Knowledge

Henselian ring

Source đź“ť

603: 1619:, Interscience Tracts in Pure and Applied Mathematics, vol. 13 (reprint ed.), New York-London: Interscience Publishers a division of John Wiley & Sons, pp. xiii+234, 970: 854: 682: 514: 1067: 931: 1014: 898: 1435:"ÉlĂ©ments de gĂ©omĂ©trie algĂ©brique (rĂ©digĂ©s avec la collaboration de Jean DieudonnĂ©) : IV. Étude locale des schĂ©mas et des morphismes de schĂ©mas, Quatrième partie" 656: 623: 534: 466: 346: 313: 714: 446: 391: 742: 1034: 815: 782: 762: 554: 486: 411: 280: 260: 240: 216: 193: 1221:
of this separable algebraic closure correspond to automorphisms of the corresponding strict Henselization. For example, a strict Henselization of the field of
1473: 1658: 1624: 1434: 1249:
Every field is a Henselian local ring. (But not every field with valuation is "Henselian" in the sense of the fourth definition above.)
1183: 489: 1423: 1684: 1418: 1213:
isomorphism. More precisely it depends on the choice of a separable algebraic closure of the residue field of
559: 1430: 1109: 1316: 1237: 1194:
satisfying an algebraic equation). This can be thought of as the "algebraic" part of the completion.
1137: 90:
will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings.
56: 936: 820: 661: 1187: 1177: 196: 172: 160: 134: 1454: 1645:, Lecture Notes in Mathematics, vol. 169, Berlin-New York: Springer-Verlag, pp. v+129, 1413: 794: 351:
A ring is called Henselian if it is a direct product of a finite number of Henselian local rings.
87: 1039: 903: 975: 859: 1654: 1620: 1559: 1514: 1393: 1073: 494: 167: 44: 628: 608: 519: 451: 318: 285: 1646: 1594: 1578: 1549: 1533: 1504: 1488: 1446: 1383: 1281: 1069:
is an isomorphism. In fact, this property characterises Henselian rings, resp. local rings.
687: 145: 114: 60: 1668: 1634: 1608: 1571: 1526: 1481: 1405: 605:. This follows from the fourth definition, and from the fact that for every K-automorphism 419: 364: 1664: 1630: 1604: 1567: 1522: 1477: 1401: 1253: 1165: 933:
is an isomorphism. This should be compared to the fact that for any Zariski open covering
719: 1271: 1257: 1229: 1173: 1019: 800: 767: 747: 539: 471: 396: 265: 245: 225: 219: 201: 178: 1678: 1291: 1222: 156: 99: 1367: 1302: 1218: 1191: 1169: 716:. The converse of this assertion also holds, because for a normal field extension 1582: 1537: 1492: 1371: 1327: 1267: 1209:. The strict Henselization is not quite universal: it is unique, but only up to 1153: 1129: 52: 28: 1072:
Likewise strict Henselian rings are the local rings of geometric points in the
17: 1554: 1509: 1388: 40: 1599: 1587:
Memoirs of the College of Science, University of Kyoto. Series A: Mathematics
1563: 1518: 1397: 144:
A local ring is Henselian if and only if every finite ring extension is a
1650: 1450: 1176:
then so is its Henselization. For example, the Henselization of the
1125: 1358:, Springer monographs of mathematics, 2005, thm. 3.2.15, p. 69. 1228:
is given by the maximal unramified extension, generated by all
1263:
and rings of formal power series over a field, are Henselian.
1287:
The Henselization of a local ring is a Henselian local ring.
1277:
Rings of algebraic power series over a field are Henselian.
