Knowledge (XXG)

Hajós construction

Source 📝

56: 575:, a conclusion considered unlikely by complexity theorists. However, it is not known how to prove non-polynomial lower bounds on the Hajós number without making some complexity-theoretic assumption, and if such a bound could be proven it would also imply the existence of non-polynomial bounds on certain types of 68:
by identifying a vertex from each copy into a single vertex (shown with both colors), deleting an edge incident to the combined vertex within each subgraph (dashed) and adding a new edge connecting the endpoints of the deleted edges (thick green), produces the
327:, and the effect of identifying two nonadjacent vertices is to force them to have the same color as each other in any coloring, something that does not reduce the number of colors. In the Hajós construction itself, the new edge 544:, where each step forms a new graph by combining two previously formed graphs, merging two nonadjacent vertices of a previously formed graph, or adding a vertex or edge to a previously formed graph. They showed that, for an 386:
colors may be formed by combining the Hajós construction, the operation of identifying any two nonadjacent vertices, and the operations of adding a vertex or edge to the given graph, starting from the complete graph
148:
on four vertices; because of the symmetry of these graphs, the choice of which edge to select from each of them is unimportant. In this case, the result of applying the Hajós construction is the
602:
may re-use the same graphs multiple times, an economy not permitted in an expression tree. There exist 3-chromatic graphs for which the smallest such expression tree has exponential size.
347:, so any proper coloring of the combined graph leads to a proper coloring of one of the two smaller graphs from which it was formed, which again causes it to require 496:
Because merging two non-adjacent vertices reduces the number of vertices in the resulting graph, the number of operations needed to represent a given graph
745:, 11.6 Length of Hajós proofs, pp. 184–185, state as an open problem the question of determining the smallest number of steps needed to construct every 1083: 1056: 1002: 852: 825: 1115: 440: 977: 928: 791: 1014: 872: 649: 567:. If every graph has a polynomial Hajós number, this would imply that it is possible to prove non-colorability in 1163: 637: 1066:
Liu, Sheng; Zhang, Jian (2006), "Using Hajós' construction to generate hard graph 3-colorability instances",
1168: 1124: 105:. Then the Hajós construction forms a new graph that combines the two graphs by identifying vertices 179:
respectively, then the result of applying the Hajós construction is itself a cycle graph, of length
1129: 645: 626: 153: 820:, Graduate Texts in Mathematics, vol. 173 (3rd ed.), Springer-Verlag, pp. 117–118, 580: 903: 32: 1079: 1052: 1046: 998: 848: 839:, Lecture Notes in Computer Science, vol. 2570, Berlin: Springer-Verlag, pp. 39–47, 821: 622: 815: 1134: 1071: 1023: 973: 944: 881: 840: 800: 789:
Catlin, P. A. (1979), "Hajós's graph-colouring conjecture: variations and counterexamples",
614: 296: 86: 44: 28: 1146: 1102: 1037: 985: 956: 895: 862: 1142: 1110: 1098: 1093:
Mansfield, A. J.; Welsh, D. J. A. (1982), "Some colouring problems and their complexity",
1033: 981: 952: 932: 891: 858: 587: 568: 485: 1070:, Lecture Notes in Computer Science, vol. 4120, Springer-Verlag, pp. 211–225, 1097:, North-Holland Math. Stud., vol. 62, Amsterdam: North-Holland, pp. 159–170, 1051:, Contemporary Mathematics, vol. 352, American Mathematical Society, p. 156, 371: 359: 317: 137: 40: 741:
alludes to this when he writes that the sequence of operations is "not always short".
