Knowledge

Hilbert's second problem

Source 📝

66:"When we are engaged in investigating the foundations of a science, we must set up a system of axioms which contains an exact and complete description of the relations subsisting between the elementary ideas of that science. ... But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms: To prove that they are not contradictory, that is, that a definite number of logical steps based upon them can never lead to contradictory results. In geometry, the proof of the compatibility of the axioms can be effected by constructing a suitable field of numbers, such that analogous relations between the numbers of this field correspond to the geometrical axioms. ... On the other hand a direct method is needed for the proof of the compatibility of the arithmetical axioms." 128:, a member of the Hilbert school, in 1936, and by others since then. ... But these meta-mathematical proofs cannot be represented within the arithmetical calculus; and, since they are not finitistic, they do not achieve the proclaimed objectives of Hilbert's original program. ... The possibility of constructing a finitistic absolute proof of consistency for arithmetic is not excluded by Gödel’s results. Gödel showed that no such proof is possible that can be represented within arithmetic. His argument does not eliminate the possibility of strictly finitistic proofs that cannot be represented within arithmetic. But no one today appears to have a clear idea of what a finitistic proof would be like that is not capable of formulation within arithmetic." 2644: 89:. These do not provide a resolution to Hilbert's second question, however, because someone who doubts the consistency of Peano arithmetic is unlikely to accept the axioms of set theory (which are much stronger) to prove its consistency. Thus a satisfactory answer to Hilbert's problem must be carried out using principles that would be acceptable to someone who does not already believe PA is consistent. Such principles are often called 124:"This imposing result of Godel's analysis should not be misunderstood: it does not exclude a meta-mathematical proof of the consistency of arithmetic. What it excludes is a proof of consistency that can be mirrored by the formal deductions of arithmetic. Meta-mathematical proofs of the consistency of arithmetic have, in fact, been constructed, notably by 115:
shows that it is not possible for any proof that Peano Arithmetic is consistent to be carried out within Peano arithmetic itself. This theorem shows that if the only acceptable proof procedures are those that can be formalized within arithmetic then Hilbert's call for a consistency proof cannot be
297:
Actually, the proof assigns a "notation" for an ordinal number to each proof. The notation is a finite string of symbols that intuitively stands for an ordinal number. By representing the ordinal in a finite way, Gentzen's proof does not presuppose strong axioms regarding ordinal
70:
Hilbert's statement is sometimes misunderstood, because by the "arithmetical axioms" he did not mean a system equivalent to Peano arithmetic, but a stronger system with a second-order completeness axiom. The system Hilbert asked for a completeness proof of is more like
200:
While the theorems of Gödel and Gentzen are now well understood by the mathematical logic community, no consensus has formed on whether (or in what way) these theorems answer Hilbert's second problem.
54:
proved results that cast new light on the problem. Some feel that Gödel's theorems give a negative solution to the problem, while others consider Gentzen's proof as a partial positive solution.
143:
In 1936, Gentzen published a proof that Peano Arithmetic is consistent. Gentzen's result shows that a consistency proof can be obtained in a system that is much weaker than set theory.
1023: 216:
argues that Gödel's theorem does not prevent a consistency proof because its hypotheses might not apply to all the systems in which a consistency proof could be carried out.
349:
Dawson, John W. (2006). "Shaken foundations or groundbreaking realignment? A Centennial Assessment of Kurt Gödel's Impact on Logic, Mathematics, and Computer Science.".
1698: 752: 220:
calls the belief that Gödel's theorem eliminates the possibility of a persuasive consistency proof "erroneous", citing the consistency proof given by Gentzen and
565: 1781: 922: 93:
because they are completely constructive and do not presuppose a completed infinity of natural numbers. Gödel's second incompleteness theorem (see
169:
in a stronger logic than first-order logic, but the consistency proof itself can be carried out in ordinary first-order logic using the axioms of
2095: 717: 2253: 1041: 106: 94: 2108: 1431: 745: 1693: 204:
argues that Gödel's incompleteness theorem shows that it is not possible to produce finitistic consistency proofs of strong theories.
