Knowledge

Banach–Tarski paradox

Source 📝

1567: 38: 4385:
used to prove the Claim, one can see that the full circle is equidecomposable with the circle minus the point at the ball's center. (Basically, a countable set of points on the circle can be rotated to give itself plus one more point.) Note that this involves the rotation about a point other than the origin, so the Banach–Tarski paradox involves isometries of Euclidean 3-space rather than just
114:. The intuition that such operations preserve volumes is not mathematically absurd and it is even included in the formal definition of volumes. However, this is not applicable here because in this case it is impossible to define the volumes of the considered subsets. Reassembling them reproduces a set that has a volume, which happens to be different from the volume at the start. 1282:) defined on all subsets of a Euclidean space of three (and greater) dimensions that is invariant with respect to Euclidean motions and takes the value one on a unit cube. In his later work, Tarski showed that, conversely, non-existence of paradoxical decompositions of this type implies the existence of a finitely-additive invariant measure. 4675:), hence one cannot simply transfer a paradoxical decomposition from the group to the square, as in the third step of the above proof of the Banach–Tarski paradox. Moreover, the fixed points of the group present difficulties (for example, the origin is fixed under all linear transformations). This is why von Neumann used the larger group 79:, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the reassembly process involves only moving the pieces around and rotating them, without changing their original shape. However, the pieces themselves are not "solids" in the traditional sense, but infinite scatterings of 1285:
The heart of the proof of the "doubling the ball" form of the paradox presented below is the remarkable fact that by a Euclidean isometry (and renaming of elements), one can divide a certain set (essentially, the surface of a unit sphere) into four parts, then rotate one of them to become itself plus
1269:
On the other hand, in the Banach–Tarski paradox, the number of pieces is finite and the allowed equivalences are Euclidean congruences, which preserve the volumes. Yet, somehow, they end up doubling the volume of the ball. While this is certainly surprising, some of the pieces used in the paradoxical
4384:
For step 4, it has already been shown that the ball minus a point admits a paradoxical decomposition; it remains to be shown that the ball minus a point is equidecomposable with the ball. Consider a circle within the ball, containing the point at the center of the ball. Using an argument like that
147:
rather than topological spaces. In this abstract setting, it is possible to have subspaces without point but still nonempty. The parts of the paradoxical decomposition do intersect a lot in the sense of locales, so much that some of these intersections should be given a positive mass. Allowing for
86:
An alternative form of the theorem states that given any two "reasonable" solid objects (such as a small ball and a huge ball), the cut pieces of either one can be reassembled into the other. This is often stated informally as "a pea can be chopped up and reassembled into the Sun" and called the
1497:
points out at the end of his monograph, the Banach–Tarski paradox has been more significant for its role in pure mathematics than for foundational questions: it motivated a fruitful new direction for research, the amenability of groups, which has nothing to do with the foundational questions.
479:
The Banach–Tarski paradox states that a ball in the ordinary Euclidean space can be doubled using only the operations of partitioning into subsets, replacing a set with a congruent set, and reassembling. Its mathematical structure is greatly elucidated by emphasizing the role played by the
4594:
are necessarily of the same area, and therefore, a paradoxical decomposition of a square or disk of Banach–Tarski type that uses only Euclidean congruences is impossible. A conceptual explanation of the distinction between the planar and higher-dimensional cases was given by
5121:
2019: Banach–Tarski paradox uses finitely many pieces in the duplication. In the case of countably many pieces, any two sets with non-empty interiors are equidecomposable using translations. But allowing only Lebesgue measurable pieces one obtains: If A and B are subsets of
4619:
which is invariant under translations and rotations, and rules out paradoxical decompositions of non-negligible sets. Von Neumann then posed the following question: can such a paradoxical decomposition be constructed if one allows a larger group of equivalences?
4443:
The proof sketched above requires 2 × 4 × 2 + 8 = 24 pieces - a factor of 2 to remove fixed points, a factor 4 from step 1, a factor 2 to recreate fixed points, and 8 for the center point of the second ball. But in step 1 when moving
935: 4666:
with two generators as a subgroup. This makes it plausible that the proof of Banach–Tarski paradox can be imitated in the plane. The main difficulty here lies in the fact that the unit square is not invariant under the action of the linear group
4722:
of sets in the plane, which is preserved by translations and rotations, is not preserved by non-isometric transformations even when they do preserve the area of polygons. The points of the plane (other than the origin) can be divided into two
4464:} of this last orbit to the center point of the second ball. This brings the total down to 16 + 1 pieces. With more algebra, one can also decompose fixed orbits into 4 sets as in step 1. This gives 5 pieces and is the best possible. 3172: 5134:
2024: Robert Samuel Simon and Grzegorz Tomkowicz introduced a colouring rule of points in a Cantor space that links paradoxical decompositions with optimisation. This allows one to find an application of paradoxical decompositions in
4682:
including the translations, and he constructed a paradoxical decomposition of the unit square with respect to the enlarged group (in 1929). Applying the Banach–Tarski method, the paradox for the square can be strengthened as follows:
5126:
with non-empty interiors, then they have equal Lebesgue measures if and only if they are countably equidecomposable using Lebesgue measurable pieces. Jan Mycielski and Grzegorz Tomkowicz extended this result to finite dimensional
4994:. This was shown by Jan Mycielski and Grzegorz Tomkowicz. Tomkowicz proved also that most of the classical paradoxes are an easy consequence of a graph theoretical result and the fact that the groups in question are rich enough. 4989:
2017: Von Neumann's paradox concerns the Euclidean plane, but there are also other classical spaces where the paradoxes are possible. For example, one can ask if there is a Banach–Tarski paradox in the hyperbolic plane
4758:, or groups with an invariant mean, and include all finite and all solvable groups. Generally speaking, paradoxical decompositions arise when the group used for equivalences in the definition of equidecomposability is 829: 1983: 3021: 4638:. Since the area is preserved, any paradoxical decomposition of a square with respect to this group would be counterintuitive for the same reasons as the Banach–Tarski decomposition of a ball. In fact, the group 1053: 4707:"In accordance with this, already in the plane there is no non-negative additive measure (for which the unit square has a measure of 1), which is invariant with respect to all transformations belonging to 1278:) is not defined for them, and the partitioning cannot be accomplished in a practical way. In fact, the Banach–Tarski paradox demonstrates that it is impossible to find a finitely-additive measure (or a 2919: 2767: 467:
Tarski proved that amenable groups are precisely those for which no paradoxical decompositions exist. Since only free subgroups are needed in the Banach–Tarski paradox, this led to the long-standing
3226: 4572:
using rotations. These results then extend to the unit ball deprived of the origin. A 2010 article by Valeriy Churkin gives a new proof of the continuous version of the Banach–Tarski paradox.
4097: 4027: 3934: 1308:
with two generators. Banach and Tarski's proof relied on an analogous fact discovered by Hausdorff some years earlier: the surface of a unit sphere in space is a disjoint union of three sets
3864: 4747:
points in two new polygons. The new polygons have the same area as the old polygon, but the two transformed sets cannot have the same measure as before (since they contain only part of the
3770: 326: 274: 3664: 4718:
To explain further, the question of whether a finitely additive measure (that is preserved under certain transformations) exists or not depends on what transformations are allowed. The
2141: 2062: 4127:. However, there are only countably many such points, and like the case of the point at the center of the ball, it is possible to patch the proof to account for them all. (See below.) 3712: 3602: 3418:
This step cannot be performed in two dimensions since it involves rotations in three dimensions. If two rotations are taken about the same axis, the resulting group is the abelian
184:, and discussed a number of related questions concerning decompositions of subsets of Euclidean spaces in various dimensions. They proved the following more general statement, the 1529:
Here a proof is sketched which is similar but not identical to that given by Banach and Tarski. Essentially, the paradoxical decomposition of the ball is achieved in four steps:
3957:
The (majority of the) sphere has now been divided into four sets (each one dense on the sphere), and when two of these are rotated, the result is double of what was had before:
728: 682: 5076: 837: 5104: 6415: 4968: 4910: 4566: 3380: 2437: 2509: 2361: 2249: 971: 4754:
The class of groups isolated by von Neumann in the course of study of Banach–Tarski phenomenon turned out to be very important for many areas of Mathematics: these are
3425:
An alternative arithmetic proof of the existence of free groups in some special orthogonal groups using integral quaternions leads to paradoxical decompositions of the
1697:. Two such strings can be concatenated and converted into a string of this type by repeatedly replacing the "forbidden" substrings with the empty string. For instance: 2207: 140:
It was shown in 2005 that the pieces in the decomposition can be chosen in such a way that they can be moved continuously into place without running into one another.
3346: 3318: 3298: 3079: 3041: 2834: 2795: 2589: 2559: 2467: 2391: 2299: 1246:, then all sets with non-empty interior become congruent. Likewise, one ball can be made into a larger or smaller ball by stretching, or in other words, by applying 148:
this hidden mass to be taken into account, the theory of locales permits all subsets (and even all sublocales) of the Euclidean space to be satisfactorily measured.
2685: 2658: 1833: 1798: 3252: 3084: 1431:
should not be rejected solely because it produces a paradoxical decomposition, for such an argument also undermines proofs of geometrically intuitive statements.
3272: 2609: 2529: 2319: 2269: 415:
subsets are allowed. The difference between dimensions 1 and 2 on the one hand, and 3 and higher on the other hand, is due to the richer structure of the group
4115:
then yields a paradoxical decomposition of the solid unit ball minus the point at the ball's center. (This center point needs a bit more care; see below.)
4695:"Infolgedessen gibt es bereits in der Ebene kein nichtnegatives additives Maß (wo das Einheitsquadrat das Maß 1 hat), das gegenüber allen Abbildungen von 411:
The strong form of the Banach–Tarski paradox is false in dimensions one and two, but Banach and Tarski showed that an analogous statement remains true if
6364:
by David Morgan-Mar provides a non-technical explanation of the paradox. It includes a step-by-step demonstration of how to create two spheres from one.
4771:
2000: Von Neumann's paper left open the possibility of a paradoxical decomposition of the interior of the unit square with respect to the linear group
4123:
This sketch glosses over some details. One has to be careful about the set of points on the sphere which happen to lie on the axis of some rotation in
4835:
2011: Laczkovich's paper left open the possibility that there exists a free group F of piecewise linear transformations acting on the punctured disk
1380:, Hausdorff's paradox (1914), and an earlier (1923) paper of Banach as the precursors to their work. Vitali's and Hausdorff's constructions depend on 736: 1869: 5009:. A similar paradox was obtained in 2018 by Grzegorz Tomkowicz, who constructed a free properly discontinuous subgroup G of the affine group 4687:
Any two bounded subsets of the Euclidean plane with non-empty interiors are equidecomposable with respect to the area-preserving affine maps.
6266: 5206: 2924: 31: 4627:, any two squares in the plane become equivalent even without further subdivision. This motivates restricting one's attention to the group 1551:
Use the paradoxical decomposition of that group and the axiom of choice to produce a paradoxical decomposition of the hollow unit sphere.
5576: 5175: 4139:. To streamline the proof, the discussion of points that are fixed by some rotation was omitted; since the paradoxical decomposition of 979: 1224:
The Banach–Tarski paradox can be put in context by pointing out that for two sets in the strong form of the paradox, there is always a
6369: 1181:
While apparently more general, this statement is derived in a simple way from the doubling of a ball by using a generalization of the
6325: 6299: 6276: 5241:
Wilson, Trevor M. (September 2005). "A continuous movement version of the Banach–Tarski paradox: A solution to De Groot's problem".
5131:
and second countable locally compact topological groups that are totally disconnected or have countably many connected components.
456:
studied the properties of the group of equivalences that make a paradoxical decomposition possible, and introduced the notion of
396:
can be divided into a certain number of pieces and then be rotated and translated in such a way that the result is the whole set
2847: 1435: 1182: 6410: 6173: 6380: 6430: 6355: 3177: 2725: 6216: 4821:, and that the minimal number of pieces would equal four provided that there exists a locally commutative free subgroup of 6420: 4787:
be the family of all bounded subsets of the plane with non-empty interior and at a positive distance from the origin, and
1392:"), which is also crucial to the Banach–Tarski paper, both for proving their paradox and for the proof of another result: 98:
because it contradicts basic geometric intuition. "Doubling the ball" by dividing it into parts and moving them around by
1596:). Traversing a horizontal edge of the graph in the rightward direction represents left multiplication of an element of 6395: 4146:
relies on shifting certain subsets, the fact that some points are fixed might cause some trouble. Since any rotation of
6002:
Mycielski, Jan; Tomkowicz, Grzegorz (2019). "On the equivalence of sets of equal measures by countable decomposition".
