Knowledge

Heterostrain

Source đź“ť

96: 120: 108: 140:
artifacts which affect the image of the two layers identically which cancels out in the relative measurement. Alternatively, with a well calibrated microscope and if biaxial heterostrain is low enough, it is possible to determine twist and uniaxial heterostrain from the knowledge of the moiré period in all directions. On the contrary it is much more difficult to determine homostrain which necessitates a calibration sample.
149:
and to be the main factor in the flat band width of those systems. Heterostrain has a much larger impact on electronic properties than homostrain. It explains some of the sample variability which had previously been puzzeling. Research is now moving towards understanding the impact of spatial fluctuations of heterostrain.
148:
Heterostrain is generated during the fabrication of the 2D materials stack. It can result from a meta-stable configuration during bottom up assembly or from the layer manipulation in the tear and stack technique. It has been shown to be ubiquitous in twisted graphene layers near the magic twist angle
450:
Kapfer, Mäelle; Jessen, Bjarke S.; Eisele, Megan E.; Fu, Matthew; Danielsen, Dorte R.; Darlington, Thomas P.; Moore, Samuel L.; Finney, Nathan R.; Marchese, Ariane; Hsieh, Valerie; Majchrzak, Paulina; Jiang, Zhihao; Biswas, Deepnarayan; Dudin, Pavel; Avila, José (2023). "Programming twist angle and
139:
which provides images showing both the atomic lattice of the first layer and the moiré superlattice. Relating the atomic lattice to the moiré lattice allows to determine entirely the relative arrangement of the layers (biaxial, uniaxial heterostrain and twist). The method is immune to calibration
39:
in which the properties of 2D materials are controlled by strain. Recent works have reported a deterministic control of heterostrain by sample processing or with the tip of an AFM of particular interest in twisted heterostructures. Heterostrain alone (without twist) has also been identified as a
749:
Engelke, Rebecca; Yoo, Hyobin; Carr, Stephen; Xu, Kevin; Cazeaux, Paul; Allen, Richard; Valdivia, Andres Mier; Luskin, Mitchell; Kaxiras, Efthimios; Kim, Minhyong; Han, Jung Hoon; Kim, Philip (2022-07-16). "Non-Abelian topological defects and strain mapping in 2D moiré materials".
607:
Kapfer, Maëlle; Jessen, Bjarke S.; Eisele, Megan E.; Fu, Matthew; Danielsen, Dorte R.; Darlington, Thomas P.; Moore, Samuel L.; Finney, Nathan R.; Marchese, Ariane; Hsieh, Valerie; Majchrzak, Paulina; Jiang, Zhihao; Biswas, Deepnarayan; Dudin, Pavel; Avila, José (2023-08-11).
52:. It means that the two layers constituting the structure are subject to different strains. This is in contrast with homostrain in which the two layers as subject to the same strain. Heterostrain is designated as "relative strain" by some authors. 496:
Peña, Tara; Dey, Aditya; Chowdhury, Shoieb A.; Azizimanesh, Ahmad; Hou, Wenhui; Sewaket, Arfan; Watson, Carla L.; Askari, Hesam; Wu, Stephen M. (2023). "Moiré engineering in 2D heterostructures with process-induced strain".
919:
Kim, Kyounghwan; Yankowitz, Matthew; Fallahazad, Babak; Kang, Sangwoo; Movva, Hema C. P.; Huang, Shengqiang; Larentis, Stefano; Corbet, Chris M.; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K. (2016-03-09).
681:
Mesple, Florie; Walet, Niels R.; Trambly de Laissardière, Guy; Guinea, Francisco; Došenović, Djordje; Okuno, Hanako; Paillet, Colin; Michon, Adrien; Chapelier, Claude; Renard, Vincent T. (September 2023).
