Illumination". 311:{\displaystyle K\subseteq \bigcup _{i=1}^{2^{n}}s_{i}K+v_{i}.} 745: 707:
on covering convex bodies with sets of smaller diameter
358: + 1 copies of itself, scaled by a factor of 671: 627: 518: 498: 478: 401: 400: 244: 63: 43: 683: 657: 598: 504: 484: 461: 310: 76: 49: 930:Proceedings of the American Mathematical Society 855:Izvestiya Moldavskogo Filiala Akademii Nauk SSSR 691:smaller copies are needed to cover the body, as 771:Results and Problems in Combinatorial Geometry 733: 321:Furthermore, the upper bound is necessary iff 599:{\displaystyle (n+1)n^{n-1}-(n-1)(n-2)^{n-1}} 133: 8: 887:Journal of the European Mathematical Society 113:can be covered by 2 or fewer smaller bodies 617:. The number of copies needed to cover any 824:International Mathematics Research Notices 978: 942: 909: 899: 832: 670: 649: 634: 626: 621:(other than a parallelepiped) is at most 584: 538: 517: 497: 477: 422: 406: 399: 299: 283: 271: 266: 255: 243: 171:Formally, the Hadwiger conjecture is: If 68: 62: 42: 387:The two-dimensional case was settled by 21: 717: 329:Alternate formulation with illumination 124:The Hadwiger conjecture is named after 88:(more unsolved problems in mathematics) 57:-dimensional convex body be covered by 799:Research Problems in Discrete Geometry 607: 870:(1957), "Ungelöste Probleme Nr. 20", 801:. Springer-Verlag. pp. 136–142. 769:(1985). "11. Hadwiger's Conjecture". 729: 727: 725: 723: 721: 136:. Additionally, there is a different 7: 817:Campos, Marcelo; van Hintum, Peter; 388: 160: 129: 492:is a positive constant. For small 226:lie in the range 0 <  18:Hadwiger conjecture (graph theory) 14: 944:10.1090/s0002-9939-1988-0958081-7 193:, then there exists a set of 2 32:Unsolved problem in mathematics 793:Brass, Peter; Moser, William; 734:Brass, Moser & Pach (2005) 642: 628: 581: 568: 565: 553: 531: 519: 448: 442: 150:Hadwiger–Levi covering problem 1: 1016:Unsolved problems in geometry 134:Gohberg & Markus (1960) 1037: 775:Cambridge University Press 658:{\displaystyle (3/4)2^{n}} 15: 84:smaller copies of itself? 615:bodies of constant width 235: < 1, and 146:Levi–Hadwiger conjecture 961:Levi, Friedrich Wilhelm 872:Elemente der Mathematik 763:Boltjansky, Vladimir G. 685: 659: 600: 506: 486: 463: 312: 278: 95:combinatorial geometry 78: 51: 27: 966:Archiv der Mathematik 686: 660: 601: 507: 487: 464: 313: 251: 79: 77:{\displaystyle 2^{n}} 52: 25: 843:10.1093/imrn/rnad198 746:Campos et al. (2023) 669: 625: 516: 496: 476: 398: 370:or more generally a 242: 61: 41: 1021:Eponyms in geometry 851:Gohberg, Israel Ts. 705:Borsuk's conjecture 684:{\displaystyle n+1} 512:the upper bound of 207:translation vectors 138:Hadwiger conjecture 132:and independently, 99:Hadwiger conjecture 980:10.1007/BF01900507 777:. pp. 44–46. 681: 655: 596: 502: 482: 459: 458: 354:may be covered by 308: 74: 47: 28: 1006:Discrete geometry 911:10.4171/jems/1132 808:978-0-387-23815-9 784:978-0-521-26923-0 505:{\displaystyle n} 485:{\displaystyle c} 452: 50:{\displaystyle n} 1028: 991: 982: 955: 946: 922: 913: 903: 894:(4): 1431–1448, 879: 862: 845: 836: 812: 788: 749: 743: 737: 731: 695:already proved. 690: 688: 687: 682: 664: 662: 661: 656: 654: 653: 638: 605: 603: 602: 597: 595: 594: 549: 548: 511: 509: 508: 503: 491: 489: 488: 483: 468: 466: 465: 460: 457: 453: 451: 434: 423: 411: 410: 317: 315: 314: 309: 304: 303: 288: 287: 277: 276: 275: 265: 167:Formal statement 101:states that any 83: 81: 80: 75: 73: 72: 56: 54: 53: 48: 33: 1036: 1035: 1031: 1030: 1029: 1027: 1026: 1025: 996: 995: 959: 926: 883: 866: 849: 816: 809: 792: 785: 767:Gohberg, Israel 761: 758: 753: 752: 744: 740: 732: 719: 714: 701: 667: 666: 645: 623: 622: 606:established by 580: 534: 514: 513: 494: 493: 474: 473: 435: 424: 418: 402: 396: 395: 385: 348: 331: 295: 279: 267: 240: 239: 234: 225: 216: 205:and a set of 2 204: 188:Euclidean space 169: 111:Euclidean space 91: 90: 85: 64: 59: 58: 39: 38: 35: 31: 20: 12: 11: 5: 1034: 1032: 1024: 1023: 1018: 1013: 1008: 998: 997: 994: 993: 973:(5): 369–370, 