2113: 2103: 1840: 1046: 888: 877: 1591: 1037: 2249: 613: 547: 428: 366: 208:
states that although Gödel's results imply that no finitistic syntactic consistency proof can be obtained, semantic (in particular,
882: 872: 557: 2346: 2090: 915: 852: 39:– free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in 1651: 1344: 1085: 86: 862: 857: 837: 832: 78:
As a nowadays common interpretation, a positive solution to Hilbert's second question would in particular provide a proof that
2668: 2607: 2309: 2072: 2067: 1892: 1313: 997: 170: 867: 847: 842: 738: 161:
on these ordinals that no proof can conclude in a contradiction. The method used in this proof can also be used to prove a
138: 540:
Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill.,)
192:
of the theories. A theory will be unable to prove the consistency of another theory with a higher proof theoretic ordinal.
2602: 2385: 2302: 2015: 1946: 1823: 1065: 822: 676:(2005). "Gödel's reformulation of Gentzen's first consistency proof of arithmetic: the no-counterexample interpretation". 574: 151: 112: 1673: 2527: 2353: 2039: 1272: 827: 802: 97:) places a severe limit on how weak a finitistic system can be while still proving the consistency of Peano arithmetic. 1678: 2010: 1749: 1007: 908: 2405: 2400: 807: 787: 2334: 1924: 1318: 1286: 977: 817: 812: 797: 792: 782: 772: 1051: 466: 85:
There are many known proofs that Peano arithmetic is consistent that can be carried out in strong systems such as
2624: 2573: 2470: 1968: 1929: 1406: 221: 2465: 1080: 2395: 1934: 1786: 1769: 1492: 972: 416: 2297: 2274: 2235: 2121: 2062: 1708: 1628: 1472: 1416: 1029: 72: 2587: 2314: 2292: 2259: 2152: 1998: 1983: 1956: 1907: 1791: 1726: 1551: 1517: 1512: 1386: 1217: 1194: 635: 2517: 2370: 2162: 1880: 1616: 1522: 1381: 1366: 1247: 1222: 599: 285: 158: 2643: 761: 32: 2490: 2452: 2329: 2133: 1973: 1897: 1875: 1703: 1661: 1560: 1527: 1391: 1179: 1090: 189: 379:(1990). "On an alleged refutation of Hilbert's Program using Gödel's First Incompleteness Theorem". 2619: 2510: 2495: 2475: 2432: 2319: 2269: 2195: 2140: 2077: 1870: 1865: 1813: 1581: 1570: 1242: 1142: 1070: 1061: 1057: 992: 987: 697: 640: 2648: 2417: 2380: 2365: 2358: 2341: 2127: 1993: 1919: 1902: 1855: 1668: 1577: 1411: 1396: 1356: 1308: 1293: 1281: 1237: 1212: 982: 931: 685: 661: 623: 486: 396: 233: 209: 2145: 1601: 2583: 2390: 2200: 2190: 2082: 1963: 1798: 1774: 1555: 1539: 1444: 1421: 1298: 1267: 1232: 1127: 962: 653: 609: 603: 543: 424: 408: 376: 362: 36: 2597: 2592: 2485: 2442: 2264: 2225: 2220: 2205: 2031: 1988: 1885: 1683: 1633: 1207: 1169: 645: 478: 450: 388: 354: 184:
in proof theory. In this program, formal theories of arithmetic or set theory are assigned
181: 166: 79: 2578: 2568: 2522: 2505: 2460: 2422: 2324: 2244: 2051: 1978: 1951: 1939: 1845: 1759: 1733: 1688: 1656: 1457: 1259: 1202: 1152: 1117: 1075: 673: 586: 506: 438: 185: 162: 125: 51: 2563: 2542: 2500: 2480: 2375: 2230: 1828: 1818: 1808: 1803: 1737: 1611: 1487: 1376: 1371: 1349: 950: 535: 467:"Über formal unentscheidbare SĂ€tze der Principia Mathematica und verwandter Systeme, I" 147: 2662: 2537: 2215: 1722: 1507: 1497: 1467: 1452: 1122: 502: 490: 462: 47: 28: 722: 400: 2437: 2284: 2185: 2177: 2057: 2005: 1914: 1850: 1833: 1764: 1623: 1482: 1184: 967: 582: 120:
explain, there is still room for a proof that cannot be formalized in arithmetic:
2547: 2427: 1606: 1596: 1543: 1227: 1147: 1132: 1012: 957: 20: 1477: 1332: 1303: 1109: 730: 420: 657: 150:, based on the structure of the proof, with each of these ordinals less than 2629: 2532: 1585: 1502: 1462: 1426: 1362: 1174: 1164: 1137: 146:
Gentzen's proof proceeds by assigning to each proof in Peano arithmetic an
2614: 2412: 1860: 1565: 1159: 358: 90: 2210: 1002: 689: 665: 494: 482: 454: 392: 900: 649: 1754: 1100: 945: 280:
A similar quotation with minor variations in wording appears in
904: 734: 212:) arguments can be used to give convincing consistency proofs. 538:(1976). "What have we learnt from Hilbert's second problem?". 441:(1936). "Die Widerspruchsfreiheit der reinen Zahlentheorie". 252: 351:
2006 21st Annual IEEE Symposium on Logic in Computer Science
177:
gives a game-theoretic interpretation of Gentzen's method.