1197:
Similarly there is a strictly Henselian ring generated by
793:
Henselian rings are the local rings with respect to the
393:
is a Henselian field. Then every algebraic extension of
137:
monic polynomials can be lifted to a factorization in
1042: 1022: 978: 939: 906: 862: 823: 803: 770: 750: 722: 690: 664: 631: 611: 562: 542: 522: 497: 474: 454: 422: 399: 367: 321: 288: 268: 248: 228: 204: 181: 1472:, Mathematische Monographien, vol. II, Berlin: 55:. Azumaya originally allowed Henselian rings to be 1061: 1028: 1008: 964: 925: 892: 848: 809: 776: 756: 736: 708: 676: 650: 617: 597: 548: 528: 508: 480: 460: 440: 405: 385: 340: 307: 274: 254: 234: 210: 187: 1186:at the point (0,0,...) is the ring of algebraic 1116:to a Henselian ring can be extended uniquely to 66:Some standard references for Hensel rings are ( 1266:The rings of convergent power series over the 413:is henselian (by the fourth definition above). 262:(resp. to every finite separable extension of 242:extends uniquely to every finite extension of 222:is Henselian. That is the case if and only if 1148:has the same completion and residue field as 109:if Hensel's lemma holds. This means that if 8: 959: 940: 843: 824: 75: 1470:Henselsche Ringe und algebraische Geometrie 1468:Kurke, H.; Pfister, G.; Roczen, M. (1975), 1301:is Henselian if and only if the associated 59:, but most authors now restrict them to be 1598: 1553: 1508: 1387: 1047: 1041: 1021: 977: 947: 938: 911: 905: 861: 831: 822: 802: 769: 749: 726: 721: 700: 695: 689: 663: 636: 630: 610: 561: 541: 521: 496: 473: 453: 421: 398: 366: 326: 320: 293: 287: 267: 247: 227: 203: 180: 1583:"On the theory of Henselian rings. III" 1474:VEB Deutscher Verlag der Wissenschaften 1347: 71: 48: 1538:"On the theory of Henselian rings. II" 1311:is Henselian (this is the quotient of 1105: 598:{\displaystyle v(\alpha ')=v(\alpha )} 121:, then any factorization of its image 67: 789:Henselian rings in algebraic geometry 7: 1439:Publications MathĂ©matiques de l'IHÉS 1088:there is a universal Henselian ring 1284:over a Henselian ring is Henselian. 1136:is an algebraic substitute for the 1493:"On the theory of Henselian rings" 1236:. It is not "universal" as it has 25: 1294:of a Henselian ring is Henselian. 1256:local rings, such as the ring of 151:A Henselian local ring is called 1372:"On maximally central algebras." 817:is a Henselian local ring, and 218:is said to be Henselian if its 47:holds. They were introduced by 1053: 1003: 997: 965:{\displaystyle \{U_{i}\to X\}} 953: 917: 887: 881: 849:{\displaystyle \{U_{i}\to X\}} 837: 696: 677:{\displaystyle v\circ \sigma } 592: 586: 577: 566: 435: 423: 380: 368: 1: 1615:Nagata, Masayoshi (1975) , 1542:Nagoya Mathematical Journal 1497:Nagoya Mathematical Journal 1419:Encyclopedia of Mathematics 1376:Nagoya Mathematical Journal 1330:then it is Henselian since 1317:ideal of nilpotent elements 856:is a Nisnevich covering of 784:are known to be conjugated. 