41:"Can a ball be decomposed into a finite number of point sets and reassembled into two balls identical to the original?" 6425: 4033: 3963: 3875: 4510:
can be partitioned into countably infinitely many pieces, each of which is equidecomposable (with two pieces) to the
3781: 1266:
can be made into two copies of itself, one might expect that using countably many pieces could somehow do the trick.
5296:
Théorie de la mesure dans les lieux réguliers. ou : Les intersections cachées dans le paradoxe de Banach-Tarski
4839:\ {(0,0)} without fixed points. Grzegorz Tomkowicz constructed such a group, showing that the system of congruences 4492:
pieces so that each of them is equidecomposable to a ball of the same size as the original. Using the fact that the
3718: 3449: 1442: 503: 279: 227: 143:
As proved independently by Leroy and Simpson, the Banach–Tarski paradox does not violate volumes if one works with
1607:; traversing a vertical edge of the graph in the upward direction represents left multiplication of an element of 133:, i.e., collections of points that do not have a volume in the ordinary sense, and whose construction requires an 4278: 4151: 3608: 3505: 1655: 1538: 1454: 4791:
the family of all planar sets with the property that a union of finitely many translates under some elements of
2073: 1994: 1513:. The Hahn–Banach theorem does not rely on the full axiom of choice but can be proved using a weaker version of 3670: 144: 1510: 390:
be the union of two translated copies of the original ball. Then the proposition means that the original ball
5347: 5215: 4997:
2018: In 1984, Jan Mycielski and Stan Wagon constructed a paradoxical decomposition of the hyperbolic plane
3550: 6405: 6239: 6121: 5599: 5378: 5170: 106:, without any stretching, bending, or adding new points, seems to be impossible, since all these operations 65: 6037:
Simon, Robert; Tomkowicz, Grzegorz (2024). "A measure theoretic paradox from a continuous colouring rule".
5250: 5002: 930:{\displaystyle \quad A_{i}\cap A_{j}=B_{i}\cap B_{j}=\emptyset \quad {\text{for all }}1\leq i<j\leq k,} 468: 103: 2801:
axis (there are many other suitable pairs of irrational multiples of π that could be used here as well).
1228:
function that can map the points in one shape into the other in a one-to-one fashion. In the language of
6400: 6309: 4624: 1247: 687: 641: 562: 461: 371: 122: 5040: 1159:: doubling the ball can be accomplished with five pieces, and fewer than five pieces will not suffice. 5081: 6341: 5814:
Tomkowicz, Grzegorz (2017). "On decompositions of the hyperbolic plane satisfying many congruences".
4974:. Grzegorz Tomkowicz showed that Adams and Mycielski construction can be generalized to obtain a set 4939: 4881: 4780: 4635: 4537: 3445: 3426: 1174: 629: 5255: 6177: 5407: 5181: 4581: 3359: 2396: 1156: 1152: 481: 209: 1434:
However, in 1949, A. P. Morse showed that the statement about Euclidean polygons can be proved in
1423:
They point out that while the second result fully agrees with geometric intuition, its proof uses
6351: 6201: 6161: 6046: 6019: 5984: 5831: 5566: 5299: 5276: 5268: 4503: 1427:
in an even more substantial way than the proof of the paradox. Thus Banach and Tarski imply that
1271: 130: 118: 61: 4829: 2472: 2324: 2212: 1566: 943: 17: 6321: 6295: 6272: 5549: 5435: 5160: 4739:
points of a given polygon are transformed by a certain area-preserving transformation and the
3485: 2176: 1545: 1518: 1361: 69: 5967:
Tomkowicz, Grzegorz (2018). "A properly discontinuous free group of affine transformations".
5948:
Mycielski, Jan; Wagon, Stan (1984). "Large free groups of isometries and their geometrical".
3331: 3303: 3277: 3167:{\textstyle \left({\frac {k}{3^{N}}},{\frac {l{\sqrt {2}}}{3^{N}}},{\frac {m}{3^{N}}}\right)} 3046: 3026: 2819: 2780: 1505:
and Friedrich Wehrung, Janusz Pawlikowski proved that the Banach–Tarski paradox follows from
6347: 6248: 6227: 6193: 6153: 6130: 6083: 6056: 6011: 5976: 5928: 5895: 5862: 5823: 5794: 5763: 5734: 5671: 5608: 5558: 5509: 5473: 5423: 5387: 5342: 5332: 5260: 4921: 4814:
2003: It had been known for a long time that the full plane was paradoxical with respect to
4596: 4591: 2564: 2534: 2442: 2366: 2274: 1756: 1401: 1275: 485: 453: 427: 80: 5138:
2024: Grzegorz Tomkowicz proved that in the case of non-supramenable connected Lie groups
2663: 2636: 1811: 1776: 4587: 4523: 3473: 1634:) are blue dots or red dots with blue border. Red dots with blue border are elements of 1502: 1385: 1373: 1167: 493: 181: 173: 134: 126: 4424:
can be done using number of pieces equal to the product of the numbers needed for taking
3231: 5494: 5458: 3476:
can be used to pick exactly one point from every orbit; collect these points into a set
6288: 4755: 4719: 4608: 4318: 4227: 3457: 3257: 2594: 2514: 2304: 2254: 1279: 457: 438: 412: 6231: 6144:
Churkin, V. A. (2010). "A continuous version of the Hausdorff–Banach–Tarski paradox".
5591: 5547:
Churkin, V. A. (2010). "A continuous version of the Hausdorff–Banach–Tarski paradox".
37: 6389: 6165: 6113: 6109: 6105: 6023: 5988: 5835: 5570: 5370: 5366: 5362: 4925: 4290: 1755:. One can check that the set of those strings with this operation forms a group with 1263: 177: 161: 157: 73: 6114:"Sur la décomposition des ensembles de points en parties respectivement congruentes" 5371:"Sur la décomposition des ensembles de points en parties respectivement congruentes" 5280: 3419: 1570: 1229: 4870:
2017: It has been known for a long time that there exists in the hyperbolic plane
3464:
which moves the first point into the second. (Note that the orbit of a point is a
1554:
Extend this decomposition of the sphere to a decomposition of the solid unit ball.
1414:
Le rôle que joue cet axiome dans nos raisonnements nous semble mériter l'attention
1143:
Using this terminology, the Banach–Tarski paradox can be reformulated as follows:
1147:
A three-dimensional Euclidean ball is equidecomposable with two copies of itself.
208:
of a Euclidean space in at least three dimensions, both of which have a nonempty
5459:"The Hahn–Banach theorem implies the existence of a non-Lebesgue measurable set" 5295: 5202: 5165: 3438: 2700: 2163: 1237: 193: 6087: 6060: 5337: 5320: 4799:) contains a punctured neighborhood of the origin. Then all sets in the family 6313: 6262: 6213: 6157: 5980: 5767: 5562: 4657: 4493: 2696: 1534: 1494: 1377: 1305: 1233: 460:. He also found a form of the paradox in the plane which uses area-preserving 449: 169: 54: 6361: 5867: 5850: 5264: 1419:(The role this axiom plays in our reasoning seems to us to deserve attention) 5799: 5782: 5428: 5128: 4724: 4527: 4166: 4119: 3465: 1225: 1171: 6253: 6135: 5613: 5514: 5478: 5392: 4534:
can be partitioned into as many pieces as there are real numbers (that is,
4214:
Let λ be some line through the origin that does not intersect any point in
561:. Two geometric figures that can be transformed into each other are called 6074:
Tomkowicz, Grzegorz (2024). "On bounded paradoxical sets and Lie groups".
3950:
as an extra piece after doubling, owing to the presence of the singleton {
1262:-equidecomposable sets may be found whose "size"s vary. Moreover, since a 824:{\displaystyle A=\bigcup _{i=1}^{k}A_{i},\quad B=\bigcup _{i=1}^{k}B_{i},} 5933: 5916: 4111:
with a half-open segment to the origin; the paradoxical decomposition of
1978:{\displaystyle F_{2}=\{e\}\cup S(a)\cup S(a^{-1})\cup S(b)\cup S(b^{-1})} 535: 99: 57: 5272: 5017:). The existence of such a group implies the existence of a subset E of 4916:. The requirement was satisfied by orientation-preserving isometries of 3300:. The same argument repeated (by symmetry of the problem) is valid when 1665:
consists of all finite strings that can be formed from the four symbols
6373: 6205: 6015: 5827: 3496:
can be reached in exactly one way by applying the proper rotation from
1397: 1381: 95: 50: 5900: 5883: 5739: 5722: 5676: 5659: 3016:{\displaystyle k_{1}>0,\ k_{2},k_{3},\ldots ,k_{n}\neq 0,\ n\geq 1} 4646: 4590:, two figures that are equidecomposable with respect to the group of 2173:
This is at the core of the proof. For example, there may be a string
572: 111: 76: 6197: 4514:
using rotations. By using analytic properties of the rotation group
6051: 4568:
pieces), so that each piece is equidecomposable with two pieces to
1240:. Thus, if one enlarges the group to allow arbitrary bijections of 5304: 4600: 4515: 4386: 1565: 1048:{\displaystyle g_{i}(A_{i})=B_{i}{\text{ for all }}1\leq i\leq k,} 36: 4832:
constructed such a subgroup, confirming that four pieces suffice.
5178: – Problem of cutting and reassembling a disk into a square 5144:
acting continuously and transitively on a metric space, bounded
5001:
that uses Borel sets. The paradox depends on the existence of a
4611:, which implies the existence of a finitely-additive measure on 1368:
Connection with earlier work and the role of the axiom of choice
5411: 4135:
In Step 3, the sphere was partitioned into orbits of our group
622:
can be partitioned into the same finite number of respectively
2699:
of rotations of 3D space, i.e. that behaves just like (or "is
5754:
Adams, John Frank (1954). "On decompositions of the sphere".
4783:
proved that such a decomposition exists. More precisely, let
5537:
INVARIANT MEASURES, EXPANDERS AND PROPERTY T MAXIME BERGERON
4811:. It follows that both families consist of paradoxical sets. 6377:
gives an overview on the fundamental basics of the paradox.
6184:
Stromberg, Karl (March 1979). "The Banach–Tarski paradox".
5495:"The Hahn–Banach theorem implies the Banach–Tarski paradox" 1469:
sufficient for proving the Banach–Tarski paradox, that is,
83:. The reconstruction can work with as few as five pieces. 4472:
Using the Banach–Tarski paradox, it is possible to obtain
2914:{\displaystyle \omega =\ldots b^{k_{3}}a^{k_{2}}b^{k_{1}}} 1286:
two of the other parts. This follows rather easily from a
5884:"The Banach-Tarski paradox for the hyperbolic plane (II)" 4751:
points), and therefore there is no measure that "works".