522:——— (1901) . "Mathematische Probleme". 413:
Godel's theorem: An Incomplete Guide to its Use and Abuse
255:, translated by M. Newson. For the original version, see 702:
From Frege to Gödel: A Source Book on Mathematical Logic
542:. Providence, R. I.: Amer. Math. Soc. pp. 93–130. 626:(1988). "Partial realizations of Hilbert's Program". 598:———; ——— (2001). 180:
Gentzen's consistency proof initiated the program of
511:
Jahresbericht der Deutschen Mathematiker-Vereinigung
2556: 2451: 2283: 2176: 2028: 1721: 1644: 1538: 1442: 1331: 1258: 1193: 1108: 1099: 1021: 938: 43:, which include a second order completeness axiom. 196:Modern viewpoints on the status of the problem 57: 916: 746: 723:English translation of Hilbert's 1900 address 704:. Harvard University Press. pp. 596–616. 566:Bulletin of the American Mathematical Society 8: 281: 268: 117: 1742: 1337: 1105: 923: 909: 901: 753: 739: 731: 718:Original text of Hilbert's talk, in German 62:In one English translation, Hilbert asks: 35:. It asks for a proof that arithmetic is 639: 319: 213: 58:Hilbert's problem and its interpretation 307: 256: 245: 205: 201: 173:and a transfinite induction principle. 40: 16:Consistency of the axioms of arithmetic 331: 217: 100: 471:Monatshefte fĂŒr Mathematik und Physik 7: 253:American Mathematical Society (1902) 174: 75:than first-order Peano arithmetic. 284:, p. 107–108, as revised by 222:a later one given by Gödel in 1958 14: 132: 2642: 524:Archiv der Mathematik und Physik 107:Gödel's incompleteness theorems 95:Gödel's incompleteness theorems 381:Journal of Philosophical Logic 171:primitive recursive arithmetic 101:Gödel's incompleteness theorem 1: 2603:History of mathematical logic 608:. New York University Press. 575:American Mathematical Society 113:second incompleteness theorem 2528:Primitive recursive function 593:. New York University Press. 449:. Springer: 493–565. 139:Gentzen's consistency proof 133:Gentzen's consistency proof 87:Zermelo–Fraenkel set theory 2685: 1592:Schröder–Bernstein theorem 1319:Monadic predicate calculus 978:Foundations of mathematics 678:Bulletin of Symbolic Logic 353:. IEEE. pp. 339–341. 136: 104: 2638: 2625:Philosophy of mathematics 2574:Automated theorem proving 1745: 1699:Von Neumann–Bernays–Gödel 1340: 768: 628:Journal of Symbolic Logic 282:Nagel & Newman (2001) 269:Nagel & Newman (1958) 118:Nagel & Newman (1958) 387:(4). Springer: 343–377. 25:Hilbert's second problem 2275:Self-verifying theories 2096:Tarski's axiomatization 1047:Tarski's undefinability 1042:incompleteness theorems 558:"Mathematical Problems" 116:answered. However, as 73:second-order arithmetic 2649:Mathematics portal 2260:Proof of impossibility 1908:propositional variable 1218:Propositional calculus 600:Hofstadter, Douglas R. 507:"Über den Zahlbegriff" 271:, p. 96–99. 68: 31:in 1900 as one of his 2518:Kolmogorov complexity 2471:Computably enumerable 2371:Model complete theory 2163:Principia Mathematica 1223:Propositional formula 1052:Banach–Tarski paradox 443:Mathematische Annalen 286:Douglas R. Hofstadter 159:transfinite induction 64: 2466:Church–Turing thesis 2453:Computability theory 1662:continuum hypothesis 1180:Square of opposition 1038:Gödel's completeness 698:van Heijenoort, Jean 530:(1): 44–63, 213–237. 