Knowledge (XXG)

Hanna Neumann conjecture

Source 📝

677: 912:
Wise (2005) claimed that the strengthened Hanna Neumann conjecture implies another long-standing group-theoretic conjecture which says that every one-relator group with torsion is
1157: 811: 782: 863:
Khan (2002) and, independently, Meakin and Weil (2002), showed that the conclusion of the strengthened Hanna Neumann conjecture holds if one of the subgroups
1277: 1306: 1031: 493: 745:
Warren Dicks (1994) established the equivalence of the strengthened Hanna Neumann conjecture and a graph-theoretic statement that he called the
960: 682:
The strengthened Hanna Neumann conjecture was proved in 2011 by Joel Friedman. Shortly after, another proof was given by Igor Mineyev.
1272: 1199: 1068: 1190:
Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), 155–170, Contemporary Mathematics, vol. 296,
977:"Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: With an Appendix by Warren Dicks" 691:
In 1971 Burns improved Hanna Neumann's 1957 bound and proved that under the same assumptions as in Hanna Neumann's paper one has
1301: 1191: 894:
Ivanov and Dicks and Ivanov obtained analogs and generalizations of Hanna Neumann's results for the intersection of
1085: 1011: 308: 53:
In 2017, a third proof of the Strengthened Hanna Neumann conjecture, based on homological arguments inspired by
1063:
Groups–Canberra 1989, pp. 161–170. Lecture Notes in Mathematics, vol. 1456, Springer, Berlin, 1990;
1139: 1121: 1103: 921: 917: 429: 70: 32: 739: 722:(1992) established the strengthened Hanna Neumann Conjecture for the case where at least one of the subgroups 1247: 716:
In a 1990 paper, Walter Neumann formulated the strengthened Hanna Neumann conjecture (see statement above).
193:
She also conjectured that the factor of 2 in the above inequality is not necessary and that one always has
1263:
Mathematical Proceedings of the Cambridge Philosophical Society, vol. 144 (2008), no. 3, pp. 511–534
934: 1296: 1152: 844:
established the strengthened Hanna Neumann conjecture for the case where at least one of the subgroups
738:) has rank two. As most other approaches to the Hanna Neumann conjecture, Tardos used the technique of 174:
In a 1957 addendum, Hanna Neumann further improved this bound to show that under the above assumptions
1217: 356: 1216:
Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000).
1170: 841: 1195: 1136:
Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture.
1064: 976: 1233:
International Journal of Algebra and Computation, vol. 11 (2001), no. 3, pp. 281–290
787: 409: 401: 328: 300: 81: 66: 28: 719: 767: 484: 1290: 764:), then, in a certain statistical meaning, for a generic finitely generated subgroup 148: 43: 992: 906: 375: 20: 1274:
The Coherence of One-Relator Groups with Torsion and the Hanna Neumann Conjecture.
1005: 54: 1188:
Positively generated subgroups of free groups and the Hanna Neumann conjecture.
1244:
On the Kurosh rank of the intersection of subgroups in free products of groups
1211: 433: 332: 324: 320: 241: 77: 39: 463: ≠ {1}. Suppose that at least one such double coset exists and let 883:, that is, generated by a finite set of words that involve only elements of 1007:
Approximation by subgroups of finite index and the Hanna Neumann conjecture
672:{\displaystyle \sum _{i=1}^{n}\leq ({\rm {rank}}(H)-1)({\rm {rank}}(K)-1).} 1213:
Subgroups of free groups: a contribution to the Hanna Neumann conjecture.
895: 382: 316: 93: 73: 35: 1134: 1116: 1098: 1080: 1082:
On the intersection of finitely generated subgroups of a free group.
1047:
Publicationes Mathematicae Debrecen, vol. 4 (1956), 186–189.
829:. Thus, the strengthened Hanna Neumann conjecture holds for every 1261:
On the intersection of free subgroups in free products of groups.
50:) was proved independently by Joel Friedman and by Igor Mineyev. 1177:
Journal of Group Theory, vol. 4 (2001), no. 2, pp. 113–151
1061:
On intersections of finitely generated subgroups of free groups.
958:
On the intersection of finitely generated free groups. Addendum.
46:
in 1957. In 2011, a strengthened version of the conjecture (see
742:
for analyzing subgroups of free groups and their intersections.
479:
be all the distinct representatives of such double cosets. The
443:) then there exist at most finitely many double coset classes 65:
The subject of the conjecture was originally motivated by a
335:
is equal to the size of any free basis of that free group.
57:
considerations, was published by Andrei Jaikin-Zapirain.
47: 1154:
A property of subgroups of infinite index in a free group
1231:
Intersecting free subgroups in free products of groups.
993:"Submultiplicativity and the Hanna Neumann Conjecture." 1045:
On the intersection of finitely generated free groups.