550:
into itself that preserve the distances, usually denoted
2762:{\textstyle \theta =\arccos \left({\frac {1}{3}}\right)} 1441:
and thus does not require the axiom of choice. In 1964,
4743:
points by another, both sets can become subsets of the
3221:{\displaystyle k,l,m\in \mathbb {Z} ,N\in \mathbb {N} } 2633:, then "reassembled" as two pieces to make one copy of 565:, and this terminology will be extended to the general 180:
and on the paradoxical decompositions of the sphere by
5660:"A locally commutative free group acting on the plane" 5438:, settled a question put forth by von Neumann in 1929: 3087: 2728: 2687:. That is exactly what is intended to do to the ball. 5084: 5043: 4942: 4884: 4540: 4273:. Let ρ be the rotation about λ by θ. Then ρ acts on 4036: 3966: 3878: 3869:
and likewise for the other sets, and where we define
3784: 3722: 3721: 3674: 3673: 3611: 3553: 3362: 3334: 3306: 3280: 3260: 3234: 3180: 3049: 3029: 2927: 2850: 2822: 2783: 2666: 2639: 2597: 2567: 2537: 2517: 2475: 2445: 2399: 2369: 2327: 2307: 2277: 2257: 2215: 2179: 2076: 1997: 1872: 1814: 1779: 982: 946: 840: 739: 690: 644: 282: 230: 5851:"The Banach-Tarski paradox for the hyperbolic plane" 1445:
proved that the axiom of choice is independent from
1400:, one of which strictly contains the other, are not 72:
a decomposition of the ball into a finite number of
6192:(3). Mathematical Association of America: 151–161. 5691:Laczkovich, Miklós (1999). "Paradoxical sets under 5628:Laczkovich, Miklós (1999). "Paradoxical sets under 3422:and does not have the property required in step 1. 2625:}), then two of them "shifted" by multiplying with 2621:
has been cut into four pieces (plus the singleton {
6287: 5917:"Banach-Tarski paradox in some complete manifolds" 5723:"A free group of piecewise linear transformations" 5098: 5070: 4962: 4904: 4560: 4506:rank, a similar proof yields that the unit sphere 4091: 4021: 3928: 3858: 3764: 3706: 3658: 3596: 3374: 3340: 3312: 3292: 3266: 3246: 3220: 3166: 3073: 3035: 3015: 2913: 2828: 2789: 2761: 2679: 2652: 2603: 2583: 2553: 2523: 2503: 2461: 2431: 2385: 2355: 2313: 2293: 2263: 2243: 2201: 2135: 2056: 1977: 1827: 1800:can be "paradoxically decomposed" as follows: Let 1792: 1047: 965: 929: 823: 722: 676: 320: 268: 6381:Banach-Tarski and the Paradox of Infinite Cloning 5348:20.500.11820/47f5df74-8a53-452a-88c0-d5489ee5d659 4807:)-equidecomposable, and likewise for the sets in 4936:that is a half, a third, a fourth and ... and a 4645:contains as a subgroup the special linear group 4269:is countable. So there exists an angle θ not in 4092:{\displaystyle bA_{4}=A_{1}\cup A_{2}\cup A_{4}} 4022:{\displaystyle aA_{2}=A_{2}\cup A_{3}\cup A_{4}} 3929:{\displaystyle B=a^{-1}M\cup a^{-2}M\cup \dots } 3396:The two rotations behave just like the elements 1558:These steps are discussed in more detail below. 1453:. A weaker version of an axiom of choice is the 4150:(other than the null rotation) has exactly two 3859:{\displaystyle S(a)M=\{s(x)|s\in S(a),x\in M\}} 2840:that starts with a positive rotation about the 1342:are pairwise congruent, and on the other hand, 3765:{\displaystyle \displaystyle A_{4}=S(b^{-1})M} 3411:: there is now a paradoxical decomposition of 1473:The Banach–Tarski paradox is not a theorem of 125:in a critical way. It can be proven using the 321:{\displaystyle B=B_{1}\cup \cdots \cup B_{k}} 269:{\displaystyle A=A_{1}\cup \cdots \cup A_{k}} 8: 5882:Mycielski, Jan; Tomkowicz, Grzegorz (2013). 4603:of rotations in three dimensions, the group 4381:, where ~ denotes "is equidecomposable to". 4226:be the set of angles, α, such that for some 3946:were not used directly, as they would leave 3853: 3803: 1892: 1886: 1412: 60:, which states the following: Given a solid 6290:The Pea and the Sun: A Mathematical Paradox 6004:Bulletin of the London Mathematical Society 5816:Bulletin of the London Mathematical Society 5704:Ann. Univ. Sci. Budapest. Eötvös Sect. Math 5641:Ann. Univ. Sci. Budapest. Eötvös Sect. Math 5575:Full text in Russian is available from the 4460:), do this to all orbits except one. Move { 3659:{\displaystyle A_{2}=S(a^{-1})M\setminus B} 1274:, so the notion of volume (more precisely, 524:-dimensional Euclidean space (for integral 6416:Theorems in the foundations of mathematics 5434:This article, based on an analysis of the 4576:Von Neumann paradox in the Euclidean plane 3488:and so each orbit can be identified with 3320:starts with a negative rotation about the 2710:, two orthogonal axes are taken (e.g. the 2660:and the other two to make another copy of 2136:{\displaystyle F_{2}=bS(b^{-1})\cup S(b),} 2057:{\displaystyle F_{2}=aS(a^{-1})\cup S(a),} 1835:consisting of all strings that start with 1162:The strong version of the paradox claims: 638:. Formally, if there exist non-empty sets 224:into a finite number of disjoint subsets, 6320:. Cambridge: Cambridge University Press. 6294:. Wellesley, Massachusetts: A.K. Peters. 6271:. Cambridge: Cambridge University Press. 6252: 6134: 6050: 5932: 5899: 5866: 5798: 5738: 5675: 5612: 5513: 5477: 5427: 5391: 5346: 5336: 5303: 5254: 5092: 5088: 5083: 5042: 4952: 4947: 4941: 4894: 4889: 4883: 4607:(2) of Euclidean motions of the plane is 4550: 4545: 4539: 4083: 4070: 4057: 4044: 4035: 4013: 4000: 3987: 3974: 3965: 3908: 3889: 3877: 3818: 3783: 3746: 3727: 3720: 3707:{\displaystyle \displaystyle A_{3}=S(b)M} 3679: 3672: 3635: 3616: 3610: 3558: 3552: 3361: 3333: 3305: 3279: 3259: 3233: 3214: 3213: 3200: 3199: 3179: 3151: 3142: 3131: 3119: 3113: 3102: 3093: 3086: 3048: 3028: 2986: 2967: 2954: 2932: 2926: 2903: 2898: 2886: 2881: 2869: 2864: 2849: 2821: 2782: 2745: 2727: 2671: 2665: 2644: 2638: 2596: 2572: 2566: 2542: 2536: 2516: 2511:contains all the strings that start with 2489: 2474: 2450: 2444: 2420: 2407: 2398: 2374: 2368: 2363:contains all the strings that start with 2341: 2326: 2306: 2282: 2276: 2256: 2229: 2214: 2187: 2178: 2103: 2081: 2075: 2024: 2002: 1996: 1963: 1923: 1877: 1871: 1819: 1813: 1784: 1778: 1372:Banach and Tarski explicitly acknowledge 1166:Any two bounded subsets of 3-dimensional 1022: 1016: 1000: 987: 981: 951: 945: 898: 885: 872: 859: 846: 839: 812: 802: 791: 771: 761: 750: 738: 714: 695: 689: 668: 649: 643: 312: 293: 281: 260: 241: 229: 6172:Edward Kasner & James Newman (1940) 4878:that is a third, a fourth and ... and a 4530:, one can further prove that the sphere 4468:Obtaining infinitely many balls from one 1533:Find a paradoxical decomposition of the 1449:– that is, choice cannot be proved from 186:strong form of the Banach–Tarski paradox 121:of this result depends on the choice of 110:, intuitively speaking, to preserve the 5194: 5005:subgroup of the group of isometries of 3650: 3597:{\displaystyle A_{1}=S(a)M\cup M\cup B} 1544:Find a group of rotations in 3-d space 129:, which allows for the construction of 4636:area-preserving affine transformations 3512:yields a paradoxical decomposition of 3456:: two points belong to the same orbit 2844:axis, that is, an element of the form 1626:) are green dots; elements of the set 1580:, showing decomposition into the sets 1501:In 1991, using then-recent results by 512:. In the most important special case, 117:Unlike most theorems in geometry, the 6318:The Banach–Tarski Paradox 2nd Edition 4920:. Analogous results were obtained by 4177:. Denote this set of fixed points as 4169:, there are countably many points of 1250:transformations. Hence, if the group 1203:is equidecomposable with a subset of 1191:is equidecomposable with a subset of 7: 6232:"Zur allgemeinen Theorie des Masses" 5592:"Zur allgemeinen Theorie des Masses" 5321:"Measure, randomness and sublocales" 5106:denotes the symmetric difference of 4502:of rank 2 admits a free subgroup of 4189:admits a paradoxical decomposition. 3023:. It can be shown by induction that 2804:The group of rotations generated by 1548:to the free group in two generators. 30:For the book about the paradox, see 4173:that are fixed by some rotation in 1185:due to Banach that implies that if 628:-congruent pieces. This defines an 464:in place of the usual congruences. 5089: 5062: 4949: 4891: 4779:) (Wagon, Question 7.4). In 2000, 4547: 4480:-space from one, for any integers 4476:copies of a ball in the Euclidean 3348:is given by a non-trivial word in 894: 723:{\displaystyle B_{1},\dots ,B_{k}} 677:{\displaystyle A_{1},\dots ,A_{k}} 25: 6186:The American Mathematical Monthly 5457:Foreman, M.; Wehrung, F. (1991). 5412:"On the Decomposition of Spheres" 5319:Simpson, Alex (1 November 2012). 