Knowledge (XXG)

Hasse principle

Source đź“ť

277:
Restricting to non-singular forms, one can do better than this: Heath-Brown proved that every non-singular cubic form over the rational numbers in at least 10 variables represents 0, thus trivially establishing the Hasse principle for this class of forms. It is known that Heath-Brown's result is best
105:-adics: a global solution yields local solutions at each prime. The Hasse principle asks when the reverse can be done, or rather, asks what the obstruction is: when can you patch together solutions over the reals and 515: 282:
showed that the Hasse principle holds for the representation of 0 by non-singular cubic forms over the rational numbers in at least nine variables. Davenport, Heath-Brown and Hooley all used the
274:. Since every cubic form over the p-adic numbers with at least ten variables represents 0, the local–global principle holds trivially for cubic forms over the rationals in at least 14 variables. 177: 150: 366: 580: 221: 554: 1092: 283: 278:
possible in the sense that there exist non-singular cubic forms over the rationals in 9 variables that do not represent zero. However,
695: 1056: 1042: 1005: 980: 433: 97:
Given a polynomial equation with rational coefficients, if it has a rational solution, then this also yields a real solution and a
1097: 1082: 1087: 531:
The Hasse principle for orthogonal groups is closely related to the Hasse principle for the corresponding quadratic forms.
1032: 941: 295: 558: 193: 1027: 270:
showed that every cubic form over the integers in at least 14 variables represents 0, improving on earlier results of
252: = 0 has a solution in real numbers, and in all p-adic fields, but it has no nontrivial solution in which 537:
and several others verified the Hasse principle by case-by-case proofs for each group. The last case was the group
575: 40: 70:. A more formal version of the Hasse principle states that certain types of equations have a rational solution 52: 109:-adics to yield a solution over the rationals: when can local solutions be joined to form a global solution? 370: 298:, which accounts completely for the failure of the Hasse principle for some classes of variety. However, 287: 1022: 839: 704: 659: 290:, the obstructions to the Hasse principle holding for cubic forms can be tied into the theory of the 158: 131: 36: 302:
has shown that the Brauer–Manin obstruction cannot explain all the failures of the Hasse principle.
240:
shows that the Hasse–Minkowski theorem cannot be extended to forms of degree 3: The cubic equation 3
197: 299: 877: 855: 829: 798: 720: 675: 315: 279: 44: 330: 972: 224:
states that the local–global principle applies to the condition of being a relative norm for a
1001: 997: 991: 976: 873: 738: 647: 311: 267: 209: 996:. Cambridge Tracts in Mathematics. Vol. 144. Cambridge: Cambridge Univ. Press. pp.  938:
Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965)
960: 893: 847: 780: 750: 712: 667: 624: 538: 271: 225: 949: 929: 1046: 1039: 968: 945: 925: 413: 237: 205: 117: 56: 1062: 843: 708: 663: 570: 201: 113: 71: 1076: 961: 768: 724: 64: 859: 679: 421: 291: 213: 121: 48: 24: 397: 385: 217: 153: 75: 60: 20: 784: 754: 956: 671: 318:
show that the Hasse–Minkowski theorem is not extensible to forms of degree 10
936:
Kneser, Martin (1966), "Hasse principle for HÂą of simply connected groups",
898: 881: 716: 851: 834: 916:
Chernousov, V. I. (1989), "The Hasse principle for groups of type E8",
629: 600: 553:
The Hasse principle for algebraic groups was used in the proofs of the
771:(1937). "A remark on indeterminate equations in several variables". 196:
states that the local–global principle holds for the problem of
820:
Alexei N. Skorobogatov (1999). "Beyond the Manin obstruction".