1701: 1354:A. J. Engler, A. Prestel, 1062:{\displaystyle U_{i}\to X} 926:{\displaystyle U_{i}\to X} 1643:Anneaux locaux hensĂ©liens 1555:10.1017/s002776300001802x 1510:10.1017/s0027763000015439 1389:10.1017/s0027763000010114 1009:{\displaystyle X=Spec(R)} 893:{\displaystyle X=Spec(R)} 448:is a Henselian field and 1641:Raynaud, Michel (1970), 1412:Danilov, V. I. (2001) , 509:{\displaystyle \alpha '} 1431:Grothendieck, Alexandre 1144:. The Henselization of 1132:. The Henselization of 1120:. The Henselization of 651:{\displaystyle K^{alg}} 618:{\displaystyle \sigma } 529:{\displaystyle \alpha } 461:{\displaystyle \alpha } 341:{\displaystyle K^{sep}} 308:{\displaystyle K^{alg}} 51:, who named them after 1600:10.1215/kjm/1250776700 1172:, normal, regular, or 1063: 1030: 1010: 966: 927: 894: 850: 811: 778: 758: 738: 710: 709:{\displaystyle v|_{K}} 678: 652: 619: 599: 550: 530: 510: 482: 462: 442: 407: 387: 342: 309: 276: 256: 236: 212: 189: 1280:A local ring that is 1064: 1031: 1011: 967: 928: 895: 851: 812: 797:in the sense that if 779: 759: 739: 711: 679: 653: 620: 600: 551: 531: 511: 483: 463: 443: 441:{\displaystyle (K,v)} 408: 388: 386:{\displaystyle (K,v)} 343: 310: 277: 257: 237: 213: 190: 1203:strict Henselization 1040: 1020: 976: 937: 904: 860: 821: 801: 768: 748: 744:, the extensions of 720: 688: 662: 629: 609: 560: 540: 520: 495: 472: 452: 420: 397: 365: 319: 286: 266: 246: 226: 202: 179: 168:abuse of terminology 133:) into a product of 1685:Commutative algebra 1188:formal power series 1178:ring of polynomials 1084:For any local ring 737:{\displaystyle L/K} 684:is an extension of 1651:10.1007/BFb0069571 1451:10.1007/BF02732123 1232:of order prime to 1110:local homomorphism 1059: 1026: 1006: 962: 923: 900:, then one of the 890: 846: 807: 795:Nisnevich topology 774: 754: 734: 706: 674: 648: 615: 595: 546: 526: 506: 478: 468:is algebraic over 458: 438: 403: 383: 338: 305: 272: 252: 232: 208: 185: 153:strictly Henselian 1660:978-3-540-05283-8 1626:978-0-88275-228-0 1579:Nagata, Masayoshi 1534:Nagata, Masayoshi 1489:Nagata, Masayoshi 1029:{\displaystyle R} 810:{\displaystyle R} 777:{\displaystyle L} 757:{\displaystyle v} 549:{\displaystyle K} 488:, then for every 481:{\displaystyle K} 406:{\displaystyle K} 275:{\displaystyle K} 255:{\displaystyle K} 235:{\displaystyle v} 211:{\displaystyle v} 188:{\displaystyle K} 76:Grothendieck 1967 70:, Chapter VII), ( 16:(Redirected from 1692: 1671: 1637: 1611: 1602: 1574: 1557: 1529: 1512: 1484: 1464: 1463: 1462: 1453:, archived from 1426: 1408: 1391: 1359: 1352: 1108:, such that any 1104:, introduced by 1068: 1066: 1065: 1060: 1052: 1051: 1035: 1033: 1032: 1027: 1016:of a local ring 1015: 1013: 1012: 1007: 972:of the spectrum 971: 969: 968: 963: 952: 951: 932: 930: 929: 924: 916: 915: 899: 897: 896: 891: 855: 853: 852: 847: 836: 835: 816: 814: 813: 808: 783: 781: 780: 775: 763: 761: 760: 755: 743: 741: 740: 735: 730: 715: 713: 712: 707: 705: 704: 699: 683: 681: 680: 675: 657: 655: 654: 649: 647: 646: 624: 622: 621: 616: 604: 602: 601: 596: 576: 555: 553: 552: 547: 535: 533: 532: 527: 515: 513: 512: 507: 505: 487: 485: 484: 479: 467: 465: 464: 459: 447: 445: 444: 439: 412: 410: 409: 404: 392: 390: 389: 384: 347: 345: 344: 339: 337: 336: 314: 312: 311: 306: 304: 303: 281: 279: 278: 273: 261: 259: 258: 253: 241: 239: 238: 233: 217: 215: 214: 209: 194: 192: 191: 186: 161:separably closed 115:monic polynomial 86:In this article 21: 1700: 1699: 1695: 1694: 1693: 1691: 1690: 1689: 1675: 1674: 1661: 1640: 1627: 1614: 1577: 1532: 1487: 1467: 1460: 1458: 1429: 1411: 1366: 1363: 1362: 1353: 1349: 1344: 1336: 1310: 1272:complex numbers 1246: 1240:automorphisms. 