35:, heterostrain can have important consequences on the electronic and optical properties of the resulting structure. As such, the control of heterostrain is emerging as a sub-field of 846:
Kerelsky, Alexander; McGilly, Leo J.; Kennes, Dante M.; Xian, Lede; Yankowitz, Matthew; Chen, Shaowen; Watanabe, K.; Taniguchi, T.; Hone, James; Dean, Cory; Rubio, Angel (2019).
174:
Huder, Loïc; Artaud, Alexandre; Le Quang, Toai; de Laissardière, Guy Trambly; Jansen, Aloysius G. M.; Lapertot, Gérard; Chapelier, Claude; Renard, Vincent T. (2018-04-12).
312:
Mesple, Florie; Missaoui, Ahmed; Cea, Tommaso; Huder, Loic; Guinea, Francisco; Trambly de Laissardière, Guy; Chapelier, Claude; Renard, Vincent T. (2021-09-17).
79:
signaling the regions where the atomic lattices of the two layers are in or out of registry. The shape of the moiré pattern depends on the type of strain.
71:
In nature, the two graphene layers usually stack with a shift of half a unit cell. This configuration is the most energetically favorable and is found in
31:
are stacked on top of each other. These layers can experience the same deformation (homostrain) or different deformations (heterostrain). In addition to
40:
parameter to tune the electronic properties of van der Waals structures as for example in twisted graphene layers with biaxial heterostrain.
86:
If the layer is strained in the same way along two directions (biaxial heterostrain), the moiré is a two-dimensional superstructure.
1134: 136: 1139: 27:
to simplify the designation of possible strain situations in van der Waals heterostructures where two (or more)
975:
Parker, Daniel E.; Soejima, Tomohiro; Hauschild, Johannes; Zaletel, Michael P.; Bultinck, Nick (2021-07-06).
64:
layers is considered. The description can be generalized for the case of different 2D materials forming an
28: 49: 1087: 998: 933: 869: 794: 705: 631: 573: 516: 470: 408: 335: 265: 197: 83:
If the layer is deformed along one direction (uniaxial heterostrain), the moiré is one dimensional.
95: 1111: 1077: 1046: 988: 901: 859: 784: 751: 695: 663: 621: 589: 563: 532: 506: 460: 432: 398: 367: 325: 289: 255: 221: 187: 771:
Artaud, A.; Magaud, L.; Le Quang, T.; Guisset, V.; David, P.; Chapelier, C.; Coraux, J. (2016).
132:
In General, a layer can be deformed by an arbitrary combination of both types of heterostrain.
1103: 1038: 1030: 1022: 1018: 957: 949: 893: 885: 828: 810: 731: 723: 655: 647: 424: 386: 359: 351: 281: 213: 24: 1095: 1014: 1006: 941: 877: 818: 802: 713: 639: 581: 524: 478: 416: 343: 273: 205: 76: 976: 313: 175: 1091: 1002: 937: 921: 873: 798: 773:"Universal classification of twisted, strained and sheared graphene moiré superlattices" 709: 635: 577: 520: 474: 412: 339: 269: 201: 1065: 823: 772: 243: 65: 609: 119: 1128: 1115: 1050: 905: 667: 593: 536: 436: 371: 293: 36: 387:"Twist versus heterostrain control of optical properties of moiré exciton minibands" 225: 107: 1010: 847: 347: 209: 48:
Heterostrain is constructed from the Greek prefix hetero- (different) and the noun
945: 1099: 848:"Maximized electron interactions at the magic angle in twisted bilayer graphene" 277: 32: 420: 881: 1107: 1026: 953: 889: 814: 727: 651: 428: 355: 285: 643: 482: 1042: 961: 897: 832: 735: 718: 683: 659: 363: 314:"Heterostrain Determines Flat Bands in Magic-Angle Twisted Graphene Layers" 217: 72: 61: 922:"van der Waals Heterostructures with High Accuracy Rotational Alignment" 1034: 806: 585: 552:"Moiré engineering in 2D heterostructures with process-induced strain" 528: 551: 1082: 993: 864: 789: 756: 700: 684:"Giant Atomic Swirl in Graphene Bilayers with Biaxial Heterostrain" 626: 568: 511: 465: 403: 330: 260: 192: 176:"Electronic Spectrum of Twisted Graphene Layers under Heterostrain" 977:"Strain-Induced Quantum Phase Transitions in Magic-Angle Graphene" 610:"Programming twist angle and strain profiles in 2D materials" 75:. If one layer is strained while the other is left intact, a 385:
Zheng, Huiyuan; Zhai, Dawei; Yao, Wang (2021-10-01).