5208:An introduction to measure theory 5071:{\displaystyle g(E)=E\triangle F} 4656:, which in its turn contains the 4488:≥ 1, i.e. a ball can be cut into 3939:(The five "paradoxical" parts of 3492:. In other words, every point in 1489:Large amounts of mathematics use 603:equidecomposable with respect to 5325:Annals of Pure and Applied Logic 5176:Tarski's circle-squaring problem 5099:{\displaystyle E\,\triangle \,F} 4928:who showed that the unit sphere 4623:It is clear that if one permits 4392:Use is made of the fact that if 4192:What remains to be shown is the 4107:Finally, connect every point on 2251:which, because of the rule that 2154:) means take all the strings in 332:), such that for each (integer) 32:The Banach–Tarski Paradox (book) 6174:Mathematics and the Imagination 4982:with the same properties as in 4963:{\displaystyle 2^{\aleph _{0}}} 4905:{\displaystyle 2^{\aleph _{0}}} 4561:{\displaystyle 2^{\aleph _{0}}} 3386:is a free group, isomorphic to 1741:, which contains the substring 1724:, which contains the substring 1348:is congruent with the union of 897: 841: 780: 488:and introducing the notions of 471:, which was disproved in 1980. 402:, which contains two copies of 18:Hausdorff–Banach–Tarski paradox 6356:Wolfram Demonstrations Project 5783:"On the paradox of the sphere" 5053: 5047: 5021:such that for any finite F of 4448:} and all strings of the form 3838: 3832: 3819: 3815: 3809: 3794: 3788: 3755: 3739: 3697: 3691: 3644: 3628: 3576: 3570: 3324:axis, or a rotation about the 3068: 3050: 2591:, as well as the empty string 2498: 2482: 2350: 2334: 2238: 2222: 2127: 2121: 2112: 2096: 2048: 2042: 2033: 2017: 1972: 1956: 1947: 1941: 1932: 1916: 1907: 1901: 1295:-paradoxical decomposition of 1006: 993: 544:, i.e. the transformations of 164:gave a construction of such a 156:In a paper published in 1924, 1: 5150:paradoxical sets are generic. 3375:{\displaystyle \omega \neq e} 2722:is taken to be a rotation of 2432:{\displaystyle aa^{-1}a^{-1}} 1485:, assuming their consistency. 1461:, and it has been shown that 152:Banach and Tarski publication 5915:Tomkowicz, Grzegorz (2017). 5721:Tomkowicz, Grzegorz (2011). 5493:Pawlikowski, Janusz (1991). 4859:can be realized by means of 4261:α) is a rotation about λ of 3274:modulo 3, one can show that 1685:appears directly next to an 1376:'s 1905 construction of the 1328:such that, on the one hand, 1236:, these two sets have equal 1155:result in this case, due to 6370:"The Banach–Tarski Paradox" 6286:Wapner, Leonard M. (2005). 6217:"The Banach–Tarski Paradox" 5214:. p. 3. Archived from 3500:to the proper element from 1763:. This group may be called 1693:appears directly next to a 1360:. This is often called the 1183:Bernstein–Schroeder theorem 6447: 6088:10.1007/s10711-024-00923-1 6061:10.1007/s00208-023-02644-4 5338:10.1016/j.apal.2011.12.014 4579: 2504:{\displaystyle aS(a^{-1})} 2356:{\displaystyle aS(a^{-1})} 2244:{\displaystyle aS(a^{-1})} 966:{\displaystyle g_{i}\in G} 212:, there are partitions of 29: 6362:Irregular Webcomic! #2339 6348:The Banach-Tarski Paradox 6268:The Banach–Tarski Paradox 6158:10.1007/s10469-010-9080-y 5981:10.1007/s10711-018-0320-y 5563:10.1007/s10469-010-9080-y 5243:Journal of Symbolic Logic 5184: – Geometric theorem 4218:. This is possible since 4204:is equidecomposable with 4158:, which is isomorphic to 4131:Some details, fleshed out 3506:paradoxical decomposition 3328:axis. This shows that if 2393:(for example, the string 1731:, and so gets reduced to 1455:axiom of dependent choice 1088:has two disjoint subsets 1058:then it can be said that 940:and there exist elements 384:be the original ball and 166:paradoxical decomposition 5868:10.4064/fm-132-2-143-149 5025:there exists an element 2301:, reduces to the string 2271:must not appear next to 2202:{\displaystyle aa^{-1}b} 1748:, which gets reduced to 1654:The free group with two 1642:), which is a subset of 1130:-equidecomposable, then 1076:-equidecomposable using 94:The theorem is called a 6240:Fundamenta Mathematicae 6122:Fundamenta Mathematicae 5849:Mycielski, Jan (1989). 5800:10.4064/fm-42-2-348-355 5781:Mycielski, Jan (1955). 5768:10.1112/jlms/s1-29.1.96 5727:Colloquium Mathematicum 5664:Fundamenta Mathematicae 5600:Fundamenta Mathematicae 5590:Neumann, J. v. (1929). 5502:Fundamenta Mathematicae 5466:Fundamenta Mathematicae 5429:10.4064/fm-34-1-246-260 5379:Fundamenta Mathematicae 5294:Olivier, Leroy (1995). 5171:Paradoxes of set theory 4416:. The decomposition of 3504:. Because of this, the 3460:there is a rotation in 3382:. Therefore, the group 3341:{\displaystyle \omega } 3313:{\displaystyle \omega } 3293:{\displaystyle l\neq 0} 3074:{\displaystyle (1,0,0)} 3036:{\displaystyle \omega } 2829:{\displaystyle \omega } 2790:{\displaystyle \theta } 1618:. Elements of the set 89:pea and the Sun paradox 66:three-dimensional space 6411:Mathematical paradoxes 6254:10.4064/fm-13-1-73-116 6136:10.4064/fm-6-1-244-277 5614:10.4064/fm-13-1-73-116 5515:10.4064/fm-138-1-21-22 5479:10.4064/fm-138-1-13-19 5393:10.4064/fm-6-1-244-277 5265:10.2178/jsl/1122038921 5100: 5072: 5003:properly discontinuous 4964: 4906: 4691:As von Neumann notes: 4562: 4329:= 0, 1, 2, ... . Then 4093: 4023: 3930: 3860: 3766: 3708: 3660: 3598: 3376: 3342: 3314: 3294: 3268: 3248: 3222: 3168: 3075: 3037: 3017: 2915: 2830: 2791: 2763: 2681: 2654: 2605: 2585: 2584:{\displaystyle a^{-1}} 2555: 2554:{\displaystyle b^{-1}} 2525: 2505: 2463: 2462:{\displaystyle a^{-1}} 2433: 2387: 2386:{\displaystyle a^{-1}} 2357: 2315: 2295: 2294:{\displaystyle a^{-1}} 2265: 2245: 2203: 2166:them on the left with 2137: 2058: 1979: 1863:) similarly. Clearly, 1829: 1794: 1651: 1413: 1221:are equidecomposable. 1049: 967: 931: 825: 807: 766: 724: 678: 469:von Neumann conjecture 462:affine transformations 322: 270: 42: 6431:Paradoxes of infinity 6342:Banach–Tarski paradox 5921:Proc. Amer. Math. Soc 5447:Wagon, Corollary 13.3 5231:Wagon, Corollary 13.3 5101: 5073: 4965: 4907: 4563: 4309:) is disjoint from ρ( 4181:. Step 3 proves that 4094: 4024: 3931: 3861: 3767: 3709: 3661: 3599: 3377: 3343: 3315: 3295: 3269: 3249: 3223: 3169: 3076: 3038: 3018: 2916: 2831: 2792: 2764: 2682: 2680:{\displaystyle F_{2}} 2655: 2653:{\displaystyle F_{2}} 2606: 2586: 2556: 2526: 2506: 2464: 2434: 2388: 2358: 2316: 2296: 2266: 2246: 2204: 2138: 2059: 1980: 1830: 1828:{\displaystyle F_{2}} 1795: 1793:{\displaystyle F_{2}} 1569: 1525:A sketch of the proof 1177:are equidecomposable. 1050: 968: 932: 826: 787: 746: 725: 679: 632:among all subsets of 490:equidecomposable sets 452:with two generators. 430:in 3 dimensions. For 323: 271: 123:axioms for set theory 47:Banach–Tarski paradox 40: 6421:Geometric dissection 6178:Simon & Schuster 5658:Satô, Kenzi (2003). 5408:Robinson, Raphael M. 5082: 5041: 4940: 4882: 4727:which may be called 4538: 4034: 3964: 3876: 3782: 3719: 3671: 3609: 3551: 3484:on a given orbit is 3444:is partitioned into 3360: 3332: 3304: 3278: 3258: 3232: 3178: 3085: 3047: 3027: 2925: 2848: 2820: 2781: 2777:to be a rotation of 2726: 2703:to") the free group 2664: 2637: 2595: 2565: 2535: 2515: 2473: 2443: 2397: 2367: 2325: 2305: 2275: 2255: 2213: 2177: 2074: 1995: 1870: 1812: 1777: 1378:set bearing his name 1322:and a countable set 1151:In fact, there is a 980: 944: 838: 737: 688: 642: 630:equivalence relation 280: 228: 6396:Eponymous paradoxes 6310:Tomkowicz, Grzegorz 5756:J. London Math. Soc 5182:Von Neumann paradox 4599:: unlike the group 4582:Von Neumann paradox 3486:free and transitive 3247:{\displaystyle k,l} 2695:In order to find a 2146:where the notation 1808:) be the subset of 1511:Hahn–Banach theorem 1272:non-measurable sets 1157:Raphael M. Robinson 1024: for all  137:number of choices. 131:non-measurable sets 6426:1924 introductions 6352:Macalester College 6016:10.1112/blms.12289 5934:10.1090/proc/13657 5828:10.1112/blms.12024 5096: 5068: 4960: 4902: 4558: 4504:countably infinite 4297:, and for natural 4222:is countable. Let 4089: 4019: 3926: 3856: 3762: 3761: 3704: 3703: 3656: 3594: 3372: 3338: 3310: 3290: 3264: 3244: 3218: 3164: 3071: 3033: 3013: 2911: 2826: 2787: 2759: 2677: 2650: 2601: 2581: 2551: 2521: 2501: 2459: 2429: 2383: 2353: 2311: 2291: 2261: 2241: 2199: 2133: 2054: 1975: 1825: 1790: 1704:concatenated with 1652: 1270:decomposition are 1045: 963: 927: 821: 720: 674: 328:(for some integer 318: 266: 119:mathematical proof 43: 6228:von Neumann, John 6146:Algebra and Logic 5927:(12): 5359–5362. 5901:10.4064/fm222-3-5 5740:10.4064/cm125-2-1 5677:10.4064/fm180-1-3 5550:Algebra and Logic 5436:Hausdorff paradox 5331:(11): 1642–1659. 