1157: 1028: 964:
Jensen, Tommy R.; Royle, Gordon F. (1999), "Hajós constructions of critical graphs",
948: 886: 805: 424:-constructible graph such that all of the graphs formed in its construction are also 398: 149: 70: 630: 576: 481: 244:-constructible graphs. Then the graph formed by applying the Hajós construction to 20: 55: 168: 1012:
Koester, Gerhard (1991), "On 4-critical planar graphs with high edge density",
1138: 844: 500:
using the operations defined by Hajós may exceed the number of vertices in
652: 1075: 978:
10.1002/(SICI)1097-0118(199901)30:1<37::AID-JGT5>3.0.CO;2-V
613:
used the Hajós construction to generate an infinite set of 4-critical
291:-constructible. Equivalently, this graph may be formed by adding edge 1113:; Urquhart, Alasdair (1995), "The complexity of the Hajós calculus", 935:(1995), "Exponential lower bounds for the tree-like Hajós calculus", 378:
colors but for which every proper subgraph requires fewer colors) is
617:, each having more than twice as many edges as vertices. Similarly, 870:
Gravier, Sylvain (1996), "A Hajós-like theorem for list coloring",
214:-constructible) when it formed in one of the following three ways: 572: 454:, also serves as a counterexample to this problem. Subsequently, 420:-critical graph (that is, every odd cycle) can be generated as a 912:
Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe
629:, which they showed to be difficult to color using traditional 835:
Euler, Reinhardt (2003), "Hajós' construction and polytopes",
354:
Hajós proved more strongly that a graph requires at least
382:-constructible. Alternatively, every graph that requires 366:-constructible graph as a subgraph. Equivalently, every 339:
to have a different color than the combined vertex for
533:
to be the minimum number of steps needed to construct
594:
may be significantly larger than the Hajós number of
590:describing a Hajós construction for a given graph 480:, one such example is the graph obtained from the 59:Applying the Hajós construction to two copies of 1068:Artificial Intelligence and Symbolic Computation 484:graph by adding a new edge between each pair of 761: 320:. Indeed, this is clear for the complete graph 837:Combinatorial optimization—Eureka, you shrink! 508: 113:into a single vertex, removing the two edges 8: 773: 726: 447:-chromatic graphs contain a subdivision of 308:It is straightforward to verify that every 921: 742: 698: 571:, and therefore imply that NP =  1128: 1027: 885: 804: 621:used the construction, starting with the 644:used the Hajós construction to generate 618: 331:forces at least one of the two vertices 54: 993:Jensen, Tommy R.; Toft, Bjarne (1994), 738: 710: 686: 673: 663: 610: 397:A similar construction may be used for 312:-constructible graph requires at least 906:(1961), "Über eine Konstruktion nicht 757: 755: 714: 436: 997:(2nd ed.), John Wiley and Sons, 669: 667: 641: 462:-constructible graphs solely through 435:, this is not true: a graph found by 279:. Then the graph formed by combining 36: 7: 1116:SIAM Journal on Discrete Mathematics 598:, because a shortest expression for 466:-critical graphs were found for all 275:be any two non-adjacent vertices in 39:) that may be used to construct any 405:Constructibility of critical graphs 47:is at least some given threshold. 14: 569:nondeterministic polynomial time 792:Journal of Combinatorial Theory 362:, if and only if it contains a 23:, a branch of mathematics, the 1095:Graph theory (Cambridge, 1981) 937:Information Processing Letters 625:, to generate many 4-critical 267:-constructible graph, and let 1: 762:Pitassi & Urquhart (1995) 685:A proof can also be found in 287:into a single vertex is also 1029:10.1016/0012-365X(91)90039-5 949:10.1016/0020-0190(95)00035-B 887:10.1016/0012-365X(95)00350-6 806:10.1016/0095-8956(79)90062-5 509:Mansfield & Welsh (1982) 156:that requires four colors. 