1029:
On the intersection of finitely generated free groups.
756:
is a finitely generated subgroup of infinite index in
240:) be two nontrivial finitely generated subgroups of a 790: 770: 496: 1175:
The rank three case of the Hanna Neumann conjecture.
805: 776: 671: 80:is always finitely generated, that is, has finite 1100:On the intersection of subgroups of a free group. 979:Mem. Amer. Math. Soc., 233 (2015), no. 1100. 8: 69:who proved that the intersection of any two 1278:Bulletin of the London Mathematical Society 1250:, vol. 218 (2008), no. 2, pp. 465–484 1142:, vol. 117 (1994), no. 3, pp. 373–389 151:improved this bound by showing that : 1280:, vol. 37 (2005), no. 5, pp. 697–705 1124:, vol. 71 (1983), no. 3, pp. 551–565 1106:, vol. 108 (1992), no. 1, pp. 29–36. 1032:Journal of the London Mathematical Society 995:Ann. of Math., 175 (2012), no. 1, 393-414. 789: 769: 686:Partial results and other generalizations 633: 632: 596: 595: 568: 563: 550: 522: 521: 512: 501: 495: 271:. The conjecture says that in this case 971: 969: 987: 985: 946: 952: 950: 487:(1990), states that in this situation 84:. In this paper Howson proved that if 1088:, vol. 119 (1971), pp. 121–130. 481:strengthened Hanna Neumann conjecture 339:Strengthened Hanna Neumann conjecture 7: 1055: 1053: 1034:, vol. 29 (1954), pp. 428–434 961:Publicationes Mathematicae Debrecen 212:This statement became known as the 1220:, vol. 94 (2002), pp. 33–43. 752:Arzhantseva (2000) proved that if 643: 640: 637: 634: 606: 603: 600: 597: 532: 529: 526: 523: 432:subgroups of a finitely generated 307:, that is, the smallest size of a 14: 1307:Conjectures that have been proved 1259:Warren Dicks, and S. V. Ivanov. 19:In the mathematical subject of 1018:(2017), no. 10, pp. 1955-1987 800: 794: 663: 654: 648: 629: 626: 617: 611: 592: 586: 577: 537: 518: 279:) − 1 ≤ (rank( 42:. The conjecture was posed by 1: 1192:American Mathematical Society 112: ≥ 1 then the rank 1160:128 (2000), 3205–3210. 920:subgroup in such a group is 747:amalgamated graph conjecture 283:) − 1)(rank( 31:of the intersection of two 16:Proposition in group theory 1323: 1118:Topology of finite graphs. 1086:Mathematische Zeitschrift 1012:Duke Mathematical Journal 860:) has rank at most three. 821: = {1} for all 740:Stallings subgroup graphs 27:is a statement about the 1210:J. Meakin, and P. Weil. 1194:, Providence, RI, 2002; 1140:Inventiones Mathematicae 1122:Inventiones Mathematicae 1104:Inventiones Mathematicae 1004:Andrei Jaikin-Zapirain, 483:, formulated by her son 214:Hanna Neumann conjecture 200: − 1 ≤ ( 158: − 1 ≤ 2 131: − 1 ≤ 2 25:Hanna Neumann conjecture 1248:Advances in Mathematics 963:, vol. 5 (1957), p. 128 408:and thus have the same 355:are two subgroups of a 287:) − 1). 263:be the intersection of 1302:Geometric group theory 1158:Proc. Amer. Math. Soc. 935:Geometric group theory 807: 778: 673: 517: 412:. It is known that if 208: − 1). 204: − 1)( 67:1954 theorem of Howson 808: 779: 674: 497: 881:positively generated 806:{\displaystyle F(X)} 788: 768: 707: − 2 703: − 3 494: 1218:Geometriae Dedicata 1151:G. N. Arzhantseva. 1115:John R. Stallings. 576: 379:HaK = HbK 166: −  162: −  139: −  135: −  108: ≥ 1 and 1169:Warren Dicks, and 922:finitely presented 918:finitely generated 909:of several groups. 840:In 2001 Dicks and 803: 774: 669: 559: 430:finitely generated 295:the quantity rank( 104:) of finite ranks 71:finitely generated 33:finitely generated 1079:Robert G. Burns. 