5161:Hausdorff paradox 4781:Miklós Laczkovich 4592:Euclidean motions 3516:into four pieces 3267:{\displaystyle m} 3157: 3137: 3124: 3108: 3003: 2949: 2836:be an element of 2753: 2604:{\displaystyle e} 2524:{\displaystyle b} 2439:which reduces to 2314:{\displaystyle b} 2264:{\displaystyle a} 1759:the empty string 1519:ultrafilter lemma 1362:Hausdorff paradox 1256:is large enough, 1082:pieces. If a set 1025: 901: 599:-equidecomposable 486:Euclidean motions 428:Euclidean motions 27:Geometric theorem 16:(Redirected from 6438: 6376: 6331: 6305: 6293: 6282: 6258: 6256: 6236: 6223: 6221: 6209: 6169: 6140: 6138: 6118: 6092: 6091: 6071: 6065: 6064: 6054: 6034: 6028: 6027: 5999: 5993: 5992: 5964: 5958: 5957: 5945: 5939: 5938: 5936: 5912: 5906: 5905: 5903: 5879: 5873: 5872: 5870: 5846: 5840: 5839: 5811: 5805: 5804: 5802: 5778: 5772: 5771: 5751: 5745: 5744: 5742: 5718: 5712: 5711: 5688: 5682: 5681: 5679: 5655: 5649: 5648: 5625: 5619: 5618: 5616: 5596: 5586: 5580: 5574: 5544: 5538: 5535: 5529: 5526: 5520: 5519: 5517: 5499: 5490: 5484: 5483: 5481: 5463: 5454: 5448: 5445: 5439: 5433: 5431: 5404: 5398: 5397: 5395: 5375: 5359: 5353: 5352: 5350: 5340: 5316: 5310: 5309: 5307: 5291: 5285: 5284: 5258: 5238: 5232: 5229: 5223: 5222: 5220: 5213: 5199: 5149: 5143: 5117: 5111: 5105: 5103: 5102: 5097: 5077: 5075: 5074: 5069: 5036: 5030: 4969: 4967: 4966: 4961: 4959: 4958: 4957: 4956: 4922:John Frank Adams 4911: 4909: 4908: 4903: 4901: 4900: 4899: 4898: 4702:invariant wäre." 4597:John von Neumann 4567: 4565: 4564: 4559: 4557: 4556: 4555: 4554: 4098: 4096: 4095: 4090: 4088: 4087: 4075: 4074: 4062: 4061: 4049: 4048: 4028: 4026: 4025: 4020: 4018: 4017: 4005: 4004: 3992: 3991: 3979: 3978: 3935: 3933: 3932: 3927: 3916: 3915: 3897: 3896: 3865: 3863: 3862: 3857: 3822: 3775:where we define 3771: 3769: 3768: 3763: 3754: 3753: 3732: 3731: 3713: 3711: 3710: 3705: 3684: 3683: 3665: 3663: 3662: 3657: 3643: 3642: 3621: 3620: 3603: 3601: 3600: 3595: 3563: 3562: 3480:. The action of 3381: 3379: 3378: 3373: 3347: 3345: 3344: 3339: 3319: 3317: 3316: 3311: 3299: 3297: 3296: 3291: 3273: 3271: 3270: 3265: 3253: 3251: 3250: 3245: 3227: 3225: 3224: 3219: 3217: 3203: 3173: 3171: 3170: 3165: 3163: 3159: 3158: 3156: 3155: 3143: 3138: 3136: 3135: 3126: 3125: 3120: 3114: 3109: 3107: 3106: 3094: 3080: 3078: 3077: 3072: 3042: 3040: 3039: 3034: 3022: 3020: 3019: 3014: 3001: 2991: 2990: 2972: 2971: 2959: 2958: 2947: 2937: 2936: 2920: 2918: 2917: 2912: 2910: 2909: 2908: 2907: 2893: 2892: 2891: 2890: 2876: 2875: 2874: 2873: 2835: 2833: 2832: 2827: 2796: 2794: 2793: 2788: 2768: 2766: 2765: 2760: 2758: 2754: 2746: 2686: 2684: 2683: 2678: 2676: 2675: 2659: 2657: 2656: 2651: 2649: 2648: 2610: 2608: 2607: 2602: 2590: 2588: 2587: 2582: 2580: 2579: 2560: 2558: 2557: 2552: 2550: 2549: 2530: 2528: 2527: 2522: 2510: 2508: 2507: 2502: 2497: 2496: 2469:). In this way, 2468: 2466: 2465: 2460: 2458: 2457: 2438: 2436: 2435: 2430: 2428: 2427: 2415: 2414: 2392: 2390: 2389: 2384: 2382: 2381: 2362: 2360: 2359: 2354: 2349: 2348: 2320: 2318: 2317: 2312: 2300: 2298: 2297: 2292: 2290: 2289: 2270: 2268: 2267: 2262: 2250: 2248: 2247: 2242: 2237: 2236: 2208: 2206: 2205: 2200: 2195: 2194: 2142: 2140: 2139: 2134: 2111: 2110: 2086: 2085: 2063: 2061: 2060: 2055: 2032: 2031: 2007: 2006: 1984: 1982: 1981: 1976: 1971: 1970: 1931: 1930: 1882: 1881: 1834: 1832: 1831: 1826: 1824: 1823: 1799: 1797: 1796: 1791: 1789: 1788: 1757:identity element 1416: 1402:equidecomposable 1359: 1353: 1347: 1341: 1327: 1321: 1303: 1294: 1276:Lebesgue measure 1261: 1255: 1245: 1220: 1214: 1208: 1202: 1196: 1190: 1135: 1129: 1123: 1117: 1111: 1105: 1099: 1093: 1087: 1081: 1075: 1069: 1063: 1054: 1052: 1051: 1046: 1026: 1023: 1021: 1020: 1005: 1004: 992: 991: 972: 970: 969: 964: 956: 955: 936: 934: 933: 928: 902: 899: 890: 889: 877: 876: 864: 863: 851: 850: 830: 828: 827: 822: 817: 816: 806: 801: 776: 775: 765: 760: 729: 727: 726: 721: 719: 718: 700: 699: 683: 681: 680: 675: 673: 672: 654: 653: 637: 627: 621: 615: 608: 598: 591: 585: 579: 570: 560: 549: 543: 534:consists of all 533: 523: 517: 511: 501: 475:Formal treatment 454:John von Neumann 447: 436: 425: 407: 401: 395: 389: 383: 369: 358: 347: 341: 337: 327: 325: 324: 319: 317: 316: 298: 297: 275: 273: 272: 267: 265: 264: 246: 245: 223: 217: 207: 201: 21: 6446: 6445: 6441: 6440: 6439: 6437: 6436: 6435: 6386: 6385: 6367: 6350:by Stan Wagon ( 6338: 6328: 6308: 6302: 6285: 6279: 6261: 6234: 6226: 6219: 6212: 6198:10.2307/2321514 6183: 6143: 6116: 6104: 6101: 6096: 6095: 6073: 6072: 6068: 6036: 6035: 6031: 6001: 6000: 5996: 5966: 5965: 5961: 5947: 5946: 5942: 5914: 5913: 5909: 5881: 5880: 5876: 5848: 5847: 5843: 5813: 5812: 5808: 5780: 5779: 5775: 5753: 5752: 5748: 5720: 5719: 5715: 5697: 5690: 5689: 5685: 5657: 5656: 5652: 5634: 5627: 5626: 5622: 5594: 5589: 5587: 5583: 5577:Mathnet.ru page 5546: 5545: 5541: 5536: 5532: 5527: 5523: 5497: 5492: 5491: 5487: 5461: 5456: 5455: 5451: 5446: 5442: 5406: 5405: 5401: 5373: 5361: 5360: 5356: 5318: 5317: 5313: 5293: 5292: 5288: 5256:10.1.1.502.6600 5240: 5239: 5235: 5230: 5226: 5218: 5211: 5201: 5200: 5196: 5191: 5157: 5145: 5139: 5113: 5107: 5080: 5079: 5039: 5038: 5032: 5026: 4948: 4943: 4938: 4937: 4932:contains a set 4890: 4885: 4880: 4879: 4827: 4820: 4768: 4766:Recent progress 4756:amenable groups 4713: 4701: 4681: 4665: 4644: 4633: 4588:Euclidean plane 4584: 4578: 4546: 4541: 4536: 4535: 4501: 4470: 4432:and for taking 4249:α)P is also in 4164: 4145: 4133: 4105: 4079: 4066: 4053: 4040: 4032: 4031: 4009: 3996: 3983: 3970: 3962: 3961: 3944: 3904: 3885: 3874: 3873: 3780: 3779: 3742: 3723: 3717: 3716: 3675: 3669: 3668: 3631: 3612: 3607: 3606: 3554: 3549: 3548: 3543: 3536: 3529: 3522: 3474:axiom of choice 3435: 3410: 3392: 3358: 3357: 3330: 3329: 3302: 3301: 3276: 3275: 3256: 3255: 3230: 3229: 3176: 3175: 3147: 3127: 3115: 3098: 3092: 3088: 3083: 3082: 3045: 3044: 3043:maps the point 3025: 3024: 2982: 2963: 2950: 2928: 2923: 2922: 2899: 2894: 2882: 2877: 2865: 2860: 2846: 2845: 2818: 2817: 2812:will be called 2779: 2778: 2741: 2724: 2723: 2709: 2693: 2667: 2662: 2661: 2640: 2635: 2634: 2620: 2593: 2592: 2568: 2563: 2562: 2538: 2533: 2532: 2513: 2512: 2485: 2471: 2470: 2446: 2441: 2440: 2416: 2403: 2395: 2394: 2370: 2365: 2364: 2337: 2323: 2322: 2303: 2302: 2278: 2273: 2272: 2253: 2252: 2225: 2211: 2210: 2183: 2175: 2174: 2099: 2077: 2072: 2071: 2020: 1998: 1993: 1992: 1959: 1919: 1873: 1868: 1867: 1815: 1810: 1809: 1780: 1775: 1774: 1769: 1613: 1602: 1579: 1564: 1527: 1503:Matthew Foreman 1386:axiom of choice 1374:Giuseppe Vitali 1370: 1355: 1349: 1343: 1329: 1323: 1309: 1302: 1296: 1293: 1287: 1257: 1251: 1241: 1216: 1210: 1204: 1198: 1192: 1186: 1168:Euclidean space 1131: 1125: 1119: 1113: 1107: 1101: 1095: 1089: 1083: 1077: 1071: 1065: 1059: 1012: 996: 983: 978: 977: 947: 942: 941: 881: 868: 855: 842: 836: 835: 808: 767: 735: 734: 710: 691: 686: 685: 664: 645: 640: 639: 633: 623: 617: 611: 604: 594: 587: 581: 575: 566: 551: 545: 539: 529: 519: 513: 507: 497: 496:. Suppose that 494:paradoxical set 477: 458:amenable groups 442: 431: 416: 403: 397: 391: 385: 379: 368: 360: 357: 349: 343: 339: 333: 308: 289: 278: 277: 256: 237: 226: 225: 219: 213: 203: 197: 182:Felix Hausdorff 176:concerning the 174:Giuseppe Vitali 154: 127:axiom of choice 35: 28: 23: 22: 15: 12: 11: 5: 6444: 6442: 6434: 6433: 6428: 6423: 6418: 6413: 6408: 6406:Measure theory 6403: 6398: 6388: 6387: 6384: 6383: 6378: 6365: 6359: 6345: 6337: 6336:External links 6334: 6333: 6332: 6326: 6306: 6300: 6283: 6277: 6259: 6224: 6214:Su, Francis E. 6210: 6181: 6170: 6141: 6110:Tarski, Alfred 6106:Banach, Stefan 6100: 6097: 6094: 6093: 6076:Geom. Dedicata 6066: 6029: 5994: 5969:Geom. Dedicata 5959: 5940: 5907: 5894:(3): 289–290. 5874: 5861:(2): 143–149. 5841: 5806: 5793:(2): 348–355. 5773: 5746: 5733:(2): 141–146. 5713: 5695: 5683: 5650: 5632: 5620: 5581: 5539: 5530: 5521: 5485: 5449: 5440: 5399: 5367:Tarski, Alfred 5363:Banach, Stefan 5354: 5311: 5286: 5249:(3): 946–952. 5233: 5224: 5221:on 6 May 2021. 