1185: 814:Diestel, Reinhard (2006), 774:Iwama & Pitassi (1995) 1139:10.1137/S089548019224024X 727:Jensen & Royle (1999) 922:Jensen & Toft (1994) 743:Jensen & Toft (1994) 699:Jensen & Toft (1994) 638:polyhedral combinatorics 121:, and adding a new edge 995:Graph Coloring Problems 966:Journal of Graph Theory 845:10.1007/3-540-36478-1_6 586:The minimum size of an 439:as a counterexample to 374:(a graph that requires 159:As another example, if 1045:Kubale, Marek (2004), 619:Liu & Zhang (2006) 401:in place of coloring. 304:Connection to coloring 295:to the graph and then 74: 910:-färbbarer Graphen", 318:proper graph coloring 58: 1015:Discrete Mathematics 873:Discrete Mathematics 627:triangle-free graphs 194:Constructible graphs 1076:10.1007/11856290_19 507:More specifically, 218:The complete graph 154:unit distance graph 43:or any graph whose 29:operation on graphs 606:Other applications 581:mathematical logic 458:-critical but not 441:Hajós's conjecture 75: 25:Hajós construction 1085:978-3-540-39728-1 1058:978-0-8218-3458-9 1004:978-0-471-02865-9 854:978-3-540-00580-3 827:978-3-540-26183-4 615:polyhedral graphs 529:-chromatic graph 152:, a seven-vertex 128:For example, let 87:undirected graphs 1176: 1164:Graph operations 1149: 1132: 1111:Pitassi, Toniann 1105: 1088: 1061: 1040: 1031: 1007: 988: 959: 933:Pitassi, Toniann 919: 909: 898: 889: 880:(1–3): 299–302, 865: 830: 809: 808: 777: 771: 765: 759: 750: 748: 736: 730: 724: 718: 708: 702: 696: 690: 683: 677: 671: 601: 597: 593: 566: 555: 551: 547: 543: 536: 532: 528: 524: 503: 499: 492:The Hajós number 479: 472: 465: 461: 457: 453: 446: 434: 427: 423: 419: 415: 393: 385: 381: 377: 369: 365: 357: 350: 346: 342: 338: 334: 330: 326: 315: 311: 294: 290: 286: 282: 278: 274: 270: 266: 262: 255: 251: 247: 243: 239: 235: 228: 224: 213: 205: 201: 189: 178: 174: 166: 162: 147: 135: 131: 124: 120: 116: 112: 108: 104: 100: 96: 92: 84: 80: 67: 51:The construction 45:chromatic number 33:György Hajós 1184: 1183: 1179: 1178: 1177: 1175: 1174: 1173: 1154: 1153: 1109: 1092: 1086: 1065: 1059: 1048:Graph Colorings 1044: 1011: 1005: 992: 963: 927: 907: 902: 869: 855: 834: 828: 813: 788: 785: 780: 772: 768: 760: 753: 746: 737: 733: 725: 721: 709: 705: 697: 693: 684: 680: 672: 665: 661: 608: 599: 595: 591: 588:expression tree 565:) ≤ 2 − 1 557: 553: 549: 545: 542: 538: 534: 530: 526: 515: 501: 497: 494: 474: 467: 463: 459: 455: 452: 448: 444: 429: 428:-critical. For 425: 421: 417: 410: 407: 392: 388: 383: 379: 375: 367: 363: 360:proper coloring 358:colors, in any 355: 348: 344: 340: 336: 332: 328: 325: 321: 313: 309: 306: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256:-constructible. 253: 249: 245: 241: 237: 233: 229:-constructible. 226: 223: 219: 211: 203: 199: 196: 180: 176: 172: 164: 160: 146: 140: 133: 129: 122: 118: 114: 110: 106: 102: 98: 94: 90: 82: 78: 66: 60: 53: 17: 16:Graph operation 12: 11: 5: 1182: 1180: 1172: 1171: 1169:Graph coloring 1166: 1156: 1155: 1152: 1151: 1130:10.1.1.30.5879 1123:(3): 464–483, 1107: 1090: 1084: 1063: 1057: 1042: 1022:(2): 147–151, 1009: 1003: 990: 961: 943:(5): 289–294, 925: 920:. As cited by 900: 867: 853: 832: 826: 811: 799:(2): 268–274, 784: 781: 779: 778: 766: 751: 749:-vertex graph. 739:Diestel (2006) 731: 719: 711:Gravier (1996) 703: 691: 687:Diestel (2006) 678: 674:Diestel (2006) 662: 660: 657: 623:Grötzsch graph 611:Koester (1991) 607: 604: 548:-vertex graph 540: 493: 490: 450: 406: 403: 390: 372:critical graph 323: 316:colors in any 305: 302: 301: 300: 257: 230: 221: 202:is said to be 195: 192: 144: 138:complete graph 101:be an edge of 93:be an edge of 64: 52: 49: 41:critical graph 15: 13: 10: 9: 6: 4: 3: 2: 1181: 1170: 1167: 1165: 1162: 1161: 1159: 1148: 1144: 1140: 1136: 1131: 1126: 1122: 1118: 1117: 1112: 1108: 1104: 1100: 1096: 1091: 1087: 1081: 1077: 1073: 1069: 1064: 1060: 1054: 1050: 1049: 1043: 1039: 1035: 1030: 1025: 1021: 1017: 1016: 1010: 