242:
Bi, Zhen; Yuan, Noah F. Q.; Fu, Liang (2019-07-31).
1066:"MoirĂ© disorder effect in twisted bilayer graphene" 1064:Nakatsuji, Naoto; Koshino, Mikito (2022-06-14). 56:Manifestation and measurement of heterostrain 8: 125:Graphene layers with uniaxial heterostrain 1081: 992: 863: 822: 788: 755: 717: 699: 625: 567: 510: 464: 402: 329: 259: 191: 113:Graphene layers with biaxial heterostrain 157: 23:was proposed in 2018 in the context of 7: 307: 305: 303: 237: 235: 169: 167: 165: 163: 161: 1019:1854/LU-01GQF91F1WRRP5WQDFR3XBHF2J 451:strain profiles in 2D materials". 101:Graphene layers in Bernal stacking 14: 144:Origin and impact of heterostrain 244:"Designing flat bands by strain" 135:Heterostrain can be measured by 118: 106: 94: 60:For simplicity, the case of two 1011:10.1103/PhysRevLett.127.027601 348:10.1103/PhysRevLett.127.126405 210:10.1103/PhysRevLett.120.156405 1: 137:scanning tunneling microscope 946:10.1021/acs.nanolett.5b05263 1100:10.1103/PhysRevB.105.245408 596:– via AIP Publishing. 278:10.1103/PhysRevB.100.035448 1156: 882:10.1038/s41586-019-1431-9 29:two-dimensional materials 421:10.1088/2053-1583/ac2d16 1135:Deformation (mechanics) 981:Physical Review Letters 644:10.1126/science.ade9995 499:Applied Physics Letters 483:10.1126/science.ade9995 318:Physical Review Letters 180:Physical Review Letters 719:10.1002/adma.202306312 16:Materials science term 1092:2022PhRvB.105x5408N 1003:2021PhRvL.127b7601P 938:2016NanoL..16.1989K 874:2019Natur.572...95K 799:2016NatSR...625670A 710:2023AdM....3506312M 636:2023Sci...381..677K 578:2023ApPhL.122n3101P 550:Tara, Pena (2023). 521:2023ApPhL.122n3101P 475:2023Sci...381..677K 413:2021TDM.....8d4016Z 340:2021PhRvL.127l6405M 270:2019PhRvB.100c5448B 202:2018PhRvL.120o6405H 777:Scientific Reports 688:Advanced Materials 1140:Materials science 1070:Physical Review B 807:10.1038/srep25670 620:(6658): 677–681. 586:10.1063/5.0142406 529:10.1063/5.0142406 459:(6658): 677–681. 248:Physical Review B 25:materials science 1147: 1120: 1119: 1085: 1061: 1055: 1054: 996: 972: 966: 965: 932:(3): 1989–1995. 916: 910: 909: 867: 858:(7767): 95–100. 843: 837: 836: 826: 792: 768: 762: 761: 759: 746: 740: 739: 721: 703: 694:(41): e2306312. 678: 672: 671: 629: 604: 598: 597: 571: 556:Appl. Phys. Lett 547: 541: 540: 514: 493: 487: 486: 468: 447: 441: 440: 406: 382: 376: 375: 333: 309: 298: 297: 263: 239: 230: 229: 195: 171: 122: 110: 98: 1155: 1154: 1150: 1149: 1148: 1146: 1145: 1144: 1125: 1124: 1123: 1063: 1062: 1058: 974: 973: 969: 918: 917: 913: 845: 844: 840: 770: 769: 765: 748: 747: 743: 680: 679: 675: 606: 605: 601: 549: 548: 544: 495: 494: 490: 449: 448: 444: 384: 383: 379: 311: 310: 301: 241: 240: 233: 173: 172: 159: 155: 146: 130: 129: 128: 127: 126: 123: 115: 114: 111: 103: 102: 99: 66:heterostructure 58: 46: 17: 12: 11: 5: 1153: 1151: 1143: 1142: 1137: 1127: 1126: 1122: 1121: 1076:(24): 245408. 