5193: 5192: 5190: 5187: 5186: 5185: 5179: 5173: 5168: 5163: 5156: 5153: 5152: 5151: 5136: 5132: 5119: 5095: 5091: 5087: 5067: 5064: 5061: 5058: 5055: 5052: 5049: 5046: 4995: 4987: 4955: 4951: 4946: 4897: 4893: 4888: 4868: 4833: 4825: 4818: 4812: 4767: 4764: 4720:Banach measure 4716: 4715: 4711: 4704: 4703: 4699: 4689: 4688: 4679: 4663: 4642: 4631: 4580:Main article: 4577: 4574: 4553: 4549: 4544: 4499: 4469: 4466: 4319:disjoint union 4228:natural number 4162: 4143: 4132: 4129: 4104: 4101: 4100: 4099: 4086: 4082: 4078: 4073: 4069: 4065: 4060: 4056: 4052: 4047: 4043: 4039: 4029: 4016: 4012: 4008: 4003: 3999: 3995: 3990: 3986: 3982: 3977: 3973: 3969: 3942: 3937: 3936: 3925: 3922: 3919: 3914: 3911: 3907: 3903: 3900: 3895: 3892: 3888: 3884: 3881: 3867: 3866: 3855: 3852: 3849: 3846: 3843: 3840: 3837: 3834: 3831: 3828: 3825: 3821: 3817: 3814: 3811: 3808: 3805: 3802: 3799: 3796: 3793: 3790: 3787: 3773: 3772: 3760: 3757: 3752: 3749: 3745: 3741: 3738: 3735: 3730: 3726: 3714: 3702: 3699: 3696: 3693: 3690: 3687: 3682: 3678: 3666: 3655: 3652: 3649: 3646: 3641: 3638: 3634: 3630: 3627: 3624: 3619: 3615: 3604: 3593: 3590: 3587: 3584: 3581: 3578: 3575: 3572: 3569: 3566: 3561: 3557: 3541: 3534: 3527: 3520: 3458:if and only if 3434: 3431: 3427:rotation group 3408: 3390: 3371: 3368: 3365: 3337: 3309: 3289: 3286: 3283: 3263: 3243: 3240: 3237: 3216: 3212: 3209: 3206: 3202: 3198: 3195: 3192: 3189: 3186: 3183: 3162: 3154: 3150: 3146: 3141: 3134: 3130: 3123: 3118: 3112: 3105: 3101: 3097: 3091: 3070: 3067: 3064: 3061: 3058: 3055: 3052: 3032: 3012: 3009: 3006: 3000: 2997: 2994: 2989: 2985: 2981: 2978: 2975: 2970: 2966: 2962: 2957: 2953: 2946: 2943: 2940: 2935: 2931: 2906: 2902: 2897: 2889: 2885: 2880: 2872: 2868: 2863: 2859: 2856: 2853: 2825: 2786: 2757: 2752: 2749: 2744: 2740: 2737: 2734: 2731: 2707: 2692: 2689: 2674: 2670: 2647: 2643: 2618: 2600: 2578: 2575: 2571: 2548: 2545: 2541: 2520: 2500: 2495: 2492: 2488: 2484: 2481: 2478: 2456: 2453: 2449: 2426: 2423: 2419: 2413: 2410: 2406: 2402: 2380: 2377: 2373: 2352: 2347: 2344: 2340: 2336: 2333: 2330: 2321:. Similarly, 2310: 2288: 2285: 2281: 2260: 2240: 2235: 2232: 2228: 2224: 2221: 2218: 2198: 2193: 2190: 2186: 2182: 2144: 2143: 2132: 2129: 2126: 2123: 2120: 2117: 2114: 2109: 2106: 2102: 2098: 2095: 2092: 2089: 2084: 2080: 2065: 2064: 2053: 2050: 2047: 2044: 2041: 2038: 2035: 2030: 2027: 2023: 2019: 2016: 2013: 2010: 2005: 2001: 1986: 1985: 1974: 1969: 1966: 1962: 1958: 1955: 1952: 1949: 1946: 1943: 1940: 1937: 1934: 1929: 1926: 1922: 1918: 1915: 1912: 1909: 1906: 1903: 1900: 1897: 1894: 1891: 1888: 1885: 1880: 1876: 1822: 1818: 1787: 1783: 1767: 1611: 1600: 1577: 1563: 1560: 1556: 1555: 1552: 1549: 1542: 1526: 1523: 1487: 1486: 1468: 1421: 1420: 1417: 1406: 1405: 1396:Two Euclidean 1369: 1366: 1300: 1291: 1280:Banach measure 1179: 1178: 1149: 1148: 1056: 1055: 1044: 1041: 1038: 1035: 1032: 1029: 1019: 1015: 1011: 1008: 1003: 999: 995: 990: 986: 962: 959: 954: 950: 938: 937: 926: 923: 920: 917: 914: 911: 908: 905: 896: 893: 888: 884: 880: 875: 871: 867: 862: 858: 854: 849: 845: 832: 831: 820: 815: 811: 805: 800: 797: 794: 790: 786: 783: 779: 774: 770: 764: 759: 756: 753: 749: 745: 742: 717: 713: 709: 706: 703: 698: 694: 671: 667: 663: 660: 657: 652: 648: 476: 473: 448:it contains a 413:countably many 376: 375: 364: 353: 315: 311: 307: 304: 301: 296: 292: 288: 285: 263: 259: 255: 252: 249: 244: 240: 236: 233: 192:Given any two 153: 150: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6443: 6432: 6429: 6427: 6424: 6422: 6419: 6417: 6414: 6412: 6409: 6407: 6404: 6402: 6399: 6397: 6394: 6393: 6391: 6382: 6379: 6375: 6371: 6366: 6363: 6360: 6357: 6353: 6349: 6346: 6343: 6340: 6339: 6335: 6329: 6327:9781107042599 6323: 6319: 6315: 6311: 6307: 6303: 6301:1-56881-213-2 6297: 6292: 6291: 6284: 6280: 6278:0-521-45704-1 6274: 6270: 6269: 6264: 6260: 6255: 6250: 6246: 6242: 6241: 6233: 6229: 6225: 6218: 6215: 6211: 6207: 6203: 6199: 6195: 6191: 6187: 6182: 6179: 6175: 6171: 6167: 6163: 6159: 6155: 6151: 6147: 6142: 6137: 6132: 6128: 6124: 6123: 6115: 6111: 6107: 6103: 6102: 6098: 6089: 6085: 6081: 6077: 6070: 6067: 6062: 6058: 6053: 6048: 6045:: 1441–1462. 6044: 6040: 6033: 6030: 6025: 6021: 6017: 6013: 6009: 6005: 5998: 5995: 5990: 5986: 5982: 5978: 5974: 5970: 5963: 5960: 5955: 5951: 5944: 5941: 5935: 5930: 5926: 5922: 5918: 5911: 5908: 5902: 5897: 5893: 5889: 5885: 5878: 5875: 5869: 5864: 5860: 5856: 5852: 5845: 5842: 5837: 5833: 5829: 5825: 5821: 5817: 5810: 5807: 5801: 5796: 5792: 5788: 5784: 5777: 5774: 5769: 5765: 5761: 5757: 5750: 5747: 5741: 5736: 5732: 5728: 5724: 5717: 5714: 5709: 5705: 5701: 5694: 5687: 5684: 5678: 5673: 5669: 5665: 5661: 5654: 5651: 5646: 5642: 5638: 5631: 5624: 5621: 5615: 5610: 5606: 5602: 5601: 5593: 5585: 5582: 5578: 5572: 5568: 5564: 5560: 5556: 5552: 5551: 5543: 5540: 5534: 5531: 5528:Wagon, p. 16. 5525: 5522: 5516: 5511: 5507: 5503: 5496: 5489: 5486: 5480: 5475: 5471: 5467: 5460: 5453: 5450: 5444: 5441: 5437: 5430: 5425: 5421: 5417: 5413: 5409: 5403: 5400: 5394: 5389: 5385: 5382:(in French). 5381: 5380: 5372: 5368: 5364: 5358: 5355: 5349: 5344: 5339: 5334: 5330: 5326: 5322: 5315: 5312: 5306: 5301: 5297: 5290: 5287: 5282: 5278: 5274: 5270: 5266: 5262: 5257: 5252: 5248: 5244: 5237: 5234: 5228: 5225: 5217: 5210: 5209: 5204: 5198: 5195: 5188: 5183: 5180: 5177: 5174: 5172: 5169: 5167: 5164: 5162: 5159: 5158: 5154: 5148: 5142: 5137: 5133: 5130: 5125: 5120: 5116: 5110: 5093: 5085: 5065: 5059: 5056: 5050: 5044: 5035: 5029: 5024: 5020: 5016: 5012: 5008: 5004: 5000: 4996: 4993: 4988: 4985: 4981: 4977: 4973: 4953: 4944: 4935: 4931: 4927: 4926:Jan Mycielski 4923: 4919: 4915: 4895: 4886: 4877: 4873: 4869: 4866: 4862: 4858: 4854: 4850: 4846: 4842: 4838: 4834: 4831: 4824: 4817: 4813: 4810: 4806: 4802: 4798: 4794: 4790: 4786: 4782: 4778: 4774: 4770: 4769: 4765: 4763: 4761: 4757: 4752: 4750: 4746: 4742: 4738: 4734: 4730: 4726: 4721: 4710: 4706: 4705: 4698: 4694: 4693: 4692: 4686: 4685: 4684: 4678: 4674: 4670: 4662: 4659: 4655: 4653: 4649: 4641: 4637: 4630: 4626: 4621: 4618: 4614: 4610: 4606: 4602: 4598: 4593: 4589: 4583: 4575: 4573: 4571: 4551: 4542: 4533: 4529: 4525: 4522:, which is a 4521: 4519: 4513: 4509: 4505: 4498: 4495: 4491: 4487: 4483: 4479: 4475: 4467: 4465: 4463: 4459: 4455: 4451: 4447: 4441: 4439: 4435: 4431: 4427: 4423: 4419: 4415: 4411: 4407: 4403: 4399: 4395: 4390: 4388: 4382: 4380: 4376: 4372: 4368: 4364: 4360: 4356: 4352: 4348: 4344: 4340: 4336: 4332: 4328: 4324: 4320: 4316: 4312: 4308: 4304: 4300: 4296: 4292: 4288: 4284: 4280: 4276: 4272: 4268: 4264: 4260: 4256: 4252: 4248: 4244: 4240: 4236: 4232: 4229: 4225: 4221: 4217: 4213: 4209: 4207: 4203: 4199: 4195: 4190: 4188: 4184: 4180: 4176: 4172: 4168: 4161: 4157: 4153: 4149: 4142: 4138: 4130: 4128: 4126: 4122: 4121: 4116: 4114: 4110: 4102: 4084: 4080: 4076: 4071: 4067: 4063: 4058: 4054: 4050: 4045: 4041: 4037: 4030: 4014: 4010: 4006: 4001: 3997: 3993: 3988: 3984: 3980: 3975: 3971: 3967: 3960: 3959: 3958: 3955: 3953: 3949: 3945: 3923: 3920: 3917: 3912: 3909: 3905: 3901: 3898: 3893: 3890: 3886: 3882: 3879: 3872: 3871: 3870: 3850: 3847: 3844: 3841: 3835: 3829: 3826: 3823: 3812: 3806: 3800: 3797: 3791: 3785: 3778: 3777: 3776: 3758: 3750: 3747: 3743: 3736: 3733: 3728: 3724: 3715: 3700: 3694: 3688: 3685: 3680: 3676: 3667: 3653: 3647: 3639: 3636: 3632: 3625: 3622: 3617: 3613: 3605: 3591: 3588: 3585: 3582: 3579: 3573: 3567: 3564: 3559: 3555: 3547: 3546: 3545: 3540: 3533: 3526: 3519: 3515: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3471: 3467: 3463: 3459: 3455: 3452:of our group 3451: 3447: 3443: 3440: 3432: 3430: 3428: 3423: 3421: 3416: 3414: 3407: 3404:in the group 3403: 3399: 3394: 3389: 3385: 3369: 3366: 3363: 3355: 3351: 3335: 3327: 3323: 3307: 3287: 3284: 3281: 3261: 3241: 3238: 3235: 3210: 3207: 3204: 3196: 3193: 3190: 3187: 3184: 3181: 3160: 3152: 3148: 3144: 3139: 3132: 3128: 3121: 3116: 3110: 3103: 3099: 3095: 3089: 3065: 3062: 3059: 3056: 3053: 3030: 3010: 3007: 3004: 2998: 2995: 2992: 2987: 2983: 2979: 2976: 2973: 2968: 2964: 2960: 2955: 2951: 2944: 2941: 2938: 2933: 2929: 2904: 2900: 2895: 2887: 2883: 2878: 2870: 2866: 2861: 2857: 2854: 2851: 2843: 2839: 2823: 2815: 2811: 2807: 2802: 2800: 2784: 2776: 2772: 2755: 2750: 2747: 2742: 2738: 2735: 2732: 2729: 2721: 2718:axes). Then, 2717: 2713: 2706: 2702: 2698: 2690: 2688: 2672: 2668: 2645: 2641: 2632: 2628: 2624: 2617: 2612: 2598: 2576: 2573: 2569: 2546: 2543: 2539: 2518: 2493: 2490: 2486: 2479: 2476: 2454: 2451: 2447: 2424: 2421: 2417: 2411: 2408: 2404: 2400: 2378: 2375: 2371: 2345: 2342: 2338: 2331: 2328: 2308: 2286: 2283: 2279: 2258: 2233: 2230: 2226: 2219: 2216: 2196: 2191: 2188: 2184: 2180: 2171: 2169: 2165: 2161: 2157: 2153: 2149: 2130: 2124: 2118: 2115: 2107: 2104: 2100: 2093: 2090: 2087: 2082: 2078: 2070: 2069: 2068: 2051: 2045: 2039: 2036: 2028: 2025: 2021: 2014: 2011: 2008: 2003: 1999: 1991: 1990: 1989: 1967: 1964: 1960: 1953: 1950: 1944: 1938: 1935: 1927: 1924: 1920: 1913: 1910: 1904: 1898: 1895: 1889: 1883: 1878: 1874: 1866: 1865: 1864: 1862: 1858: 1854: 1850: 1846: 