957: 937:(1): 269–272, 924: 881: 868:Hadwiger, Hugo 864: 857:(in Russian), 847: 819:Morris, Robert 814: 807: 790: 783: 757: 754: 751: 750: 738: 716: 715: 713: 710: 709: 708: 700: 697: 680: 677: 674: 652: 648: 644: 641: 637: 633: 630: 593: 590: 587: 583: 579: 576: 573: 570: 567: 564: 561: 558: 555: 552: 547: 544: 541: 537: 533: 530: 527: 524: 521: 501: 481: 470: 469: 456: 450: 447: 444: 441: 438: 433: 430: 427: 421: 417: 414: 409: 405: 384: 381: 372:parallelepiped 347: 344: 339:tangent planes 330: 327: 319: 318: 307: 302: 298: 294: 291: 286: 282: 274: 270: 264: 261: 258: 254: 250: 247: 230: 221: 217:such that all 212: 200: 168: 165: 142:graph coloring 119:parallelepiped 86: 71: 67: 46: 36: 30: 13: 10: 9: 6: 4: 3: 2: 1033: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1003: 1001: 990: 986: 981: 976: 972: 968: 967: 962: 958: 954: 950: 945: 940: 936: 932: 931: 925: 921: 917: 912: 907: 902: 897: 893: 889: 888: 882: 877: 873: 869: 865: 860: 856: 852: 848: 844: 840: 835: 830: 826: 825: 820: 815: 810: 804: 800: 796: 791: 786: 780: 776: 773:. Cambridge: 772: 768: 764: 760: 759: 755: 747: 742: 739: 735: 730: 728: 726: 724: 722: 718: 711: 706: 703: 702: 698: 696: 694: 678: 675: 672: 650: 646: 639: 635: 631: 620: 616: 611: 609: 608:Lassak (1988) 591: 588: 585: 577: 574: 571: 562: 559: 556: 550: 545: 542: 539: 535: 528: 525: 522: 499: 479: 454: 445: 439: 436: 431: 428: 425: 419: 415: 412: 407: 403: 394: 393: 392: 390: 383:Known results 382: 380: 377: 373: 369: 365: 361: 357: 353: 345: 343: 340: 336: 328: 326: 324: 305: 300: 296: 292: 289: 284: 280: 272: 268: 262: 259: 256: 252: 248: 245: 238: 237: 236: 233: 229: 224: 220: 215: 211: 208: 203: 199: 196: 192: 189: 186:-dimensional 185: 181: 178: 174: 166: 164: 162: 158: 153: 151: 147: 143: 139: 135: 131: 127: 126:Hugo Hadwiger 122: 120: 116: 112: 109:-dimensional 108: 104: 100: 96: 89: 69: 65: 44: 24: 19: 970: 964: 934: 928: 891: 885: 875: 871: 858: 854: 822: 798: 770: 741: 612: 471: 386: 363: 359: 355: 349: 333:As shown by 332: 322: 320: 231: 227: 222: 218: 213: 209: 201: 197: 190: 183: 172: 170: 154: 149: 145: 123: 106: 98: 92: 1011:Conjectures 861:(76): 87–90 795:Pach, János 389:Levi (1955) 161:Levi (1955) 140:concerning 130:Levi (1955) 103:convex body 1000:Categories 901:1811.12548 834:2206.11227 756:References 335:Boltyansky 180:convex set 157:conjecture 115:homothetic 37:Can every 16:See also: 989:121459171 920:1435-9855 589:− 575:− 560:− 551:− 543:− 440:⁡ 426:− 416:⁡ 368:hypercube 253:⋃ 249:⊆ 699:See also 619:zonotope 376:vertices 346:Examples 953:0958081 352:simplex 195:scalars 182:in the 177:bounded 175:is any 987:  951:  918:  805:  781:  472:where 148:or the 97:, the 985:S2CID 896:arXiv 878:: 121 829:arXiv 712:Notes 916:ISSN 803:ISBN 779:ISBN 693:Levi 155:The 975:doi 939:doi 935:104 906:doi 839:doi 437:log 413:exp 105:in 93:In 1002:: 983:, 969:, 949:MR 947:, 933:, 914:, 904:, 892:24 890:, 876:12 874:, 859:10 837:, 827:, 765:; 720:^ 362:/( 163:. 152:. 992:. 977:: 971:6 956:. 941:: 923:. 908:: 898:: 880:. 863:. 846:. 841:: 831:: 813:. 811:. 789:. 787:. 748:. 736:. 679:1 676:+ 673:n 651:n 647:2 643:) 640:4 636:/ 632:3 629:( 592:1 586:n 582:) 578:2 572:n 569:( 566:) 563:1 557:n 554:( 546:1 540:n 536:n 532:) 529:1 526:+ 523:n 520:( 500:n 480:c 455:) 449:) 446:n 443:( 432:n 429:c 420:( 408:n 404:4 364:n 360:n 356:n 323:K 306:. 301:i 297:v 293:+ 290:K 285:i 281:s 273:n 269:2 263:1 260:= 257:i 246:K 232:i 228:s 223:i 219:s 214:i 210:v 202:i 198:s 191:R 184:n 173:K 107:n 70:n 66:2 45:n 34::

Index

Hadwiger conjecture (graph theory)

(more unsolved problems in mathematics)
combinatorial geometry
convex body
Euclidean space
homothetic
parallelepiped
Hugo Hadwiger
Levi (1955)
Gohberg & Markus (1960)
Hadwiger conjecture
graph coloring
conjecture
Levi (1955)
bounded
convex set
Euclidean space
scalars
translation vectors
Boltyansky
tangent planes
simplex
hypercube
parallelepiped
vertices
Levi (1955)
Lassak (1988)
bodies of constant width
zonotope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