Knowledge (XXG)

Hit selection

Source 📝

103: 22: 63: 238:
different from the majority of the compounds and thus are outliers. Strong assay artifacts may also behave as outliers. Thus, outliers are not uncommon in HTS experiments. The regular versions of z-score and SSMD are sensitive to outliers and can be problematic. Consequently, robust methods such as the z*-score method,
229:
There are many metrics used for hit selection in primary screens without replicates. The easily interpretable ones are fold change, mean difference, percent inhibition, and percent activity. However, the drawback common to all of these metrics is that they do not capture data variability effectively.
282:
SSMD can overcome the drawback of average fold change not being able to capture data variability. On the other hand, because SSMD is the ratio of mean to standard deviation, we may get a large SSMD value when the standard deviation is very small, even if the mean is small. In some cases, a too small
204:
HTS experiments have the ability to screen tens of thousands (or even millions) of compounds rapidly. Hence, it is a challenge to glean chemical/biochemical significance from mounds of data in the process of hit selection. To address this challenge, appropriate analytic methods have been adopted for
237:
The z-score method is based on the assumption that the measured values (usually fluorescent intensity in log scale) of all investigated compounds in a plate have a normal distribution. SSMD also works the best under the normality assumption. However, true hits with large effects should behave very
245:
In a primary screen without replicates, every compound is measured only once. Consequently, we cannot directly estimate the data variability for each compound. Instead, we indirectly estimate data variability by making a strong assumption that every compound has the same variability as a negative
216:
There are two major types of HTS experiments, one without replicates (usually in primary screens) and one with replicates (usually in confirmatory screens). The analytic methods for hit selection differ in those two types of HTS experiments. For example, the z-score method is suitable for screens
254:
In a screen with replicates, we can directly estimate data variability for each compound, and thus we can use more powerful methods, such as SSMD for cases with replicates and t-statistic that does not rely on the strong assumption that the z-score and z*-score rely on. One issue with the use of
295:
versus average log fold-change (or average percent inhibition/activation) on the y- and x-axes, respectively, for all compounds investigated in an experiment. With the dual-flashlight plot, we can see how the genes or compounds are distributed into each category in effect sizes, as shown in the
255:
t-statistic and associated p-values is that they are affected by both sample size and effect size. They come from testing for no mean difference, thus are not designed to measure the size of small molecule or siRNA effects. For hit selection, the major interest is the size of effect in a tested
926:
Zhang XH, Yang XC, Chung N, Gates A, Stec E, Kunapuli P, Holder DJ, Ferrer M, Espeseth AS (2006). "Robust statistical methods for hit selection in RNA interference high-throughput screening experiments".
213:. The other strategy is to test whether a compound has effects strong enough to reach a pre-set level. In this strategy, false-negative rates (FNRs) and/or false-positive rates (FPRs) must be controlled. 1150:"Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption" 192:, et al.) with a desired size of inhibition or activation effects. A compound with a desired size of effects in an HTS screen is called a hit. The process of selecting hits is called 283:
mean value may not have a biological impact. As such, the compounds with large SSMD values (or differentiations) but too small mean values may not be of interest. The concept of
378:
Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, Santoyo-Lopez J, Dunican DJ, Long A, Kelleher D, Smith Q, Beijersbergen RL, Ghazal P, Shamu CE (2009).
246:
reference in a plate in the screen. The z-score, z*-score and B-score relies on this strong assumption; so are the SSMD and SSMD* for cases without replicates.
838:"A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays" 521:
Zhang XH, Kuan PF, Ferrer M, Shu X, Liu YC, Gates AT, Kunapuli P, Stec EM, Xu M, Marine SD, Holder DJ, Stulovici B, Heyse JF, Espeseth AS (2009).
1204:"Optimal High-Throughput Screening: Practical Experimental Design and Data Analysis for Genome-scale RNAi Research, Cambridge University Press" 1073:
Zhang XHD (2010). "Strictly standardized mean difference, standardized mean difference and classical t-test for the comparison of two groups".