1842: 1839:, and define 1838: 1820: 1816: 1807: 1803: 1785: 1781: 1771: 1766: 1762: 1758: 1754: 1751: 1747: 1744: 1740: 1737: 1734: 1730: 1727: 1723: 1720: 1717: 1714: 1710: 1707: 1703: 1700: 1696: 1692: 1688: 1684: 1681:such that no 1680: 1676: 1672: 1668: 1664: 1660: 1657: 1649: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1617: 1610: 1606: 1599: 1595: 1591: 1587: 1583: 1576: 1572: 1568: 1561: 1559: 1553: 1550: 1547: 1543: 1540: 1536: 1532: 1531: 1530: 1524: 1522: 1520: 1516: 1512: 1508: 1504: 1499: 1496: 1492: 1484: 1480: 1476: 1472: 1471: 1470: 1466: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1438: 1432: 1430: 1426: 1418: 1415: 1411: 1410: 1409: 1408:They remark: 1403: 1399: 1395: 1394: 1393: 1391: 1387: 1383: 1379: 1375: 1367: 1365: 1363: 1358: 1352: 1346: 1340: 1336: 1332: 1326: 1320: 1316: 1312: 1307: 1299: 1290: 1283: 1281: 1277: 1273: 1267: 1265: 1264:countable set 1260: 1254: 1249: 1244: 1239: 1235: 1231: 1227: 1222: 1219: 1213: 1207: 1201: 1195: 1189: 1184: 1176: 1173: 1169: 1165: 1164: 1163: 1160: 1158: 1154: 1146: 1145: 1144: 1141: 1139: 1134: 1128: 1122: 1116: 1112:, as well as 1110: 1104: 1098: 1092: 1086: 1080: 1074: 1068: 1062: 1042: 1039: 1036: 1033: 1030: 1027: 1017: 1013: 1009: 1001: 997: 988: 984: 976: 975: 974: 960: 957: 952: 948: 924: 921: 918: 915: 912: 909: 906: 903: 900:for all  891: 886: 882: 878: 873: 869: 865: 860: 856: 852: 847: 843: 834: 833: 818: 813: 809: 803: 798: 795: 792: 788: 784: 781: 777: 772: 768: 762: 757: 754: 751: 747: 743: 740: 733: 732: 731: 715: 711: 707: 704: 701: 696: 692: 669: 665: 661: 658: 655: 650: 646: 636: 631: 626: 620: 614: 609: 607: 600: 597: 590: 584: 578: 574: 571:-action. Two 569: 564: 558: 554: 548: 542: 537: 532: 527: 522: 516: 510: 505: 500: 495: 491: 487: 483: 474: 472: 470: 465: 463: 459: 455: 451: 445: 440: 437:the group is 434: 429: 423: 419: 414: 409: 406: 400: 394: 388: 382: 373: 367: 363: 356: 352: 346: 336: 331: 313: 309: 305: 302: 299: 294: 290: 286: 283: 261: 257: 253: 250: 247: 242: 238: 234: 231: 222: 216: 211: 206: 200: 195: 191: 190: 189: 187: 183: 179: 178:unit interval 175: 171: 167: 163: 162:Alfred Tarski 159: 158:Stefan Banach 151: 149: 146: 141: 138: 136: 132: 128: 124: 120: 115: 113: 109: 105: 101: 97: 92: 90: 84: 82: 78: 75: 71: 67: 63: 59: 56: 55:set-theoretic 52: 48: 39: 33: 19: 6401:Group theory 6372:– via 6344:at ProofWiki 6317: 6289: 6267: 6244: 6238: 6189: 6185: 6176:, pp 205–7, 6152:(1): 91–98. 6149: 6145: 6126: 6120: 6079: 6075: 6069: 6042: 6038: 6032: 6007: 6003: 5997: 5972: 5968: 5962: 5953: 5949: 5943: 5924: 5920: 5910: 5891: 5887: 5877: 5858: 5854: 5844: 5819: 5815: 5809: 5790: 5786: 5776: 5759: 5755: 5749: 5730: 5726: 5716: 5707: 5703: 5699: 5692: 5686: 5670:(1): 25–34. 5667: 5663: 5653: 5644: 5640: 5636: 5629: 5623: 5604: 5598: 5584: 5557:(1): 81–89. 5554: 5548: 5542: 5533: 5524: 5505: 5501: 5488: 5469: 5465: 5452: 5443: 5419: 5415: 5402: 5383: 5377: 5357: 5328: 5324: 5314: 5289: 5246: 5242: 5236: 5227: 5216:the original 5207: 5203:Tao, Terence 5197: 5146: 5140: 5123: 5114: 5108: 5033: 5027: 5022: 5018: 5014: 5010: 5006: 4998: 4991: 4983: 4979: 4975: 4971: 4970:-th part of 4933: 4929: 4917: 4913: 4912:-th part of 4875: 4871: 4864: 4860: 4856: 4852: 4848: 4844: 4840: 4836: 4822: 4815: 4808: 4804: 4800: 4796: 4792: 4788: 4784: 4776: 4772: 4759: 4753: 4748: 4744: 4740: 4736: 4732: 4728: 4717: 4708: 4696: 4690: 4676: 4672: 4668: 4660: 4651: 4647: 4639: 4628: 4625:similarities 4622: 4616: 4612: 4604: 4585: 4569: 4531: 4517: 4511: 4507: 4496: 4489: 4485: 4481: 4477: 4473: 4471: 4461: 4457: 4453: 4449: 4445: 4442: 4437: 4433: 4429: 4425: 4421: 4417: 4413: 4409: 4405: 4401: 4397: 4393: 4391: 4383: 4378: 4374: 4370: 4366: 4362: 4358: 4354: 4350: 4346: 4342: 4338: 4334: 4330: 4326: 4322: 4314: 4310: 4306: 4302: 4298: 4294: 4286: 4282: 4279:fixed points 4274: 4270: 4266: 4262: 4258: 4254: 4250: 4246: 4242: 4238: 4234: 4230: 4223: 4219: 4215: 4211: 4210: 4205: 4201: 4197: 4193: 4191: 4186: 4182: 4178: 4174: 4170: 4159: 4155: 4154:, and since 4152:fixed points 4147: 4140: 4136: 4134: 4124: 4118: 4117: 4112: 4108: 4106: 3956: 3951: 3947: 3940: 3938: 3868: 3774: 3544:as follows: 3538: 3531: 3524: 3517: 3513: 3509: 3501: 3497: 3493: 3489: 3481: 3477: 3469: 3461: 3453: 3441: 3436: 3424: 3420:circle group 3417: 3412: 3405: 3401: 3397: 3395: 3387: 3383: 3353: 3349: 3325: 3321: 3228:. Analyzing 2841: 2837: 2813: 2809: 2805: 2803: 2798: 2774: 2770: 2719: 2715: 2711: 2704: 2694: 2630: 2626: 2622: 2615: 2613: 2172: 2167: 2159: 2155: 2151: 2147: 2145: 2066: 1987: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1805: 1801: 1772: 1764: 1760: 1752: 1749: 1745: 1742: 1738: 1735: 1732: 1728: 1725: 1721: 1718: 1715: 1712: 1708: 1705: 1701: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1653: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1615: 1608: 1604: 1597: 1593: 1589: 1585: 1581: 1574: 1571:Cayley graph 1557: 1528: 1514: 1506: 1500: 1490: 1488: 1482: 1478: 1474: 1462: 1458: 1450: 1446: 1436: 1433: 1428: 1424: 1422: 1407: 1389: 1371: 1356: 1350: 1344: 1338: 1334: 1330: 1324: 1318: 1314: 1310: 1297: 1288: 1284: 1268: 1258: 1252: 1242: 1230:Georg Cantor 1223: 1217: 1211: 1205: 1199: 1193: 1187: 1180: 1161: 1150: 1142: 1137: 1132: 1126: 1120: 1114: 1108: 1102: 1096: 1090: 1084: 1078: 1072: 1066: 1060: 1057: 939: 634: 624: 618: 612: 605: 602: 595: 593: 588: 582: 576: 567: 556: 552: 546: 540: 530: 525: 520: 514: 508: 498: 489: 478: 466: 443: 432: 421: 417: 410: 404: 398: 392: 386: 380: 377: 365: 361: 354: 350: 344: 334: 329: 220: 214: 204: 198: 185: 170:earlier work 165: 155: 142: 139: 116: 107: 104:translations 93: 88: 85: 70:there exists 46: 44: 6314:Wagon, Stan 6263:Wagon, Stan 6129:: 244–277. 6010:: 961–966. 5822:: 133–140. 5422:: 246–260. 5386:: 244–277. 5166:Nikodym set 4233:, and some 3439:unit sphere 3174:, for some 2209:in the set 2164:concatenate 1517:called the 1238:cardinality 1138:paradoxical 592:are called 502:is a group 348:, the sets 168:, based on 135:uncountable 6390:Categories 6247:: 73–116. 6099:References 6052:2203.11158 5956:: 247–267. 5888:Fund. Math 5855:Fund. Math 5787:Fund. Math 5710:: 141–145. 5647:: 141–145. 5607:: 73–116. 5588:On p. 85. 5416:Fund. Math 5298:(Report). 5135:economics. 5129:Lie groups 5037:such that 4867:\ {(0,0)}. 4830:Kenzi Satô 4828:. In 2003 4803:are SL(2, 4762:amenable. 4725:dense sets 4658:free group 4494:free group 4285:, i.e., ρ( 2797:about the 2773:axis, and 2769:about the 2701:isomorphic 2697:free group 1773:The group 1656:generators 1546:isomorphic 1539:generators 1535:free group 1495:Stan Wagon 1443:Paul Cohen 1439:set theory 1306:free group 1248:similarity 1234:set theory 1136:is called 1100:such that 973:such that 730:such that 536:isometries 450:free group 441:, but for 6166:122711859 6039:Math. Ann 6024:209936338 5989:126151042 5975:: 91–95. 5950:Ens. Math 5836:125603157 5762:: 96–99. 5571:122711859 5508:: 21–22. 5472:: 13–19. 5305:1303.5631 5251:CiteSeerX 5090:△ 5063:△ 4950:ℵ 4892:ℵ 4735:. If the 4548:ℵ 4528:Lie group 4526:analytic 4524:connected 4167:countable 4077:∪ 4064:∪ 4007:∪ 3994:∪ 3924:… 3921:∪ 3910:− 3902:∪ 3891:− 3848:∈ 3827:∈ 3748:− 3651:∖ 3637:− 3589:∪ 3583:∪ 3466:dense set 3367:≠ 3364:ω 3336:ω 3308:ω 3285:≠ 3211:∈ 3197:∈ 3031:ω 3008:≥ 2993:≠ 2977:… 2858:… 2852:ω 2824:ω 2785:θ 2739:⁡ 2730:θ 2574:− 2544:− 2491:− 2452:− 2422:− 2409:− 2376:− 2343:− 2284:− 2231:− 2189:− 2116:∪ 2105:− 2037:∪ 2026:− 1988:but also 1965:− 1951:∪ 1936:∪ 1925:− 1911:∪ 1896:∪ 1509:plus the 1477:, nor of 1226:bijective 1175:interiors 1170:with non- 1037:≤ 1031:≤ 958:∈ 919:≤ 907:≤ 895:∅ 879:∩ 853:∩ 789:⋃ 748:⋃ 705:… 659:… 563:congruent 506:on a set 372:congruent 306:∪ 303:⋯ 300:∪ 254:∪ 251:⋯ 248:∪ 100:rotations 6368:Vsauce. 6316:(2016). 6265:(1994). 6230:(1929). 6112:(1924). 5410:(1947). 5369:(1924). 5281:15825008 5273:27588401 5205:(2011). 5155:See also 5078:, where 4615:(2) and 4609:solvable 4484:≥ 3 and 4291:disjoint 4277:with no 4265:α. Then 4253:, where 1398:polygons 439:solvable 378:Now let 338:between 210:interior 196:subsets 74:disjoint 58:geometry 6374:YouTube 6354:), the 6206:2321514 4586:In the 4408:, then 4325:) over 4317:be the 4313:). Let 3472:.) The 3448:by the 3356:, then 2816:. Let 1711:yields 1689:and no 1537:in two 1382:Zermelo 1209:, then 1124:, are 573:subsets 528:), and 194:bounded 145:locales 96:paradox 77:subsets 51:theorem 6324:  6298:  6275:  6204:  6164:  6022:  5987:  5834:  5569:  5279:  5271:  5253:  4874:a set 4345:) ~ ρ( 4212:Proof. 