777:{\displaystyle K} 291:Here for a group 1314: 1281: 1270: 1264: 1257: 1251: 1240: 1234: 1227: 1221: 1208: 1202: 1184: 1178: 1167: 1161: 1149: 1143: 1131: 1125: 1113: 1107: 1095: 1089: 1077: 1071: 1059:Walter Neumann. 1057: 1048: 1041: 1035: 1025: 1019: 1002: 996: 989: 980: 973: 964: 954: 916:(that is, every 812: 810: 809: 804: 783: 781: 780: 775: 678: 676: 675: 670: 647: 646: 610: 609: 575: 567: 555: 554: 536: 535: 516: 511: 374:define the same 220:Formal statement 147:In a 1956 paper 96:of a free group 1322: 1321: 1317: 1316: 1315: 1313: 1312: 1311: 1287: 1286: 1285: 1284: 1271: 1267: 1258: 1254: 1241: 1237: 1228: 1224: 1209: 1205: 1185: 1181: 1171:Edward Formanek 1168: 1164: 1150: 1146: 1132: 1128: 1114: 1110: 1096: 1092: 1078: 1074: 1058: 1051: 1043:Hanna Neumann. 1042: 1038: 1026: 1022: 1003: 999: 990: 983: 975:Joel Friedman, 974: 967: 956:Hanna Neumann. 955: 948: 943: 931: 786: 785: 766: 765: 711: + 4. 688: 546: 492: 491: 478: 469: 341: 327:itself and the 323:is known to be 222: 63: 17: 12: 11: 5: 1320: 1318: 1310: 1309: 1304: 1299: 1289: 1288: 1283: 1282: 1265: 1252: 1242:S. V. Ivanov. 1235: 1229:S. V. Ivanov. 1222: 1203: 1179: 1162: 1144: 1133:Warren Dicks. 1126: 1108: 1097:Gábor Tardos. 1090: 1072: 1049: 1036: 1027:A. G. Howson. 1020: 997: 991:Igor Minevev, 981: 965: 945: 944: 942: 939: 938: 937: 930: 927: 926: 925: 910: 892: 861: 838: 833:and a generic 802: 799: 796: 793: 773: 750: 743: 717: 713: 712: 693: 692: 687: 684: 680: 679: 668: 665: 662: 659: 656: 653: 650: 645: 642: 639: 636: 631: 628: 625: 622: 619: 616: 613: 608: 605: 602: 599: 594: 591: 588: 585: 582: 579: 574: 571: 566: 562: 558: 553: 549: 545: 542: 539: 534: 531: 528: 525: 520: 515: 510: 507: 504: 500: 485:Walter Neumann 474: 467: 340: 337: 309:generating set 289: 288: 221: 218: 210: 209: 191: 190: 181:− 1 ≤ 2( 172: 171: 145: 144: 62: 59: 15: 13: 10: 9: 6: 4: 3: 2: 1319: 1308: 1305: 1303: 1300: 1298: 1295: 1294: 1292: 1279: 1276: 1275: 1269: 1266: 1262: 1256: 1253: 1249: 1245: 1239: 1236: 1232: 1226: 1223: 1219: 1215: 1214: 1207: 1204: 1201: 1200:0-8218-2822-3 1197: 1193: 1189: 1183: 1180: 1176: 1172: 1166: 1163: 1159: 1156: 1155: 1148: 1145: 1141: 1138: 1137: 1130: 1127: 1123: 1120: 1119: 1112: 1109: 1105: 1102: 1101: 1094: 1091: 1087: 1084: 1083: 1076: 1073: 1070: 1069:3-540-53475-X 1066: 1062: 1056: 1054: 1050: 1046: 1040: 1037: 1033: 1030: 1024: 1021: 1017: 1013: 1009: 1008: 1001: 998: 994: 988: 986: 982: 978: 972: 970: 966: 962: 959: 953: 951: 947: 940: 936: 933: 932: 928: 923: 919: 915: 911: 908: 904: 900: 897: 893: 890: 886: 882: 878: 874: 870: 866: 862: 859: 855: 851: 847: 843: 839: 836: 832: 828: 824: 820: 817: ∩  816: 797: 791: 771: 763: 759: 755: 751: 748: 744: 741: 737: 733: 729: 725: 721: 718: 715: 714: 710: 706: 702: 698: 695: 694: 690: 689: 685: 683: 666: 660: 657: 651: 623: 620: 614: 589: 583: 580: 572: 569: 564: 560: 556: 551: 547: 543: 540: 513: 508: 505: 502: 498: 490: 489: 488: 486: 482: 477: 473: 466: 462: 459: ∩  458: 454: 450: 446: 442: 438: 435: 431: 427: 423: 419: 415: 411: 407: 403: 399: 396: ∩  395: 391: 388: ∩  387: 384: 380: 377: 373: 369: 365: 361: 358: 354: 350: 346: 338: 336: 334: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 286: 282: 278: 274: 273: 272: 270: 266: 262: 259: ∩  258: 255: =  254: 250: 246: 243: 239: 235: 231: 227: 219: 217: 215: 207: 203: 199: 196: 195: 194: 188: 184: 180: 177: 176: 