357:) variables represents 0: the Hasse principle holds trivially. 882:"Some forms of odd degree for which the Hasse principle fails" 510:{\displaystyle H^{1}(k,G)\rightarrow \prod _{s}H^{1}(k_{s},G)} 369:
establishes a local–global principle for the splitting of a
693:
H. Davenport (1963). "Cubic forms in sixteen variables".
216:(as proved by Hasse), when one uses all the appropriate 101:-adic solution, as the rationals embed in the reals and 420:
is a simply-connected algebraic group defined over the
436: 161: 134: 16:
Solving integer equations from all modular solutions
520:is injective, where the product is over all places 51:. This is handled by examining the equation in the 509: 337:is any odd natural number, then there is a number 171: 144: 803:Journal fĂĽr die reine und angewandte Mathematik 743:Proceedings of the London Mathematical Society 8: 1053:Diophantine Equations: Progress and Problems 124:. For number fields, rather than reals and 773:Journal of the London Mathematical Society 547: 897: 833: 628: 492: 479: 469: 441: 435: 286:in their proofs. According to an idea of 163: 162: 160: 136: 135: 133: 741:(1983). "Cubic forms in ten variables". 581:Grothendieck–Katz p-curvature conjecture 212:'s result); and more generally over any 128:-adics, one uses complex embeddings and 650:(2007). "Cubic forms in 14 variables". 591: 534: 7: 642: 640: 555:Weil conjecture for Tamagawa numbers 408:Hasse principle for algebraic groups 222:Hasse's theorem on cyclic extensions 367:Albert–Brauer–Hasse–Noether theorem 361:Albert–Brauer–Hasse–Noether theorem 164: 137: 35:, is the idea that one can find an 696:Proceedings of the Royal Society A 550:many years after the other cases. 14: 801:(1988). "On nonary cubic forms". 376:over an algebraic number field 345:) such that any form of degree 172:{\displaystyle {\mathfrak {p}}} 145:{\displaystyle {\mathfrak {p}}} 37:integer solution to an equation 963:Survey of Diophantine geometry 886:Pacific Journal of Mathematics 504: 485: 462: 459: 447: 284:Hardy–Littlewood circle method 1: 942:American Mathematical Society 120:: integers, for instance, or 85:-adic numbers for each prime 990:Alexei Skorobogatov (2001). 559:strong approximation theorem 546:which was only completed by 74:they have a solution in the 43:to piece together solutions 1028:Encyclopedia of Mathematics 993:Torsors and rational points 396:then it is isomorphic to a 326:is a non-negative integer. 112:One can ask this for other 1114: 1093:Localization (mathematics) 1067:Mathematical Intelligencer 601:"The Diophantine equation 264:are all rational numbers. 672:10.1007/s00222-007-0062-1 47:powers of each different 41:Chinese remainder theorem 785:10.1112/jlms/s1-12.1.127 755:10.1112/plms/s3-47.2.225 599:Ernst S. Selmer (1951). 412:The Hasse principle for 296:Brauer–Manin obstruction 1098:Mathematical principles 1083:Algebraic number theory 1069:36 (4) (Dec 2014), 4–9. 899:10.2140/pjm.1976.67.161 194:Hasse–Minkowski theorem 717:10.1098/rspa.1963.0054 511: 371:central simple algebra 306:Forms of higher degree 220:necessary conditions. 