4103:Step 4 3450:action 3446:orbits 3433:Step 3 3002:  2948:  2736:arccos 2691:Step 2 2614:Group 2162:) and 1855:) and 1588:) and 1562:Step 1 1304:, the 518:is an 504:acting 492:and a 435:= 1, 2 112:volume 81:points 6235:(PDF) 6220:(PDF) 6202:JSTOR 6162:S2CID 6117:(PDF) 6047:arXiv 6020:S2CID 5985:S2CID 5832:S2CID 5595:(PDF) 5567:S2CID 5498:(PDF) 5462:(PDF) 5374:(PDF) 5300:arXiv 5277:S2CID 5269:JSTOR 5219:(PDF) 5212:(PDF) 5189:Notes 4601:SO(3) 4452:into 4436:into 4428:into 4420:into 4387:SO(3) 4365:) ∪ ( 4357:) = ( 4349:) ∪ ( 4321:of ρ( 4293:from 4289:) is 4194:Claim 4165:, is 2921:with 1750:abaab 1493:. As 1172:empty 1153:sharp 610:, if 601:, or 482:group 108:ought 49:is a 6322:ISBN 6296:ISBN 6273:ISBN 6082:72. 5702:)". 5639:)". 5112:and 4924:and 4863:and 4795:(2, 4731:and 4671:(2, 4400:and 4373:) = 4305:, ρ( 4301:< 4120:N.B. 3954:}.) 3437:The 3400:and 3352:and 3254:and 2939:> 2808:and 2714:and 2561:and 2067:and 1733:abab 1719:abab 1713:abab 1706:abab 1699:abab 1677:and 1661:and 1354:and 1215:and 1197:and 1118:and 1106:and 1094:and 1070:are 1064:and 913:< 616:and 580:and 370:are 359:and 342:and 218:and 202:and 160:and 102:and 62:ball 45:The 6249:doi 6194:doi 6154:doi 6131:doi 6084:doi 6080:218 6057:doi 6043:389 6012:doi 5977:doi 5973:197 5929:doi 5925:145 5896:doi 5892:222 5863:doi 5859:132 5824:doi 5795:doi 5764:doi 5735:doi 5731:125 5672:doi 5668:180 5609:doi 5559:doi 5510:doi 5506:138 5474:doi 5470:138 5424:doi 5388:doi 5343:hdl 5333:doi 5329:163 5261:doi 5031:of 5013:(3, 4978:of 4775:(2, 4760:not 4650:(2, 4634:of 4516:SO( 4337:∪ ( 4281:in 4237:in 3508:of 3468:in 3081:to 2629:or 1847:), 1736:bab 1614:by 1603:by 1573:of 1467:not 1465:is 1384:'s 1232:'s 586:of 538:of 484:of 446:≥ 3 426:of 172:by 91:". 64:in 53:in 6392:: 6312:; 6245:13 6243:. 6237:. 6200:. 6190:86 6188:. 6160:. 6150:49 6148:. 6125:. 6119:. 6108:; 6078:. 6055:. 6041:. 6018:. 6008:51 6006:. 5983:. 5971:. 5954:30 5952:. 5923:. 5919:. 5890:. 5886:. 5857:. 5853:. 5830:. 5820:49 5818:. 5791:42 5789:. 5785:. 5760:29 5758:. 5729:. 5725:. 5708:42 5706:. 5693:SL 5666:. 5662:. 5645:42 5643:. 5630:SL 5605:13 5603:. 5597:. 5565:. 5555:49 5553:. 5504:. 5500:. 5468:. 5464:. 5420:34 5418:. 5414:. 5376:. 5365:; 5341:. 5327:. 5323:. 5275:. 5267:. 5259:. 5247:70 5245:. 5011:SA 4855:U 4851:≈ 4847:≈ 4843:≈ 4823:SA 4816:SA 4793:SL 4773:SL 4714:." 4677:SA 4669:SL 4648:SL 4640:SA 4629:SA 4440:. 4412:~ 4404:~ 4396:~ 4389:. 4377:− 4369:− 4361:− 4353:− 4341:− 4333:= 4241:, 4208:. 4200:− 4196:: 4185:− 3537:, 3530:, 3523:, 3429:. 3415:. 3393:. 2611:. 2531:, 2170:. 2148:aS 1770:. 1673:, 1669:, 1650:). 1644:aS 1628:aS 1590:aS 1521:. 1515:AC 1507:ZF 1491:AC 1483:DC 1479:ZF 1475:ZF 1463:DC 1459:DC 1457:, 1451:ZF 1447:ZF 1437:ZF 1429:AC 1425:AC 1390:AC 1388:(" 1364:. 1337:, 1333:, 1317:, 1313:, 1140:. 684:, 408:. 276:, 188:: 68:, 6358:. 6330:. 6304:. 6281:. 6257:. 6251:: 6222:. 6208:. 6196:: 6180:. 6168:. 6156:: 6139:. 6133:: 6127:6 6090:. 6086:: 6063:. 6059:: 6049:: 6026:. 6014:: 5991:. 5979:: 5937:. 5931:: 5904:. 5898:: 5871:. 5865:: 5838:. 5826:: 5803:. 5797:: 5770:. 5766:: 5743:. 5737:: 5700:R 5698:( 5696:2 5680:. 5674:: 5637:R 5635:( 5633:2 5617:. 5611:: 5579:. 5573:. 5561:: 5518:. 5512:: 5482:. 5476:: 5432:. 5426:: 5396:. 5390:: 5384:6 5351:. 5345:: 5335:: 5308:. 5302:: 5283:. 5263:: 5147:G 5141:G 5124:R 5118:. 5115:F 5109:E 5094:F 5086:E 5066:F 5060:E 5057:= 5054:) 5051:E 5048:( 5045:g 5034:G 5028:g 5023:Z 5019:Z 5015:Z 5007:H 4999:H 4992:H 4986:. 4984:S 4980:H 4976:E 4972:S 4954:0 4945:2 4934:E 4930:S 4918:H 4914:H 4896:0 4887:2 4876:E 4872:H 4865:D 4861:F 4857:C 4853:B 4849:C 4845:B 4841:A 4837:D 4826:2 4819:2 4809:B 4805:R 4801:A 4797:R 4789:B 4785:A 4777:R 4749:A 4745:A 4741:B 4737:A 4733:B 4729:A 4712:2 4709:A 4700:2 4697:A 4680:2 4673:R 4664:2 4661:F 4654:) 4652:R 4643:2 4632:2 4617:R 4613:E 4605:E 4570:S 4552:0 4543:2 4532:S 4520:) 4518:n 4512:S 4508:S 4500:2 4497:F 4490:k 4486:k 4482:n 4478:n 4474:k 4462:e 4458:a 4456:( 4454:S 4450:a 4446:e 4444:{ 4438:C 4434:B 4430:B 4426:A 4422:C 4418:A 4414:C 4410:A 4406:C 4402:B 4398:B 4394:A 4379:D 4375:S 4371:E 4367:S 4363:D 4359:E 4355:E 4351:S 4347:E 4343:E 4339:S 4335:E 4331:S 4327:n 4323:D 4315:E 4311:D 4307:D 4303:n 4299:m 4295:D 4287:D 4283:D 4275:S 4271:J 4267:J 4263:n 4259:n 4257:( 4255:r 4251:D 4247:n 4245:( 4243:r 4239:D 4235:P 4231:n 4224:J 4220:D 4216:D 4206:S 4202:D 4198:S 4187:D 4183:S 4179:D 4175:H 4171:S 4163:2 4160:F 4156:H 4148:S 4144:2 4141:F 4137:H 4125:H 4113:S 4109:S 4085:4 4081:A 4072:2 4068:A 4059:1 4055:A 4051:= 4046:4 4042:A 4038:b 4015:4 4011:A 4002:3 3998:A 3989:2 3985:A 3981:= 3976:2 3972:A 3968:a 3952:e 3948:M 3943:2 3941:F 3918:M 3913:2 3906:a 3899:M 3894:1 3887:a 3883:= 3880:B 3854:} 3851:M 3845:x 3842:, 3839:) 3836:a 3833:( 3830:S 3824:s 3820:| 3816:) 3813:x 3810:( 3807:s 3804:{ 3801:= 3798:M 3795:) 3792:a 3789:( 3786:S 3759:M 3756:) 3751:1 3744:b 3740:( 3737:S 3734:= 3729:4 3725:A 3701:M 3698:) 3695:b 3692:( 3689:S 3686:= 3681:3 3677:A 3654:B 3648:M 3645:) 3640:1 3633:a 3629:( 3626:S 3623:= 3618:2 3614:A 3592:B 3586:M 3580:M 3577:) 3574:a 3571:( 3568:S 3565:= 3560:1 3556:A 3542:4 3539:A 3535:3 3532:A 3528:2 3525:A 3521:1 3518:A 3514:S 3510:H 3502:M 3498:H 3494:S 3490:H 3482:H 3478:M 3470:S 3462:H 3454:H 3442:S 3413:H 3409:2 3406:F 3402:b 3398:a 3391:2 3388:F 3384:H 3370:e 3354:B 3350:A 3326:x 3322:z 3288:0 3282:l 3262:m 3242:l 3239:, 3236:k 3215:N 3208:N 3205:, 3201:Z 3194:m 3191:, 3188:l 3185:, 3182:k 3161:) 3153:N 3149:3 3145:m 3140:, 3133:N 3129:3 3122:2 3117:l 3111:, 3104:N 3100:3 3096:k 3090:( 3069:) 3066:0 3063:, 3060:0 3057:, 3054:1 3051:( 3011:1 3005:n 2999:, 2996:0 2988:n 2984:k 2980:, 2974:, 2969:3 2965:k 2961:, 2956:2 2952:k 2945:, 2942:0 2934:1 2930:k 2905:1 2901:k 2896:b 2888:2 2884:k 2879:a 2871:3 2867:k 2862:b 2855:= 2842:z 2838:H 2814:H 2810:B 2806:A 2799:z 2775:B 2771:x 2756:) 2751:3 2748:1 2743:( 2733:= 2720:A 2716:z 2712:x 2708:2 2705:F 2673:2 2669:F 2646:2 2642:F 2631:b 2627:a 2623:e 2619:2 2616:F 2599:e 2577:1 2570:a 2547:1 2540:b 2519:b 2499:) 2494:1 2487:a 2483:( 2480:S 2477:a 2455:1 2448:a 2425:1 2418:a 2412:1 2405:a 2401:a 2379:1 2372:a 2351:) 2346:1 2339:a 2335:( 2332:S 2329:a 2309:b 2287:1 2280:a 2259:a 2239:) 2234:1 2227:a 2223:( 2220:S 2217:a 2197:b 2192:1 2185:a 2181:a 2168:a 2160:a 2158:( 2156:S 2152:a 2150:( 2131:, 2128:) 2125:b 2122:( 2119:S 2113:) 2108:1 2101:b 2097:( 2094:S 2091:b 2088:= 2083:2 2079:F 2052:, 2049:) 2046:a 2043:( 2040:S 2034:) 2029:1 2022:a 2018:( 2015:S 2012:a 2009:= 2004:2 2000:F 1973:) 1968:1 1961:b 1957:( 1954:S 1948:) 1945:b 1942:( 1939:S 1933:) 1928:1 1921:a 1917:( 1914:S 1908:) 1905:a 1902:( 1899:S 1893:} 1890:e 1887:{ 1884:= 1879:2 1875:F 1861:b 1859:( 1857:S 1853:b 1851:( 1849:S 1845:a 1843:( 1841:S 1837:a 1821:2 1817:F 1806:a 1804:( 1802:S 1786:2 1782:F 1768:2 1765:F 1761:e 1753:a 1746:b 1743:b 1739:a 1729:a 1726:a 1722:a 1716:a 1709:a 1702:a 1695:b 1691:b 1687:a 1683:a 1679:b 1675:b 1671:a 1667:a 1663:b 1659:a 1648:a 1646:( 1640:a 1638:( 1636:S 1632:a 1630:( 1624:a 1622:( 1620:S 1616:b 1612:2 1609:F 1605:a 1601:2 1598:F 1594:a 1592:( 1586:a 1584:( 1582:S 1578:2 1575:F 1541:. 1481:+ 1404:. 1357:D 1351:C 1345:B 1339:D 1335:C 1331:B 1325:E 1319:D 1315:C 1311:B 1301:2 1298:F 1292:2 1289:F 1259:G 1253:G 1243:X 1218:B 1212:A 1206:A 1200:B 1194:B 1188:A 1133:E 1127:G 1121:E 1115:B 1109:E 1103:A 1097:B 1091:A 1085:E 1079:k 1073:G 1067:B 1061:A 1043:, 1040:k 1034:i 1028:1 1018:i 1014:B 1010:= 1007:) 1002:i 998:A 994:( 989:i 985:g 961:G 953:i 949:g 925:, 922:k 916:j 910:i 904:1 892:= 887:j 883:B 874:i 870:B 866:= 861:j 857:A 848:i 844:A 819:, 814:i 810:B 804:k 799:1 796:= 793:i 785:= 782:B 778:, 773:i 769:A 763:k 758:1 755:= 752:i 744:= 741:A 716:k 712:B 708:, 702:, 697:1 693:B 670:k 666:A 662:, 656:, 651:1 647:A 635:X 625:G 619:B 613:A 606:G 596:G 589:X 583:B 577:A 568:G 559:) 557:n 555:( 553:E 547:X 541:X 531:G 526:n 521:n 515:X 509:X 499:G 444:n 433:n 424:) 422:n 420:( 418:E 405:A 399:B 393:A 387:B 381:A 374:. 366:i 362:B 355:i 351:A 345:k 340:1 335:i 330:k 314:k 310:B 295:1 291:B 287:= 284:B 262:k 258:A 243:1 239:A 235:= 232:A 221:B 215:A 205:B 199:A 87:" 34:. 20:)

Index

Hausdorff–Banach–Tarski paradox
The Banach–Tarski Paradox (book)

theorem
set-theoretic
geometry
ball
three-dimensional space
there exists
disjoint
subsets
points
paradox
rotations
translations
volume
mathematical proof
axioms for set theory
axiom of choice
non-measurable sets
uncountable
locales
Stefan Banach
Alfred Tarski
earlier work
Giuseppe Vitali
unit interval
Felix Hausdorff
bounded
interior

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.