1082: 1043: 1038: 1037: 1018: 1017: 974: 973: 943: 935: 934: 907: 902: 901: 858: 857: 827: 819: 818: 799: 798: 791: 766: 765: 746: 745: 718: 717: 694: 686: 685: 660: 659: 632: 627: 626: 607: 606: 569: 558: 557: 538: 537: 518: 517: 498: 493: 492: 470: 469: 450: 449: 418: 417: 395: 394: 363: 362: 358: 322: 317: 316: 289: 284: 283: 264: 263: 244: 243: 224: 223: 200: 199: 177: 176: 148:of local rings. 84: 78:, Chapter 18). 57:non-commutative 23: 22: 18:Henselian field 15: 12: 11: 5: 1698: 1696: 1688: 1687: 1677: 1676: 1673: 1672: 1659: 1638: 1625: 1612: 1575: 1530: 1485: 1465: 1427: 1409: 1361: 1360: 1346: 1345: 1343: 1340: 1339: 1338: 1334: 1320: 1308: 1295: 1288: 1285: 1278: 1275: 1274:are Henselian. 1264: 1261:-adic integers 1250: 1245: 1242: 1230:roots of unity 1081: 1078: 1074:Ă©tale topology 1058: 1055: 1050: 1046: 1025: 1005: 1002: 999: 996: 993: 990: 987: 984: 981: 961: 958: 955: 950: 946: 942: 922: 919: 914: 910: 889: 886: 883: 880: 877: 874: 871: 868: 865: 845: 842: 839: 834: 830: 826: 806: 790: 787: 786: 785: 773: 753: 733: 729: 725: 703: 698: 693: 673: 670: 667: 645: 642: 639: 635: 614: 594: 591: 588: 585: 582: 579: 575: 572: 568: 565: 545: 525: 504: 501: 477: 457: 437: 434: 431: 428: 425: 414: 402: 382: 379: 376: 373: 370: 357: 354: 353: 352: 349: 335: 332: 329: 325: 302: 299: 296: 292: 271: 251: 231: 220:valuation ring 207: 184: 164: 149: 142: 83: 80: 49:Azumaya (1951) 45:Hensel's lemma 33:Henselian ring 24: 14: 13: 10: 9: 6: 4: 3: 2: 1697: 1686: 1683: 1682: 1680: 1670: 1666: 1662: 1656: 1652: 1648: 1644: 1639: 1636: 1632: 1628: 1622: 1618: 1613: 1610: 1606: 1601: 1596: 1592: 1588: 1584: 1580: 1576: 1573: 1569: 1565: 1561: 1556: 1551: 1547: 1543: 1539: 1535: 1531: 1528: 1524: 1520: 1516: 1511: 1506: 1502: 1498: 1494: 1490: 1486: 1483: 1479: 1475: 1471: 1466: 1457:on 2016-03-03 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1425: 1421: 1420: 1415: 1414:"Hensel ring" 1410: 1407: 1403: 1399: 1395: 1390: 1385: 1381: 1377: 1373: 1369: 1368:Azumaya, GorĂ´ 1365: 1364: 1357: 1356:Valued fields 1351: 1348: 1341: 1333: 1329: 1326:has only one 1325: 1321: 1318: 1314: 1307: 1304: 1300: 1296: 1293: 1289: 1286: 1283: 1279: 1276: 1273: 1269: 1265: 1262: 1260: 1255: 1251: 1248: 1247: 1243: 1241: 1239: 1235: 1231: 1227: 1226:-adic numbers 1225: 1220: 1219:automorphisms 1216: 1212: 1208: 1204: 1201:, called the 1200: 1195: 1193: 1189: 1185: 1182: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1106:Nagata (1953) 1103: 1099: 1098:Henselization 1096:, called the 1095: 1092:generated by 1091: 1087: 1080:Henselization 1079: 1077: 1075: 1070: 1056: 1048: 1044: 1036:, one of the 1023: 1000: 994: 991: 988: 985: 982: 979: 956: 948: 944: 920: 912: 908: 884: 878: 875: 872: 869: 866: 863: 840: 832: 828: 804: 796: 788: 771: 751: 731: 727: 723: 701: 691: 671: 668: 665: 643: 640: 637: 633: 612: 589: 583: 580: 573: 570: 563: 543: 523: 502: 499: 491: 475: 455: 432: 429: 426: 415: 400: 377: 374: 371: 360: 359: 355: 350: 333: 330: 327: 323: 300: 297: 294: 290: 269: 249: 229: 221: 205: 198: 182: 175: 174: 169: 165: 162: 158: 157:residue field 154: 150: 147: 143: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 101: 100:maximal ideal 97: 94:A local ring 93: 92: 91: 89: 81: 79: 77: 73: 69: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 19: 1642: 1616: 1590: 1586: 1545: 1541: 1500: 1496: 1469: 1459:, retrieved 1455:the original 1442: 1438: 1417: 1379: 1375: 1355: 1350: 1331: 1323: 1312: 1305: 1303:reduced ring 1298: 1258: 1233: 1223: 1214: 1210: 1206: 1202: 1198: 1196: 1192:power series 1190:(the formal 1180: 1161: 1157: 1149: 1145: 1141: 1133: 1121: 1117: 1113: 1101: 1097: 1093: 1089: 1085: 1083: 1071: 792: 361:Assume that 171: 152: 138: 130: 126: 122: 118: 110: 106: 102: 95: 85: 72:Raynaud 1970 65: 36: 32: 26: 1617:Local rings 1382:: 119–150, 1337:is a field. 