1006: 1000: 996: 991: 987: 983: 979: 975: 971: 967: 962: 958: 954: 950: 946: 942: 938: 934: 930: 926: 923: 917: 913: 905: 901: 897: 893: 888: 883: 879: 875: 874: 868: 864: 860: 856: 850: 846: 842: 838: 833: 829: 823: 819: 818: 812: 807: 802: 798: 794: 793: 787: 786: 782: 775: 770: 767: 763: 758: 756: 752: 744: 740: 735: 732: 728: 723: 720: 716: 715:Kubale (2004) 712: 707: 704: 700: 695: 692: 688: 682: 679: 675: 670: 668: 664: 658: 656: 654: 651: 647: 643: 639: 634: 632: 628: 624: 620: 616: 612: 605: 603: 589: 584: 582: 578: 574: 570: 564: 560: 522: 518: 514: 510: 505: 491: 489: 487: 483: 477: 470: 442: 438: 437:Catlin (1979) 432: 413: 404: 402: 400: 399:list coloring 395: 373: 361: 352: 319: 303: 298: 258: 231: 217: 216: 215: 209: 208:constructible 193: 191: 187: 183: 170: 157: 155: 151: 150:Moser spindle 143: 139: 126: 88: 72: 71:Moser spindle 63: 57: 50: 48: 46: 42: 38: 34: 30: 26: 22: 1120: 1114: 1094: 1067: 1047: 1019: 1013: 994: 972:(1): 37–50, 969: 965: 940: 936: 929:Iwama, Kazuo 915: 911: 877: 871: 836: 817:Graph Theory 816: 796: 795:, Series B, 790: 769: 734: 722: 706: 694: 681: 642:Euler (2003) 635: 633:algorithms. 631:backtracking 609: 585: 577:Frege system 562: 558: 520: 516: 513:Hajós number 512: 506: 495: 482:dodecahedron 475: 468: 430: 411: 408: 396: 353: 307: 207: 197: 185: 181: 169:cycle graphs 158: 141: 127: 76: 61: 31:named after 24: 21:graph theory 18: 511:define the 297:contracting 240:be any two 1158:Categories 783:References 650:stable set 210:(or Hajós- 171:of length 136:each be a 1125:CiteSeerX 918:: 116–117 904:Hajós, G. 701:, p. 184. 488:vertices 486:antipodal 188:− 1 653:polytope 416:, every 351:colors. 198:A graph 1147:1341550 1103:0671913 1038:1144633 986:1658542 957:1336013 896:1388650 863:2163949 648:of the 556:edges, 263:be any 85:be two 35: ( 1145:  1127:  1101:  1082:  1055:  1036:  1001:  984:  955:  894:  861:  851:  824:  646:facets 473:. For 97:, and 27:is an 659:Notes 573:co-NP 552:with 537:from 525:of a 443:that 1080:ISBN 1053:ISBN 999:ISBN 849:ISBN 822:ISBN 409:For 343:and 335:and 283:and 271:and 259:Let 248:and 236:and 232:Let 175:and 167:are 163:and 132:and 117:and 109:and 81:and 77:Let 37:1961 1135:doi 1072:doi 1024:doi 974:doi 945:doi 882:doi 878:152 841:doi 801:doi 636:In 579:in 478:= 4 471:≥ 4 433:= 8 414:= 3 299:it. 252:is 225:is 19:In 1160:: 1143:MR 1141:, 1133:, 1119:, 1099:MR 1078:, 1034:MR 1032:, 1020:98 1018:, 982:MR 980:, 970:30 968:, 953:MR 951:, 941:54 939:, 931:; 916:10 914:, 892:MR 890:, 876:, 859:MR 857:, 847:, 797:26 754:^ 713:; 666:^ 655:. 640:, 583:. 504:. 394:. 329:wy 293:uv 190:. 184:+ 125:. 123:wy 119:xy 115:vw 99:xy 91:vw 89:, 1150:. 1137:: 1121:8 1106:. 1089:. 1074:: 1062:. 1041:. 1026:: 1008:. 989:. 976:: 960:. 947:: 924:. 908:n 899:. 884:: 866:. 843:: 831:. 810:. 803:: 776:. 764:. 747:n 729:. 717:. 689:. 676:. 600:G 596:G 592:G 563:G 561:( 559:h 554:m 550:G 546:n 541:k 539:K 535:G 531:G 527:k 523:) 521:G 519:( 517:h 502:G 498:G 476:k 469:k 464:k 460:k 456:k 451:k 449:K 445:k 431:k 426:k 422:k 418:k 412:k 391:k 389:K 384:k 380:k 376:k 370:- 368:k 364:k 356:k 349:k 345:x 341:v 337:y 333:w 324:k 322:K 314:k 310:k 289:k 285:v 281:u 277:G 273:v 269:u 265:k 261:G 254:k 250:H 246:G 242:k 238:H 234:G 227:k 222:k 220:K 212:k 206:- 204:k 200:G 186:q 182:p 177:q 173:p 165:H 161:G 145:4 142:K 134:H 130:G 111:x 107:v 103:H 95:G 83:H 79:G 73:. 65:4 62:K

Index

graph theory
operation on graphs
György Hajós
1961
critical graph
chromatic number

Moser spindle
undirected graphs
complete graph
Moser spindle
unit distance graph
cycle graphs
contracting
proper graph coloring
proper coloring
critical graph
list coloring
Catlin (1979)
Hajós's conjecture
dodecahedron
antipodal
Mansfield & Welsh (1982)
nondeterministic polynomial time
co-NP
Frege system
mathematical logic
expression tree
Koester (1991)
polyhedral graphs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.