173: 146: 29:local–global principle 1088:Diophantine equations 852:10.1007/s002220050291 576:Grunwald–Wang theorem 512: 380:. It states that if 174: 147: 944:, pp. 159–163, 940:, Providence, R.I.: 434: 236:A counterexample by 183:Forms representing 0 159: 132: 31:, also known as the 844:1999InMat.135..399S 709:1963RSPSA.272..285D 664:2007InMat.170..199H 329:On the other hand, 310:Counterexamples by 1045:2004-03-13 at the 1040:PlanetMath article 918:Soviet Math. Dokl. 630:10.1007/BF02395746 507: 474: 384:splits over every 228:of number fields. 169: 142: 1051:Swinnerton-Dyer, 1023:"Hasse principle" 739:D. R. Heath-Brown 703:(1350): 285–303. 548:Chernousov (1989) 465: 268:Roger Heath-Brown 1105: 1063:Global and local 1036: 1011: 986: 966: 952: 932: 904: 903: 901: 870: 864: 863: 837: 835:alg-geom/9711006 817: 811: 810: 795: 789: 788: 765: 759: 758: 735: 729: 728: 690: 684: 683: 648:D.R. Heath-Brown 644: 635: 634: 632: 617:Acta Mathematica 596: 516: 514: 513: 508: 497: 496: 484: 483: 473: 446: 445: 414:algebraic groups 226:cyclic extension 206:rational numbers 178: 176: 175: 170: 168: 167: 151: 149: 148: 143: 141: 140: 57:rational numbers 1113: 1112: 1108: 1107: 1106: 1104: 1103: 1102: 1073: 1072: 1047:Wayback Machine 1021: 1018: 1008: 989: 983: 969:Springer-Verlag 955: 935: 915: 912: 907: 872: 871: 867: 819: 818: 814: 797: 796: 792: 767: 766: 762: 737: 736: 732: 692: 691: 687: 646: 645: 638: 613: = 0" 598: 597: 593: 589: 567: 544: 488: 475: 437: 432: 431: 416:states that if 410: 395: 363: 331:Birch's theorem 308: 238:Ernst S. Selmer 234: 202:quadratic forms 190: 188:Quadratic forms 185: 157: 156: 130: 129: 95: 33:Hasse principle 17: 12: 11: 5: 1111: 1109: 1101: 1100: 1095: 1090: 1085: 1075: 1074: 1071: 1070: 1059: 1049: 1037: 1017: 1016:External links 1014: 1013: 1012: 1006: 987: 981: 953: 933: 911: 908: 906: 905: 892:(1): 161–169. 865: 828:(2): 399–424. 812: 790: 779:(2): 127–129. 760: 749:(2): 225–257. 730: 685: 658:(1): 199–230. 636: 590: 588: 585: 584: 583: 578: 573: 571:Local analysis 566: 563: 542: 518: 517: 506: 503: 500: 495: 491: 487: 482: 478: 472: 468: 464: 461: 458: 455: 452: 449: 444: 440: 409: 406: 398:matrix algebra 391: 362: 359: 333:shows that if 307: 304: 294:; this is the 248: + 5 244: + 4 233: 230: 198:representing 0 189: 186: 184: 181: 166: 139: 94: 91: 72:if and only if 15: 13: 10: 9: 6: 4: 3: 2: 1110: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1080: 1078: 1068: 1064: 1061:J. Franklin, 1060: 1058: 1054: 1050: 1048: 1044: 1041: 1038: 1034: 1030: 1029: 1024: 1020: 1019: 1015: 1009: 1007:0-521-80237-7 1003: 999: 995: 994: 988: 984: 982:3-540-61223-8 978: 974: 970: 965: 964: 958: 954: 951: 947: 943: 939: 934: 931: 927: 923: 919: 914: 913: 909: 900: 895: 891: 887: 883: 879: 875: 869: 866: 861: 857: 853: 849: 845: 841: 836: 831: 827: 823: 816: 813: 808: 804: 800: 794: 791: 786: 782: 778: 774: 770: 769:L. J. Mordell 764: 761: 756: 752: 748: 744: 740: 734: 731: 726: 722: 718: 714: 710: 706: 702: 698: 697: 689: 686: 681: 677: 673: 669: 665: 661: 657: 653: 649: 643: 641: 637: 631: 626: 622: 618: 614: 612: 609: +  608: 605: +  604: 595: 592: 586: 582: 579: 577: 574: 572: 569: 568: 564: 562: 560: 556: 551: 549: 545: 541: 536: 535:Kneser (1966) 532: 529: 527: 523: 501: 498: 493: 489: 480: 476: 470: 466: 456: 453: 450: 442: 438: 430: 429: 428: 427:then the map 426: 423: 419: 415: 407: 405: 403: 399: 394: 390: 387: 383: 379: 375: 372: 