359:10.1109/LICS.2006.47 190:consistency strength 157:. He then proves by 2620:Mathematical object 2511:P versus NP problem 2476:Computable function 2270:Reverse mathematics 2196:Logical consequence 2073:primitive recursive 2068:elementary function 1841:Free/bound variable 1694:Tarski–Grothendieck 1213:Logical connectives 1143:Logical equivalence 993:Logical consequence 624:Simpson, Stephen G. 2669:Hilbert's problems 2418:Transfer principle 2381:Semantics of logic 2366:Categorical theory 2342:Non-standard model 1856:Logical connective 983:Information theory 932:Mathematical logic 762:Hilbert's problems 483:10.1007/BF01700692 455:10.1007/BF01565428 393:10.1007/BF00263316 377:Detlefsen, Michael 234:Takeuti conjecture 2656: 2655: 2588:Abstract category 2391:Theories of truth 2201:Rule of inference 2191:Natural deduction 2172: 2171: 1717: 1716: 1422:Cartesian product 1327: 1326: 1233:Many-valued logic 1208:Boolean functions 1091:Russell's paradox 1066:diagonal argument 963:First-order logic 898: 897: 188:that measure the 2676: 2647: 2646: 2598:History of logic 2593:Category of sets 2486:Decision problem 2265:Ordinal analysis 2206:Sequent calculus 2104:Boolean algebras 2044: 2043: 2018: 1989:logical/constant 1743: 1729: 1652:Zermelo–Fraenkel 1403:Set operations: 1338: 1275: 1106: 1086:Löwenheim–Skolem 973:Formal semantics 925: 918: 911: 902: 755: 748: 741: 732: 705: 693: 674:Tait, William W. 669: 643: 619: 594: 587:Newman, James R. 578: 577:: 437–479. 1902. 562: 553: 531: 518: 498: 493:. Archived from 458: 439:Gentzen, Gerhard 434: 404: 372: 335: 329: 323: 320:Detlefsen (1990) 317: 311: 305: 299: 295: 289: 278: 272: 266: 260: 250: 214:Detlefsen (1990) 182:ordinal analysis 167:Peano arithmetic 80:Peano arithmetic 2684: 2683: 2679: 2678: 2677: 2675: 2674: 2673: 2659: 2658: 2657: 2652: 2641: 2634: 2579:Category theory 2569:Algebraic logic 2552: 2523:Lambda calculus 2461:Church encoding 2447: 2423:Truth predicate 2279: 2245:Complete theory 2168: 2037: 2033: 2029: 2024: 2016: 1736: and  1732: 1727: 1713: 1689:New Foundations 1657:axiom of choice 1640: 1602:Gödel numbering 1542: and  1534: 1438: 1323: 1273: 1254: 1203:Boolean algebra 1189: 1153:Equiconsistency 1118:Classical logic 1095: 1076:Halting problem 1064: and  1040: and  1028: and  1027: 1022:Theorems ( 1017: 934: 929: 899: 894: 764: 759: 728: 714: 709: 696: 672: 650:10.2307/2274508 622: 616: 597: 581: 560: 556: 550: 536:Kreisel, George 534: 521: 501: 461: 437: 431: 409:Franzen, Torkel 407: 375: 369: 348: 344: 339: 338: 330: 326: 318: 314: 306: 302: 296: 292: 279: 275: 267: 263: 251: 247: 242: 230: 198: 186:ordinal numbers 163:cut elimination 155: 141: 135: 126:Gerhard Gentzen 109: 103: 82:is consistent. 