205:
hit selection. There are two main strategies of selecting hits with large effects. One is to use certain metric(s) to rank and/or classify the
362: 1148:
Zhao WQ, Santini F, Breese R, Ross D, Zhang XD, Stone DJ, Ferrer M, Townsend M, Wolfe AL, Seager MA, Kinney GG, Shughrue PJ, Ray WJ (2010).
1038:
Zhang XHD (2009). "A method for effectively comparing gene effects in multiple conditions in RNAi and expression-profiling research".
879:"The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments" 242:*, B-score method, and quantile-based method have been proposed and adopted for hit selection in primary screens without replicates. 119: 159: 141: 49: 112: 711:
Zhang XH, Lacson R, Yang R, Marine SD, McCampbell, Toolan DM, Hare TR, Kajdas J, Berger JP, Holder DJ, Heyse JF, Ferrer M (2010).
478:
Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R (2006). "Statistical practice in high-throughput screening data analysis".
570:
Klinghoffer RA, Frazier J, Annis J, Berndt JD, Roberts BS, Arthur WT, Lacson R, Zhang XH, Ferrer M, Moon RT, Cleary MA (2010).
572:"A lentivirus-mediated genetic screen identifies dihydrofolate reductase (DHFR) as a modulator of beta-catenin/GSK3 signaling" 35: 1223: 355:
Optimal High-Throughput Screening: Practical Experimental Design and Data Analysis for Genome-scale RNAi Research
310: 173: 877:
Zhang XH, Ferrer M, Espeseth AS, Marine SD, Stec EM, Crackower MA, Holder DJ, Heyse JF, Strulovici B (2007).
1218: 209:
by their effects and then to select the largest number of potent compounds that is practical for validation
1113:
Zhang XHD (2010). "Assessing the size of gene or RNAi effects in multifactor high-throughput experiments".
623:"An effective method controlling false discoveries and false non-discoveries in genome-scale RNAi screens" 217:
without replicates whereas the t-statistic is suitable for screens with replicate. The calculation of
664:"Experimental design and statistical methods for improved hit detection in high-throughput screening" 330: 288: 284: 713:"The use of SSMD-based false discovery and false non-discovery rates in genome-scale RNAi screens" 1090: 908: 777: 693: 503: 275:
is comparable across experiments and thus we can use the same cutoff for the population value of
123: 77: 41: 271:
has also been shown to be better than other commonly used effect sizes. The population value of
752:
Quon K, Kassner PD (2009). "RNA interference screening for the discovery of oncology targets".
1181: 1130: 1055: 1020: 985: 944: 900: 859: 818: 769: 734: 685: 644: 603: 552: 495: 460: 409: 358: 206: 1171: 1161: 1122: 1082: 1047: 1012: 975: 936: 890: 849: 808: 761: 724: 675: 634: 593: 583: 542: 534: 487: 450: 440: 399: 391: 76:
Please expand the article to include this information. Further details may exist on the
1176: 1149: 598: 571: 547: 522: 455: 428: 404: 379: 256: 177: 118:
It may require cleanup to comply with Knowledge (XXG)'s content policies, particularly
429:"Genome-wide screens for effective siRNAs through assessing the size of siRNA effects" 1212: 1094: 781: 697: 912: 507: 221:
for screens without replicates also differs from that for screens with replicates.
588: 1016: 305: 1051: 765: 523:"Hit selection with false discovery rate control in genome-scale RNAi screens" 380:"Statistical methods for analysis of high-throughput RNA interference screens" 296:
figure. Meanwhile, we can also see the average fold-change for each compound.
1024: 980: 964:"Improved statistical methods for hit selection in high-throughput screening" 963: 940: 895: 878: 854: 837: 813: 796: 729: 712: 680: 663: 639: 622: 1166: 662:
Malo N, Hanley JA, Carlile G, Liu J, Pelletier J, Thomas D, Nadon R (2010).
1185: 1134: 1059: 989: 948: 904: 863: 822: 773: 738: 689: 648: 607: 556: 499: 464: 445: 413: 74:
about small molecule hit selection concepts (clustering, singletons, etc.).
