Knowledge (XXG)

Hartogs number

Source 📝

275: 91:(with the bijection definition of cardinality and the injective function order). (If we restrict to cardinal numbers of well-orderable sets then that of α is the smallest that is not not less than or equal to that of 491:, and so his result is one of Zermelo set theory and looks rather different from the modern exposition above. Instead, he considered the set of isomorphism classes of well-ordered subsets of 185: 399: 217: 619: 519:. However, the main purpose of his contribution was to show that trichotomy for cardinal numbers implies the (then 11 year old) 115: 107:. This mapping is used to construct the aleph numbers, which are all the cardinal numbers of infinite well-orderable sets. 368: 353: 667: 144: 570: 520: 191:. As ordinals are well-ordered, this immediately implies the existence of a Hartogs number for any set 131: 24: 662: 595: 532: 345: 319: 289: 278: 52: 565: 615: 556: 508: 488: 111: 96: 40: 587: 579: 384: 270:{\displaystyle \alpha =\{\beta \in {\textrm {Ord}}\mid \exists i:\beta \hookrightarrow X\}} 591: 119: 68: 83:
to α. However, the cardinal number of α is still a minimal cardinal number (ie. ordinal)
484: 416: 282: 48: 32: 656: 599: 630: 515:. Hartogs showed this to be a well-ordering greater than any well-ordered subset of 537: 64: 607: 20: 360: 326: 195:. Furthermore, the proof is constructive and yields the Hartogs number of 583: 352:
is a definable subclass of the preceding set, so it is a set by the
431:, because if there were, then we would get the contradiction that 79:
cannot be well-ordered then there cannot be an injection from
612:
Set theory, third millennium edition (revised and expanded)
423:
is an ordinal. Furthermore, there is no injection from
130:
Not to be confused with the result in complex analysis,
387: 220: 187:; that is, such that there is no injection from α to 147: 393: 269: 179: 110:The existence of the Hartogs number was proved by 443:is the least such ordinal with no injection into 71:of α is a minimal cardinal greater than that of 16:Certain kind of cardinal number in set theory 8: 264: 227: 137:Hartogs's theorem states that for any set 386: 237: 236: 219: 172: 164: 156: 148: 146: 35:associated with a set. In particular, if 495:and the relation in which the class of 208: 180:{\displaystyle |\alpha |\not \leq |X|} 141:, there exists an ordinal α such that 407:can be described by a simple formula. 7: 337:is a set, by the axiom of power set. 523:(and, hence, the axiom of choice). 483:In 1915, Hartogs could use neither 566:"Über das Problem der Wohlordnung" 246: 118:alone (that is, without using the 14: 511:with a proper initial segment of 419:of ordinals is again an ordinal, 447:. This is true because, since 467:so there is an injection from 258: 173: 165: 157: 149: 1: 411:But this last set is exactly 348:well-orderings of subsets of 43:, then the Hartogs number of 318:is a set, as can be seen in 369:axiom schema of replacement 116:Zermelo–Fraenkel set theory 684: 354:axiom schema of separation 129: 103:to α is sometimes called 85:not less than or equal to 451:is an ordinal, for any 51:α such that there is no 640:. University of Bristol 564:Hartogs, Fritz (1915). 551:Goldrei, Derek (1996). 125: 631:"Axiomatic set theory" 395: 394:{\displaystyle \cong } 303:First, we verify that 271: 181: 571:Mathematische Annalen 521:well-ordering theorem 396: 363:of well-orderings in 272: 182: 485:von Neumann-ordinals 385: 218: 145: 25:axiomatic set theory 87:the cardinality of 584:10.1007/BF01458215 557:Chapman & Hall 553:Classic Set Theory 533:Successor cardinal 391: 320:Axiom of power set 290:injective function 267: 177: 105:Hartogs's function 23:, specifically in 499:precedes that of 489:replacement axiom 415:. Now, because a 359:The class of all 240: 132:Hartogs's theorem 126:Hartogs's theorem 112:Friedrich Hartogs 675: 668:Cardinal numbers 648: 646: 645: 635: 629:Charles Morgan. 