60: 52:Gerhard Gentzen 17: 12: 11: 5: 2682: 2680: 2672: 2671: 2661: 2660: 2654: 2653: 2639: 2636: 2635: 2633: 2632: 2627: 2622: 2617: 2612: 2611: 2610: 2600: 2595: 2590: 2581: 2576: 2571: 2566: 2564:Abstract logic 2560: 2558: 2554: 2553: 2551: 2550: 2545: 2543:Turing machine 2540: 2535: 2530: 2525: 2520: 2515: 2514: 2513: 2508: 2503: 2498: 2493: 2483: 2481:Computable set 2478: 2473: 2468: 2463: 2457: 2455: 2449: 2448: 2446: 2445: 2440: 2435: 2430: 2425: 2420: 2415: 2410: 2409: 2408: 2403: 2398: 2388: 2383: 2378: 2376:Satisfiability 2373: 2368: 2363: 2362: 2361: 2351: 2350: 2349: 2339: 2338: 2337: 2332: 2327: 2322: 2317: 2307: 2306: 2305: 2300: 2293:Interpretation 2289: 2287: 2281: 2280: 2278: 2277: 2272: 2267: 2262: 2257: 2247: 2242: 2241: 2240: 2239: 2238: 2228: 2223: 2213: 2208: 2203: 2198: 2193: 2188: 2182: 2180: 2174: 2173: 2170: 2169: 2167: 2166: 2158: 2157: 2156: 2155: 2150: 2149: 2148: 2143: 2138: 2118: 2117: 2116: 2114:minimal axioms 2111: 2100: 2099: 2098: 2087: 2086: 2085: 2080: 2075: 2070: 2065: 2060: 2047: 2045: 2026: 2025: 2023: 2022: 2021: 2020: 2008: 2003: 2002: 2001: 1996: 1991: 1986: 1976: 1971: 1966: 1961: 1960: 1959: 1954: 1944: 1943: 1942: 1937: 1932: 1927: 1917: 1912: 1911: 1910: 1905: 1900: 1890: 1889: 1888: 1883: 1878: 1873: 1868: 1863: 1853: 1848: 1843: 1838: 1837: 1836: 1831: 1826: 1821: 1811: 1806: 1804:Formation rule 1801: 1796: 1795: 1794: 1789: 1779: 1778: 1777: 1767: 1762: 1757: 1752: 1746: 1740: 1723:Formal systems 1719: 1718: 1715: 1714: 1712: 1711: 1706: 1701: 1696: 1691: 1686: 1681: 1676: 1671: 1666: 1665: 1664: 1659: 1648: 1646: 1642: 1641: 1639: 1638: 1637: 1636: 1626: 1621: 1620: 1619: 1612:Large cardinal 1609: 1604: 1599: 1594: 1589: 1575: 1574: 1573: 1568: 1563: 1548: 1546: 1536: 1535: 1533: 1532: 1531: 1530: 1525: 1520: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1449: 1447: 1440: 1439: 1437: 1436: 1435: 1434: 1429: 1424: 1419: 1414: 1409: 1401: 1400: 1399: 1394: 1384: 1379: 1377:Extensionality 1374: 1372:Ordinal number 1369: 1359: 1354: 1353: 1352: 1341: 1335: 1329: 1328: 1325: 1324: 1322: 1321: 1316: 1311: 1306: 1301: 1296: 1291: 1290: 1289: 1279: 1278: 1277: 1264: 1262: 1256: 1255: 1253: 1252: 1251: 1250: 1245: 1240: 1230: 1225: 1220: 1215: 1210: 1205: 1199: 1197: 1191: 1190: 1188: 1187: 1182: 1177: 1172: 1167: 1162: 1157: 1156: 1155: 1145: 1140: 1135: 1130: 1125: 1120: 1114: 1112: 1103: 1097: 1096: 1094: 1093: 1088: 1083: 1078: 1073: 1068: 1056:Cantor's  1054: 1049: 1044: 1034: 1032: 1019: 1018: 1016: 1015: 1010: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 960: 955: 954: 953: 942: 940: 936: 935: 930: 928: 927: 920: 913: 905: 896: 895: 893: 892: 885: 880: 875: 870: 865: 860: 855: 850: 845: 840: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 769: 766: 765: 760: 758: 757: 750: 743: 735: 726: 725: 720: 713: 712:External links 710: 708: 707: 694: 684:(2): 225–238. 670: 641:10.1.1.79.5808 634:(2): 349–363. 620: 614: 595: 579: 554: 548: 532: 519: 503:Hilbert, David 499: 497:on 2006-07-05. 459: 435: 429: 405: 373: 367: 345: 343: 340: 337: 336: 324: 312: 308:Simpson (1988) 300: 290: 273: 261: 257:Hilbert (1901) 244: 243: 241: 238: 237: 236: 229: 226: 206:Kreisel (1976) 202:Simpson (1988) 197: 194: 153: 148:ordinal number 137:Main article: 134: 131: 130: 129: 105:Main article: 102: 99: 59: 56: 46:In the 1930s, 41:Hilbert (1900) 15: 13: 10: 9: 6: 4: 3: 2: 2681: 2670: 2667: 2666: 2664: 2651: 2650: 2645: 2637: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2609: 2606: 2605: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2561: 