62: 1086: 1203: 538: 230:
To address this issue, researchers then turned to the z-score method or
1126: 395: 315: 491: 260: 210: 185: 181: 325: 320: 292: 276: 272: 268: 264: 239: 231: 218: 189: 176:(HTS), one of the major goals is to select compounds (including 96: 56: 15: 234:, which can capture data variability in negative references. 1108: 1106: 1104: 1003:
Cohen J (1994). "The Earth Is Round (P-Less-Than.05)".
111:
A major contributor to this article appears to have a
797:"Error rates and power in genome-scale RNAi screens" 962:Brideau C, Gunter G, Pikounis B, Liaw A (2003). 348: 346: 287:has been proposed to address this issue. In a 8: 50:Learn how and when to remove these messages 1175: 1165: 979: 894: 853: 812: 728: 679: 638: 597: 587: 546: 454: 444: 403: 160:Learn how and when to remove this message 142:Learn how and when to remove this message 1075:Statistics in Biopharmaceutical Research 342: 267:directly assesses the size of effects. 795:Zhang XH, Marine SD, Ferrer M (2009). 279:to measure the size of siRNA effects. 754:Expert Opinion on Therapeutic Targets 7: 200:Methods for hit selection in general 14: 968:Journal of Biomolecular Screening 883:Journal of Biomolecular Screening 842:Journal of Biomolecular Screening 801:Journal of Biomolecular Screening 717:Journal of Biomolecular Screening 668:Journal of Biomolecular Screening 627:Journal of Biomolecular Screening 31:This article has multiple issues. 122:. Please discuss further on the 101: 61: 20: 1154:Journal of Biological Chemistry 39:or discuss these issues on the 357:. Cambridge University Press. 1: 589:10.1371/journal.pone.0006892 1017:10.1037/0003-066X.49.12.997 1240: 225:Screens without replicates 1052:10.2217/14622416.10.3.345 766:10.1517/14728220903179338 311:high-throughput screening 174:high-throughput screening 981:10.1177/1087057103258285 941:10.2217/14622416.7.3.299 896:10.1177/1087057107300646 855:10.1177/1087057107300645 814:10.1177/1087057109331475 730:10.1177/1087057110381919 681:10.1177/1087057110377497 640:10.1177/1087057110381783 1167:10.1074/jbc.M109.057182 250:Screens with replicates 527:Nucleic Acids Research 446:10.1186/1756-0500-1-33 72:is missing information 1087:10.1198/sbr.2009.0074 1005:American Psychologist 120:neutral point of view 480:Nature Biotechnology 331:Dual-flashlight plot 289:dual-flashlight plot 285:dual-flashlight plot 1127:10.2217/PGS.09.136 836:Zhang XHD (2007). 621:Zhang XHD (2010). 539:10.1093/nar/gkn435 433:BMC Research Notes 427:Zhang XHD (2010). 396:10.1038/nmeth.1351 353:Zhang XHD (2011). 1224:Clinical research 1202:Zhang XHD (2011) 364:978-0-521-73444-8 170: 169: 162: 152: 151: 144: 115:with its subject. 95: 94: 54: 1231: 1190: 1189: 1179: 1169: 1145: 1139: 1138: 1115:Pharmacogenomics 1110: 1099: 1098: 1070: 1064: 1063: 1040:Pharmacogenomics 1035: 1029: 1028: 1011:(12): 997–1003. 