625: 603: 560: 439:. And finally, 400: 398: 397: 392: 367:is a set by the 276: 274: 273: 268: 242: 241: 238: 186: 184: 183: 178: 176: 168: 160: 152: 683: 682: 678: 677: 676: 674: 673: 672: 653: 652: 651: 643: 641: 633: 628: 622: 606: 563: 550: 546: 529: 481: 479:Historic remark 406: 383: 382: 283:ordinal numbers 216: 215: 205: 143: 142: 135: 128: 120:axiom of choice 114:in 1915, using 69:cardinal number 17: 12: 11: 5: 681: 679: 671: 670: 665: 655: 654: 650: 649: 626: 620: 604: 578:(4): 438–443. 561: 547: 545: 542: 541: 540: 535: 528: 525: 480: 477: 417:transitive set 409: 408: 390: 372: 357: 338: 323: 266: 263: 260: 257: 254: 251: 248: 245: 235: 232: 229: 226: 223: 204: 201: 175: 171: 167: 163: 159: 155: 151: 127: 124: 33:ordinal number 29:Hartogs number 15: 13: 10: 9: 6: 4: 3: 2: 680: 669: 666: 664: 661: 660: 658: 639: 632: 627: 623: 621:3-540-44085-2 617: 613: 609: 605: 601: 597: 593: 589: 585: 581: 577: 574:(in German). 573: 572: 567: 562: 558: 554: 549: 548: 543: 539: 536: 534: 531: 530: 526: 524: 522: 518: 514: 510: 506: 502: 498: 494: 490: 486: 478: 476: 474: 470: 466: 462: 458: 454: 450: 446: 442: 438: 434: 430: 426: 422: 418: 414: 404: 388: 380: 376: 370: 366: 362: 358: 355: 351: 347: 343: 339: 336: 332: 328: 324: 321: 317: 313: 310: 309: 308: 306: 301: 299: 295: 291: 288:for which an 287: 284: 280: 261: 255: 252: 249: 243: 233: 230: 224: 221: 212: 210: 202: 200: 198: 194: 190: 169: 161: 153: 140: 133: 123: 121: 117: 113: 108: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 47:is the least 46: 42: 38: 34: 30: 26: 22: 642:. Retrieved 638:Course Notes 637: 614:. Springer. 611: 608:Jech, Thomas 575: 569: 552: 538:Aleph number 516: 512: 504: 500: 496: 492: 482: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 432: 428: 424: 420: 412: 410: 402: 378: 374: 364: 349: 341: 334: 330: 315: 311: 304: 302: 297: 293: 292:exists from 285: 213: 209:Goldrei 1996 206: 196: 192: 188: 138: 136: 109: 104: 100: 92: 88: 84: 80: 76: 72: 65:well-ordered 60: 56: 55:from α into 44: 36: 28: 18: 361:order types 21:mathematics 663:Set theory 657:Categories 644:2010-04-10 592:45.0125.01 544:References 509:isomorphic 340:The class 307:is a set. 600:121598654 389:≅ 346:reflexive 327:power set 259:↪ 256:β 247:∃ 244:∣ 234:∈ 231:β 222:α 154:α 67:then the 53:injection 610:(2002). 527:See also 487:nor the 373:(Domain( 162:≰ 344:of all 333:× 314:× 281:of all 277:be the 99:taking 95:.) The 63:can be 49:ordinal 39:is any 618:  598:  590:  75:. If 59:. If 31:is an 634:(PDF) 596:S2CID 471:into 455:< 427:into 371:, as 296:into 279:class 203:Proof 616:ISBN 405:, ≤) 325:The 214:Let 207:See 27:, a 588:JFM 580:doi 507:is 503:if 377:), 329:of 239:Ord 122:). 97:map 41:set 19:In 659:: 636:. 594:. 586:. 576:76 568:. 555:. 475:. 463:∈ 459:, 435:∈ 381:) 300:. 211:. 199:. 647:. 624:. 602:. 582:: 559:. 517:X 513:B 505:A 501:B 497:A 493:X 473:X 469:β 465:α 461:β 457:α 453:β 449:α 445:X 441:α 437:α 433:α 429:X 425:α 421:α 413:α 403:β 401:( 379:w 375:w 365:W 356:. 350:X 342:W 335:X 331:X 322:. 316:X 312:X 305:α 298:X 294:β 286:β 265:} 262:X 253:: 250:i 228:{ 225:= 197:X 193:X 189:X 174:| 170:X 166:| 158:| 150:| 139:X 134:. 101:X 93:X 89:X 81:X 77:X 73:X 61:X 57:X 45:X 37:X

Index

mathematics
axiomatic set theory
ordinal number
set
ordinal
injection
well-ordered
cardinal number
map
Friedrich Hartogs
Zermelo–Fraenkel set theory
axiom of choice
Hartogs's theorem
Goldrei 1996
class
ordinal numbers
injective function
Axiom of power set
power set
reflexive
axiom schema of separation
order types
axiom schema of replacement
transitive set
von Neumann-ordinals
replacement axiom
isomorphic
well-ordering theorem
Successor cardinal
Aleph number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.