175: 169: 165: 161: 157: 154: 153: 152: 150: 149:Hanna Neumann 142: 138: 134: 130: 127: 126: 125: 123: 120: ∩  119: 115: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 72: 68: 60: 58: 56: 51: 49: 45: 44:Hanna Neumann 41: 37: 34: 30: 26: 22: 1297:Group theory 1273: 1268: 1260: 1255: 1243: 1238: 1230: 1225: 1212: 1206: 1187: 1186:Bilal Khan. 1182: 1174: 1165: 1153: 1147: 1135: 1129: 1117: 1111: 1099: 1093: 1081: 1075: 1060: 1044: 1039: 1028: 1023: 1015: 1006: 1000: 957: 913: 907:free product 902: 898: 888: 884: 880: 876: 872: 868: 864: 857: 853: 849: 845: 834: 830: 826: 822: 818: 814: 761: 757: 753: 746: 735: 731: 727: 723: 708: 704: 700: 696: 681: 480: 475: 471: 464: 460: 456: 455:) such that 452: 448: 444: 440: 436: 425: 421: 417: 413: 405: 397: 393: 389: 385: 378: 376:double coset 371: 367: 363: 359: 352: 348: 344: 342: 312: 304: 296: 292: 290: 284: 280: 276: 268: 264: 260: 256: 252: 248: 244: 237: 233: 229: 225: 223: 213: 211: 205: 201: 197: 192: 186: 182: 178: 173: 167: 163: 159: 155: 146: 140: 136: 132: 128: 121: 117: 113: 109: 105: 101: 97: 89: 85: 64: 52: 24: 21:group theory 18: 891:as letters. 887:but not of 189:− 1). 185:− 1)( 124:satisfies: 55:pro-p-group 1291:Categories 941:References 813:, we have 434:free group 333:free group 321:free group 251:) and let 242:free group 78:free group 40:free group 896:subgroups 658:− 621:− 590:≤ 581:− 570:− 544:∩ 499:∑ 402:conjugate 383:subgroups 381:then the 299:) is the 94:subgroups 74:subgroups 36:subgroups 929:See also 914:coherent 842:Formanek 317:subgroup 315:. Every 362:and if 61:History 1198:  1067:  720:Tardos 428:) are 23:, the 905:of a 879:) is 470:,..., 357:group 331:of a 319:of a 275:rank( 76:of a 48:below 38:of a 1196:ISBN 1065:ISBN 901:and 848:and 726:and 410:rank 400:are 392:and 329:rank 325:free 311:for 301:rank 267:and 224:Let 92:are 88:and 82:rank 29:rank 1016:166 871:of 852:of 825:in 819:gKg 784:in 730:of 699:≤ 2 461:aKa 447:in 445:HaK 404:in 398:bKb 390:aKa 343:If 303:of 116:of 1293:: 1246:. 1173:. 1052:^ 1014:, 1010:, 984:^ 968:^ 949:^ 924:). 867:, 701:mn 420:≤ 416:, 370:∈ 366:, 351:≤ 347:, 232:≤ 228:, 216:. 164:2m 160:mn 133:mn 903:K 899:H 889:X 885:X 877:X 875:( 873:F 869:K 865:H 858:X 856:( 854:F 850:K 846:H 837:. 835:K 831:H 827:F 823:g 815:H 801:) 798:X 795:( 792:F 772:K 762:X 760:( 758:F 754:H 749:. 736:X 734:( 732:F 728:K 724:H 709:n 705:m 697:s 667:. 664:) 661:1 655:) 652:K 649:( 644:k 641:n 638:a 635:r 630:( 627:) 624:1 618:) 615:H 612:( 607:k 604:n 601:a 598:r 593:( 587:] 584:1 578:) 573:1 565:i 561:a 557:K 552:i 548:a 541:H 538:( 533:k 530:n 527:a 524:r 519:[ 514:n 509:1 506:= 503:i 476:n 472:a 468:1 465:a 457:H 453:X 451:( 449:F 441:X 439:( 437:F 426:X 424:( 422:F 418:K 414:H 406:G 394:H 386:H 372:G 368:b 364:a 360:G 353:G 349:K 345:H 313:G 305:G 297:G 293:G 285:K 281:H 277:L 269:K 265:H 261:K 257:H 253:L 249:X 247:( 245:F 238:X 236:( 234:F 230:K 226:H 206:n 202:m 198:s 187:n 183:m 179:s 170:. 168:n 156:s 143:. 141:n 137:m 129:s 122:K 118:H 114:s 110:m 106:n 102:X 100:( 98:F 90:K 86:H

Index

group theory
rank
finitely generated
subgroups
free group
Hanna Neumann
below
pro-p-group
1954 theorem of Howson
finitely generated
subgroups
free group
rank
subgroups
Hanna Neumann
free group
rank
generating set
subgroup
free group
free
rank
free group
group
double coset
subgroups
conjugate
rank
finitely generated
free group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.