1056: 967: 911: 838: 763: 741: 673: 599: 562:(14): 143101. 542: 505:(14): 143101. 488: 442: 377: 324:(12): 126405. 299: 231: 186:(15): 156405. 156: 154: 151: 145: 142: 124: 117: 116: 112: 105: 104: 100: 93: 92: 91: 90: 89: 88: 87: 84: 57: 54: 45: 42: 15: 13: 10: 9: 6: 4: 3: 2: 1152: 1141: 1138: 1136: 1133: 1132: 1130: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1084: 1079: 1075: 1071: 1067: 1060: 1057: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 995: 990: 987:(2): 027601. 986: 982: 978: 971: 968: 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 915: 912: 907: 903: 899: 895: 891: 887: 883: 879: 875: 871: 866: 861: 857: 853: 849: 842: 839: 834: 830: 825: 820: 816: 812: 808: 804: 800: 796: 791: 786: 782: 778: 774: 767: 764: 758: 753: 745: 742: 737: 733: 729: 725: 720: 715: 711: 707: 702: 697: 693: 689: 685: 677: 674: 669: 665: 661: 657: 653: 649: 645: 641: 637: 633: 628: 623: 619: 615: 611: 603: 600: 595: 591: 587: 583: 579: 575: 570: 565: 561: 557: 553: 546: 543: 538: 534: 530: 526: 522: 518: 513: 508: 504: 500: 492: 489: 484: 480: 476: 472: 467: 462: 458: 454: 446: 443: 438: 434: 430: 426: 422: 418: 414: 410: 405: 400: 397:(4): 044016. 396: 392: 388: 381: 378: 373: 369: 365: 361: 357: 353: 349: 345: 341: 337: 332: 327: 323: 319: 315: 308: 306: 304: 300: 295: 291: 287: 283: 279: 275: 271: 267: 262: 257: 254:(3): 035448. 253: 249: 245: 238: 236: 232: 227: 223: 219: 215: 211: 207: 203: 199: 194: 189: 185: 181: 177: 170: 168: 166: 164: 162: 158: 152: 150: 143: 141: 138: 133: 121: 109: 97: 85: 82: 81: 80: 78: 77:moirĂ© pattern 74: 69: 67: 63: 55: 53: 51: 43: 41: 38: 37:straintronics 34: 30: 26: 22: 1073: 1069: 1059: 984: 980: 970: 929: 926:Nano Letters 925: 914: 855: 851: 841: 783:(1): 25670. 780: 776: 766: 744: 691: 687: 676: 617: 613: 602: 559: 555: 545: 502: 498: 491: 456: 452: 445: 394: 391:2D Materials 390: 380: 321: 317: 251: 247: 183: 179: 147: 134: 131: 70: 59: 47: 21:heterostrain 20: 18: 1129:Categories 1083:2204.06177 994:2012.09885 865:1812.08776 790:1605.07356 757:2207.05276 701:2308.13230 627:2209.10696 569:2210.03480 512:2210.03480 466:2209.10696 404:2110.01487 331:2012.02475 261:1902.10146 193:1803.03505 153:References 1116:248157360 1108:2469-9950 1051:229331622 1027:0031-9007 954:1530-6984 906:199057045 890:0028-0836 815:2045-2322 728:0935-9648 668:252438585 652:0036-8075 594:252762502 537:252762502 437:238259645 429:2053-1583 372:227305789 