2559: 2555: 2549: 2546: 2544: 2541: 2539: 2538:Recursive set 2536: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2516: 2512: 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2488: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2459: 2458: 2456: 2454: 2450: 2444: 2441: 2439: 2436: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2411: 2407: 2404: 2402: 2399: 2397: 2394: 2393: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2360: 2357: 2356: 2355: 2352: 2348: 2347:of arithmetic 2345: 2344: 2343: 2340: 2336: 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2312: 2311: 2308: 2304: 2301: 2299: 2296: 2295: 2294: 2291: 2290: 2288: 2286: 2282: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2255: 2254:from ZFC 2251: 2248: 2246: 2243: 2237: 2234: 2233: 2232: 2229: 2227: 2224: 2222: 2219: 2218: 2217: 2214: 2212: 2209: 2207: 2204: 2202: 2199: 2197: 2194: 2192: 2189: 2187: 2184: 2183: 2181: 2179: 2175: 2165: 2164: 2160: 2159: 2154: 2153:non-Euclidean 2151: 2147: 2144: 2142: 2139: 2137: 2136: 2132: 2131: 2129: 2126: 2125: 2123: 2119: 2115: 2112: 2110: 2107: 2106: 2105: 2101: 2097: 2094: 2093: 2092: 2088: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2055: 2053: 2049: 2048: 2046: 2041: 2035: 2030:Example  2027: 2019: 2014: 2013: 2012: 2009: 2007: 2004: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1981: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1958: 1955: 1953: 1950: 1949: 1948: 1945: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1922: 1921: 1918: 1916: 1913: 1909: 1906: 1904: 1901: 1899: 1896: 1895: 1894: 1891: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1858: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1816: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1793: 1790: 1788: 1787:by definition 1785: 1784: 1783: 1780: 1776: 1773: 1772: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1747: 1744: 1741: 1739: 1735: 1730: 1724: 1720: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1674:Kripke–Platek 1672: 1670: 1667: 1663: 1660: 1658: 1655: 1654: 1653: 1650: 1649: 1647: 1643: 1635: 1632: 1631: 1630: 1627: 1625: 1622: 1618: 1615: 1614: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1587: 1583: 1579: 1576: 1572: 1569: 1567: 1564: 1562: 1559: 1558: 1557: 1553: 1550: 1549: 1547: 1545: 1541: 1537: 1529: 1526: 1524: 1521: 1519: 1518:constructible 1516: 1515: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1450: 1448: 1446: 1441: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1404: 1402: 1398: 1395: 1393: 1390: 1389: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1364: 1360: 1358: 1355: 1351: 1348: 1347: 1346: 1343: 1342: 1339: 1336: 1334: 1330: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1288: 1285: 1284: 1283: 1280: 1276: 1271: 1270: 1269: 1266: 1265: 1263: 1261: 1257: 1249: 1246: 1244: 1241: 1239: 1236: 1235: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1200: 1198: 1196: 1195:Propositional 1192: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1154: 1151: 1150: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1123:Logical truth 1121: 1119: 1116: 1115: 1113: 1111: 1107: 1104: 1102: 