1328:prime ideal 1238:non-trivial 1154:flat module 1130:isomorphism 315:, resp. to 282:, resp. to 82:Definitions 68:Nagata 1975 61:commutative 53:Kurt Hensel 37:Hensel ring 29:mathematics 1593:: 93–101, 1461:2007-12-09 1342:References 1211:non-unique 1166:Noetherian 1138:completion 1124:is unique 356:Properties 105:is called 41:local ring 1564:0027-7630 1519:0027-7630 1503:: 45–57, 1445:: 5–361, 1424:EMS Press 1398:0027-7630 1254:Hausdorff 1252:Complete 1184:localized 1174:excellent 1152:and is a 1054:→ 954:→ 918:→ 838:→ 672:σ 669:∘ 613:σ 590:α 571:α 524:α 500:α 490:conjugate 456:α 197:valuation 107:Henselian 43:in which 1679:Category 1581:(1959), 1548:: 1–19, 1536:(1954), 1491:(1953), 1433:(1967), 1370:(1951), 1292:quotient 1282:integral 1244:Examples 574:′ 503:′ 74:), and ( 39:) is a 1669:0277519 1635:0155856 1609:0109835 1572:0067865 1527:0051821 1482:0491694 1406:0040287 1315:by the 1297:A ring 1170:reduced 1128:unique 155:if its 146:product 135:coprime 1667:  1657:  1633:  1623:  1607:  1570:  1562:  1525:  1517:  1480:  1404:  1396:  1290:Every 1217:, and 1160:. If 1156:over 1126:up to 1112:from 536:over 195:with 173:field 113:is a 98:with 88:rings 1655:ISBN 1621:ISBN 1560:ISSN 1515:ISSN 1394:ISSN 1268:real 170:, a 125:in ( 35:(or 31:, a 1647:doi 1595:doi 1550:doi 1505:doi 1447:doi 1384:doi 1335:red 1322:If 1309:red 1270:or 1205:of 1164:is 1140:of 1100:of 764:to 625:of 516:of 416:If 166:By 159:is 117:in 27:In 1681:: 1665:MR 1663:, 1653:, 1631:MR 1629:, 1605:MR 1603:, 1591:32 1589:, 1585:, 1568:MR 1566:, 1558:, 1544:, 1540:, 1523:MR 1521:, 1513:, 1499:, 1495:, 1478:MR 1476:, 1443:32 1441:, 1437:, 1422:, 1416:, 1402:MR 1400:, 1392:, 1378:, 1374:, 1319:). 1168:, 1076:. 658:, 556:, 348:). 63:. 1649:: 1597:: 1552:: 1546:7 1507:: 1501:5 1449:: 1386:: 1380:2 1332:A 1324:A 1313:A 1306:A 1299:A 1259:p 1234:p 1224:p 1215:A 1207:A 1199:A 1181:k 1162:A 1158:A 1150:A 1146:A 1142:A 1134:A 1122:A 1118:B 1114:A 1102:A 1094:A 1090:B 1086:A 1057:X 1049:i 1045:U 1024:R 1004:) 1001:R 998:( 995:c 992:e 989:p 986:S 983:= 980:X 960:} 957:X 949:i 945:U 941:{ 921:X 913:i 909:U 888:) 885:R 882:( 879:c 876:e 873:p 870:S 867:= 864:X 844:} 841:X 833:i 829:U 825:{ 805:R 772:L 752:v 732:K 728:/ 724:L 702:K 697:| 692:v 666:v 644:g 641:l 638:a 634:K 593:) 587:( 584:v 581:= 578:) 567:( 564:v 544:K 476:K 436:) 433:v 430:, 427:K 424:( 401:K 381:) 378:v 375:, 372:K 369:( 334:p 331:e 328:s 324:K 301:g 298:l 295:a 291:K 270:K 250:K 230:v 206:v 183:K 163:. 141:. 139:R 131:m 129:/ 127:R 123:P 119:R 111:P 103:m 96:R 20:)

Index

Henselian field
mathematics
local ring
Hensel's lemma
Azumaya (1951)
Kurt Hensel
non-commutative
commutative
Nagata 1975
Raynaud 1970
Grothendieck 1967
rings
maximal ideal
monic polynomial
coprime
product
residue field
separably closed
abuse of terminology
field
valuation
valuation ring
conjugate
Nisnevich topology
Ă©tale topology
Nagata (1953)
local homomorphism
up to
isomorphism
completion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