1000: 994: 993: 983: 959: 953: 952: 929:Pharmacogenomics 923: 917: 916: 898: 874: 868: 867: 857: 833: 827: 826: 816: 792: 786: 785: 749: 743: 742: 732: 708: 702: 701: 683: 659: 653: 652: 642: 618: 612: 611: 601: 591: 567: 561: 560: 550: 518: 512: 511: 475: 469: 468: 458: 448: 424: 418: 417: 407: 375: 369: 368: 350: 165: 158: 147: 140: 136: 133: 127: 113:close connection 105: 104: 97: 90: 87: 81: 65: 57: 46: 24: 23: 16: 1239: 1238: 1234: 1233: 1232: 1230: 1229: 1228: 1209: 1208: 1199: 1197:Further reading 1194: 1193: 1160:(10): 7619–32. 1147: 1146: 1142: 1112: 1111: 1102: 1072: 1071: 1067: 1037: 1036: 1032: 1002: 1001: 997: 961: 960: 956: 925: 924: 920: 876: 875: 871: 835: 834: 830: 794: 793: 789: 751: 750: 746: 710: 709: 705: 674:(8): 990–1000. 661: 660: 656: 620: 619: 615: 569: 568: 564: 533:(14): 4667–79. 520: 519: 515: 492:10.1038/nbt1186 477: 476: 472: 426: 425: 421: 377: 376: 372: 365: 352: 351: 344: 339: 302: 252: 227: 202: 178:small molecules 166: 155: 154: 153: 148: 137: 131: 128: 117: 106: 102: 91: 85: 82: 75: 66: 25: 21: 12: 11: 5: 1237: 1235: 1227: 1226: 1221: 1219:Drug discovery 1211: 1210: 1207: 1206: 1198: 1195: 1192: 1191: 1140: 1121:(2): 199–213. 1100: 1065: 1030: 995: 954: 918: 869: 828: 787: 760:(9): 1027–35. 744: 723:(9): 1123–31. 703: 654: 633:(9): 1116–22. 613: 562: 513: 470: 419: 384:Nature Methods 370: 363: 341: 340: 338: 335: 334: 333: 328: 323: 318: 313: 308: 301: 298: 291:, we plot the 257:small molecule 251: 248: 226: 223: 201: 198: 168: 167: 150: 149: 109: 107: 100: 93: 92: 69: 67: 60: 55: 29: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 1236: 1225: 1222: 1220: 1217: 1216: 1214: 1205: 1201: 1200: 1196: 1187: 1183: 1178: 1173: 1168: 1163: 1159: 1155: 1151: 1144: 1141: 1136: 1132: 1128: 1124: 1120: 1116: 1109: 1107: 1105: 1101: 1096: 1092: 1088: 1084: 1081:(2): 292–99. 1080: 1076: 1069: 1066: 1061: 1057: 1053: 1049: 1046:(3): 345–58. 1045: 1041: 1034: 1031: 1026: 1022: 1018: 1014: 1010: 1006: 999: 996: 991: 987: 982: 977: 974:(6): 634–47. 973: 969: 965: 958: 955: 950: 946: 942: 938: 935:(3): 299–09. 934: 930: 922: 919: 914: 910: 906: 902: 897: 892: 889:(4): 645–55. 888: 884: 880: 873: 870: 865: 861: 856: 851: 848:(5): 645–55. 847: 843: 839: 832: 829: 824: 820: 815: 810: 807:(3): 230–38. 806: 802: 798: 791: 788: 783: 779: 775: 771: 767: 763: 759: 755: 748: 745: 740: 736: 731: 726: 722: 718: 714: 707: 704: 699: 695: 691: 687: 682: 677: 673: 669: 665: 658: 655: 650: 646: 641: 636: 632: 628: 624: 617: 614: 609: 605: 600: 595: 590: 585: 581: 577: 573: 566: 563: 558: 554: 549: 544: 540: 536: 532: 528: 524: 517: 514: 509: 505: 501: 497: 493: 489: 486:(2): 167–75. 485: 481: 474: 471: 466: 462: 457: 452: 447: 442: 438: 434: 430: 423: 420: 415: 411: 406: 401: 397: 393: 390:(8): 569–75. 389: 385: 381: 374: 371: 366: 360: 356: 349: 347: 343: 336: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 303: 299: 297: 294: 290: 286: 280: 278: 274: 270: 266: 262: 258: 249: 247: 243: 241: 235: 233: 224: 222: 220: 214: 212: 208: 199: 197: 195: 194:hit selection 191: 187: 183: 179: 175: 164: 161: 146: 143: 135: 125: 121: 116: 114: 108: 99: 98: 89: 79: 73: 70:This article 68: 64: 59: 58: 53: 51: 44: 43: 38: 37: 32: 27: 18: 17: 1157: 1153: 1143: 1118: 1114: 1078: 1074: 1068: 1043: 1039: 1033: 1008: 1004: 998: 971: 967: 957: 932: 928: 921: 886: 882: 872: 845: 841: 831: 804: 800: 790: 757: 753: 747: 720: 716: 706: 671: 667: 657: 630: 626: 616: 582:(9): e6892. 