1098: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1063: 1059: 1055: 1053: 1050: 1048: 1045: 1043: 1039: 1036: 1035: 1033: 1031: 1025: 1020: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 952: 949: 948: 947: 944: 943: 941: 937: 933: 926: 921: 919: 914: 912: 907: 906: 903: 890: 886: 884: 881: 879: 876: 874: 871: 869: 866: 864: 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 770: 767: 763: 756: 751: 749: 744: 742: 737: 736: 733: 729: 724: 721: 719: 716: 715: 711: 703: 699: 695: 691: 687: 683: 679: 675: 671: 667: 663: 659: 655: 651: 647: 642: 637: 633: 629: 625: 621: 617: 615:9780814758014 611: 607: 606: 605:Godel's Proof 601: 596: 592: 591:Godel's Proof 588: 584: 583:Nagel, Ernest 580: 576: 572: 568: 567: 559: 555: 551: 549:0-8218-1428-1 545: 541: 537: 533: 529: 525: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 432: 430:1-56881-238-8 426: 422: 418: 414: 410: 406: 402: 398: 394: 390: 386: 382: 378: 374: 370: 368:0-7695-2631-4 364: 360: 356: 352: 347: 346: 341: 333: 332:Dawson (2006) 328: 325: 322:, p. 65. 321: 316: 313: 309: 304: 301: 294: 291: 287: 283: 277: 274: 270: 265: 262: 258: 254: 249: 246: 239: 235: 232: 231: 227: 225: 223: 219: 218:Dawson (2006) 215: 211: 207: 203: 195: 193: 191: 187: 183: 178: 176: 172: 168: 164: 160: 156: 149: 144: 140: 127: 123: 122: 121: 119: 114: 108: 98: 96: 92: 88: 83: 81: 76: 74: 67: 63: 55: 53: 49: 44: 42: 38: 34: 30: 29:David Hilbert 27:was posed by 26: 22: 2640: 2438:Ultraproduct 2285:Model theory 2250:Independence 2186:Formal proof 2178:Proof theory 2161: 2134: 2091:real numbers 2063:second-order 1974:Substitution 1851:Metalanguage 1792:conservative 1765:Axiom schema 1709:Constructive 1679:Morse–Kelley 1645:Set theories 1624:Aleph number 1617:inaccessible 1523:Grothendieck 1407:intersection 1294:Higher-order 1282:Second-order 1228:Truth tables 1185:Venn diagram 968:Formal proof 777: 727: 701: 681: 677: 631: 627: 604: 590: 570: 564: 539: 527: 523: 514: 510: 495:the original 474: 470: 446: 442: 417:Wellesley MA 412: 384: 380: 350: 327: 315: 303: 293: 276: 264: 248: 210:second-order 199: 179: 145: 142: 110: 84: 77: 69: 65: 61: 45: 24: 18: 2548:Type theory 2496:undecidable 2428:Truth value 2315:equivalence 1994:non-logical 1607:Enumeration 1597:Isomorphism 1544:cardinality 1528:Von Neumann 1493:Ultrafilter 1458:Uncountable 1392:equivalence 1309:Quantifiers 1299:Fixed-point 1268:First-order 1148:Consistency 1133:Proposition 1110:Traditional 1081:Lindström's 1071:Compactness 1013:Type theory 958:Cardinality 463:Gödel, Kurt 421:A.K. Peters 175:Tait (2005) 165:result for 33:23 problems 21:mathematics 2359:elementary 2052:arithmetic 1920:Quantifier 1898:functional 1770:Expression 1488:Transitive 1432:identities 1417:complement 1350:hereditary 1333:Set theory 517:: 180–184. 477:: 173–98. 342:References 91:finitistic 48:Kurt Gödel 37:consistent 2630:Supertask 2533:Recursion 2491:decidable 2325:saturated 2303:of models 2226:deductive 2221:axiomatic 2141:Hilbert's 2128:Euclidean 2109:canonical 2032:axiomatic 1964:Signature 1893:Predicate 1782:Extension 1704:Ackermann 1629:Operation 1508:Universal 1498:Recursive 1473:Singleton 1468:Inhabited 1453:Countable 1443:Types of 1427:power set 1397:partition 1314:Predicate 1260:Predicate 1175:Syllogism 1165:Soundness 1138:Inference 1128:Tautology 1030:paradoxes 658:0022-4812 636:CiteSeerX 491:197663120 334:, sec. 2. 