356:0031-9007 294:118982311 286:2469-9950 44:Etymology 19:The term 1043:34296891 962:26859527 898:31367030 833:27181495 736:37615204 660:37561852 364:34597066 226:21734003 218:29756887 73:graphite 62:graphene 1088:Bibcode 1035:1821673 999:Bibcode 934:Bibcode 870:Bibcode 824:4867435 795:Bibcode 706:Bibcode 632:Bibcode 614:Science 574:Bibcode 517:Bibcode 471:Bibcode 453:Science 409:Bibcode 336:Bibcode 266:Bibcode 198:Bibcode 1114:  1106:  1049:  1041:  1033:  1025:  960:  952:  904:  896:  888:  852:Nature 831:  821:  813:  734:  726:  666:  658:  650:  592:  535:  435:  427:  370:  362:  354:  292:  284:  224:  216:  50:strain 1112:S2CID 1078:arXiv 1047:S2CID 989:arXiv 902:S2CID 860:arXiv 785:arXiv 752:arXiv 696:arXiv 664:S2CID 622:arXiv 590:S2CID 564:arXiv 533:S2CID 507:arXiv 461:arXiv 433:S2CID 399:arXiv 368:S2CID 326:arXiv 290:S2CID 256:arXiv 222:S2CID 188:arXiv 33:twist 1104:ISSN 1039:PMID 1031:OSTI 1023:ISSN 958:PMID 950:ISSN 894:PMID 886:ISSN 829:PMID 811:ISSN 732:PMID 724:ISSN 656:PMID 648:ISSN 425:ISSN 360:PMID 352:ISSN 282:ISSN 214:PMID 1096:doi 1074:105 1015:hdl 1007:doi 985:127 942:doi 878:doi 856:572 819:PMC 803:doi 714:doi 640:doi 618:381 582:doi 560:122 525:doi 503:122 479:doi 457:381 417:doi 344:doi 322:127 274:doi 252:100 206:doi 184:120 1131:: 1110:. 1102:. 1094:. 1086:. 1072:. 1068:. 1045:. 1037:. 1029:. 1021:. 1013:. 1005:. 997:. 983:. 979:. 956:. 948:. 940:. 930:16 928:. 924:. 900:. 892:. 884:. 876:. 868:. 854:. 850:. 827:. 817:. 809:. 801:. 793:. 779:. 775:. 730:. 722:. 712:. 704:. 692:35 690:. 686:. 662:. 654:. 646:. 638:. 630:. 616:. 612:. 588:. 580:. 572:. 558:. 554:. 531:. 523:. 515:. 501:. 477:. 469:. 455:. 431:. 423:. 415:. 407:. 393:. 389:. 366:. 358:. 350:. 342:. 334:. 320:. 316:. 302:^ 288:. 280:. 272:. 264:. 250:. 246:. 234:^ 220:. 212:. 204:. 196:. 182:. 178:. 160:^ 68:. 1118:. 1098:: 1090:: 1080:: 1053:. 1017:: 1009:: 1001:: 991:: 964:. 944:: 936:: 908:. 880:: 872:: 862:: 835:. 805:: 797:: 787:: 781:6 760:. 754:: 738:. 716:: 708:: 698:: 670:. 642:: 634:: 624:: 584:: 576:: 566:: 539:. 527:: 519:: 509:: 485:. 481:: 473:: 463:: 439:. 419:: 411:: 401:: 395:8 374:. 346:: 338:: 328:: 296:. 276:: 268:: 258:: 228:. 208:: 200:: 190::

Index

materials science
two-dimensional materials
twist
straintronics
strain
graphene
heterostructure
graphite
moiré pattern
Bernal stacking
Biaxial heterostrain
Uniaxial heterostrain
scanning tunneling microscope





"Electronic Spectrum of Twisted Graphene Layers under Heterostrain"
arXiv
1803.03505
Bibcode
2018PhRvL.120o6405H
doi
10.1103/PhysRevLett.120.156405
PMID
29756887
S2CID
21734003

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