368: 360: 358: 356: 352: 349:in more than 348: 344: 340: 336: 332: 327: 325: 321: 317: 313: 305: 303: 301: 297: 293: 289: 285: 281: 275: 273: 269: 265: 263: 259: 255: 251: 247: 243: 239: 231: 229: 227: 223: 219: 215: 211: 207: 203: 199: 195: 187: 182: 180: 155: 127: 123: 122:number fields 119: 115: 110: 108: 104: 100: 92: 90: 88: 84: 80: 77: 73: 69: 68:-adic numbers 67: 62: 58: 54: 50: 46: 42: 39:by using the 38: 34: 30: 26: 22: 1066: 1057:online notes 1052: 1026: 992: 962: 937: 921: 917: 889: 885: 868: 825: 822:Invent. Math 821: 815: 806: 802: 793: 776: 772: 763: 746: 742: 733: 700: 694: 688: 655: 652:Invent. Math 651: 620: 616: 610: 606: 602: 594: 552: 539: 533: 530: 525: 521: 519: 424: 422:global field 417: 411: 401: 392: 388: 381: 377: 373: 364: 354: 350: 346: 342: 338: 334: 328: 323: 319: 309: 300:Skorobogatov 292:Brauer group 276: 266: 261: 257: 253: 249: 245: 241: 235: 214:number field 191: 154:prime ideals 152:-adics, for 125: 111: 106: 102: 98: 96: 86: 82: 78: 76:real numbers 65: 61:real numbers 49:prime number 32: 28: 25:Helmut Hasse 18: 971:. pp.  924:: 592–596, 874:M. Fujiwara 623:: 203–362. 322:+ 5, where 232:Cubic forms 218:local field 53:completions 21:mathematics 1077:Categories 957:Serge Lang 910:References 386:completion 208:(which is 1033:EMS Press 799:C. Hooley 725:122443854 467:∏ 463:→ 272:Davenport 210:Minkowski 204:over the 93:Intuition 1043:Archived 998:1–7, 112 959:(1997). 880:(1976). 860:14285244 809:: 32–98. 680:16600794 565:See also 557:and the 312:Fujiwara 63:and the 1035:, 2001 950:0220736 930:1014762 878:M. Sudo 840:Bibcode 705:Bibcode 660:Bibcode 81:in the 55:of the 1004:  979:  975:–258. 948:  928:  858:  723:  678:  280:Hooley 260:, and 118:fields 59:: the 45:modulo 856:S2CID 830:arXiv 721:S2CID 676:S2CID 587:Notes 400:over 288:Manin 114:rings 1002:ISBN 977:ISBN 365:The 316:Sudo 314:and 192:The 973:250 894:doi 848:doi 826:135 807:386 781:doi 751:doi 713:doi 701:272 668:doi 656:170 625:doi 524:of 200:by 116:or 79:and 27:'s 19:In 1079:: 1065:, 1055:, 1031:, 1025:, 1000:. 967:. 946:MR 926:MR 922:39 920:, 890:67 888:. 884:. 876:; 854:. 846:. 838:. 824:. 805:. 777:12 775:. 747:47 745:. 719:. 711:. 699:. 674:. 666:. 654:. 639:^ 621:85 619:. 615:. 611:cz 607:by 603:ax 561:. 528:. 404:. 256:, 179:. 89:. 23:, 1010:. 985:. 902:. 896:: 862:. 850:: 842:: 832:: 787:. 783:: 757:. 753:: 727:. 715:: 707:: 682:. 670:: 662:: 633:. 627:: 543:8 540:E 526:k 522:s 505:) 502:G 499:, 494:s 490:k 486:( 481:1 477:H 471:s 460:) 457:G 454:, 451:k 448:( 443:1 439:H 425:k 418:G 402:K 393:v 389:K 382:A 378:K 374:A 355:d 353:( 351:N 347:d 343:d 341:( 339:N 335:d 324:n 320:n 262:z 258:y 254:x 250:z 246:y 242:x 165:p 138:p 126:p 107:p 103:p 99:p 87:p 83:p 66:p

Index

mathematics
Helmut Hasse
integer solution to an equation
Chinese remainder theorem
modulo
prime number
completions
rational numbers
real numbers
p-adic numbers
if and only if
real numbers
rings
fields
number fields
prime ideals
Hasse–Minkowski theorem
representing 0
quadratic forms
rational numbers
Minkowski
number field
local field
Hasse's theorem on cyclic extensions
cyclic extension
Ernst S. Selmer
Roger Heath-Brown
Davenport
Hooley
Hardy–Littlewood circle method

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