310:, sec. 3. 2663:Category 2615:Logicism 2608:timeline 2584:Concrete 2443:Validity 2413:T-schema 2406:Kripke's 2401:Tarski's 2396:semantic 2386:Strength 2335:submodel 2330:spectrum 2298:function 2146:Tarski's 2135:Elements 2122:geometry 2078:Robinson 1999:variable 1984:function 1957:spectrum 1947:Sentence 1903:variable 1846:Language 1799:Relation 1760:Automata 1750:Alphabet 1734:language 1588:-jection 1566:codomain 1552:Function 1513:Universe 1483:Infinite 1387:Relation 1170:Validity 1160:Argument 1058:theorem, 700:(1967). 589:(1958). 505:(1900). 465:(1931). 411:(2005). 401:44736805 298:numbers. 228:See also 111:Gödel's 2557:Related 2354:Diagram 2252: ( 2231:Hilbert 2216:Systems 2211:Theorem 2089:of the 2034:systems 1814:Formula 1809:Grammar 1725: ( 1669:General 1382:Forcing 1367:Element 1287:Monadic 1062:paradox 1003:Theorem 939:General 690:1556751 666:2274508 602:(ed.). 2320:finite 2083:Skolem 2036:  2011:Theory 1979:Symbol 1969:String 1952:atomic 1829:ground 1824:closed 1819:atomic 1775:ground 1738:syntax 1634:binary 1561:domain 1478:Finite 1243:finite 1101:Logics 1060:  1008:Theory 688:  664:  656:  638:  612:  546:  489:  427:  399:  365:  2310:Model 2058:Peano 1915:Proof 1755:Arity 1684:Naive 1571:image 1503:Fuzzy 1463:Empty 1412:union 1357:Class 998:Model 988:Lemma 946:Axiom 686:JSTOR 662:JSTOR 561:(PDF) 487:S2CID 397:S2CID 240:Notes 2433:Type 2236:list 2040:list 2017:list 2006:Term 1940:rank 1834:open 1728:list 1540:Maps 1445:sets 1304:Free 1274:list 1024:list 951:list 654:ISSN 610:ISBN 544:ISBN 425:ISBN 363:ISBN 50:and 2120:of 2102:of 2050:of 1582:Sur 1556:Map 1363:Ur- 1345:Set 646:doi 479:doi 451:doi 447:112 389:doi 355:doi 19:In 2665:: 2506:NP 2130:: 2124:: 2054:: 1731:), 1586:Bi 1578:In 889:24 883:23 878:22 873:21 868:20 863:19 858:18 853:17 848:16 843:15 838:14 833:13 828:12 823:11 818:10 682:11 680:. 660:. 652:. 644:. 632:53 630:. 585:; 573:. 569:. 563:. 526:. 513:. 509:. 485:. 475:38 473:. 469:. 445:. 423:. 419:: 415:. 395:. 385:19 383:. 361:. 224:. 23:, 2586:/ 2501:P 2256:) 2042:) 2038:( 1935:∀ 1930:! 1925:∃ 1886:= 1881:↔ 1876:→ 1871:∧ 1866:√ 1861:ÂŹ 1584:/ 1580:/ 1554:/ 1365:) 1361:( 1248:∞ 1238:3 1026:) 924:e 917:t 910:v 891:) 887:( 813:9 808:8 803:7 798:6 793:5 788:4 783:3 778:2 773:1 754:e 747:t 740:v 706:. 692:. 668:. 648:: 618:. 571:8 552:. 528:3 515:8 481:: 457:. 453:: 433:. 403:. 391:: 371:. 357:: 288:. 259:. 154:0 152:Δ

Index

mathematics
David Hilbert
23 problems
consistent
Hilbert (1900)
Kurt Gödel
Gerhard Gentzen
second-order arithmetic
Peano arithmetic
Zermelo–Fraenkel set theory
finitistic
Gödel's incompleteness theorems
Gödel's incompleteness theorems
second incompleteness theorem
Nagel & Newman (1958)
Gerhard Gentzen
Gentzen's consistency proof
ordinal number
Δ0
transfinite induction
cut elimination
Peano arithmetic
primitive recursive arithmetic
Tait (2005)
ordinal analysis
ordinal numbers
consistency strength
Simpson (1988)
Kreisel (1976)
second-order

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