579: 575: 565: 530: 526: 516: 483: 479: 473: 436: 432: 422: 387: 383: 373: 354: 281: 253: 244: 236: 228: 215: 203: 193: 171: 156: 138: 129: 110: 83: 71: 47: 40: 34: 33:Please help 30: 306:Effect size 1213:Categories 337:References 36:improve it 1095:119825625 1025:0003-066X 207:compounds 132:June 2013 124:talk page 86:June 2013 78:talk page 42:talk page 1186:20032460 1135:20136359 1060:20397965 990:14711389 949:16610941 905:17435171 864:17517904 823:19211781 782:10714162 774:19650760 739:20852024 698:41358896 690:20817887 649:20855561 608:19727391 576:PLOS ONE 557:18628291 500:16465162 465:18710486 414:19644458 300:See also 1177:2844209 913:7542230 599:2731218 548:2504311 508:6158255 456:2526086 405:2789971 316:Z-score 1184:  1174:  1133:  1093:  1058:  1023:  988:  947:  911:  903:  862:  821:  780:  772:  737:  696:  688:  647:  606:  596:  555:  545:  506:  498:  463:  453:  439:: 33. 412:  402:  361:  211:assays 182:siRNAs 1091:S2CID 909:S2CID 778:S2CID 694:S2CID 504:S2CID 261:siRNA 190:genes 186:shRNA 1182:PMID 1131:PMID 1056:PMID 1021:ISSN 986:PMID 945:PMID 901:PMID 860:PMID 819:PMID 770:PMID 735:PMID 686:PMID 645:PMID 604:PMID 553:PMID 496:PMID 461:PMID 410:PMID 359:ISBN 326:SMCV 321:SSMD 293:SSMD 277:SSMD 273:SSMD 269:SSMD 265:SSMD 240:SSMD 232:SSMD 219:SSMD 1172:PMC 1162:doi 1158:285 1123:doi 1083:doi 1048:doi 1013:doi 976:doi 937:doi 891:doi 850:doi 809:doi 762:doi 725:doi 676:doi 635:doi 594:PMC 584:doi 543:PMC 535:doi 488:doi 451:PMC 441:doi 400:PMC 392:doi 259:or 172:In 1215:: 1180:. 1170:. 1156:. 1152:. 1129:. 1119:11 1117:. 1103:^ 1089:. 1077:. 1054:. 1044:10 1042:. 1019:. 1009:49 1007:. 984:. 970:. 966:. 943:. 931:. 907:. 899:. 887:12 885:. 881:. 858:. 846:12 844:. 840:. 817:. 805:14 803:. 799:. 776:. 768:. 758:13 756:. 733:. 721:15 719:. 715:. 692:. 684:. 672:15 670:. 666:. 643:. 631:15 629:. 625:. 602:. 592:. 578:. 574:. 551:. 541:. 531:36 529:. 525:. 502:. 494:. 484:24 482:. 459:. 449:. 435:. 431:. 408:. 398:. 386:. 382:. 345:^ 263:. 196:. 188:, 184:, 180:, 45:. 1188:. 1164:: 1137:. 1125:: 1097:. 1085:: 1079:2 1062:. 1050:: 1027:. 1015:: 992:. 978:: 972:8 951:. 939:: 933:7 915:. 893:: 866:. 852:: 825:. 811:: 784:. 764:: 741:. 727:: 700:. 678:: 651:. 637:: 610:. 586:: 580:4 559:. 537:: 510:. 490:: 467:. 443:: 437:1 416:. 394:: 388:6 367:. 163:) 157:( 145:) 139:( 134:) 130:( 126:. 88:) 84:( 80:. 52:) 48:(

Index

improve it
talk page
Learn how and when to remove these messages

talk page
close connection
neutral point of view
talk page
Learn how and when to remove this message
Learn how and when to remove this message
high-throughput screening
small molecules
siRNAs
shRNA
genes
compounds
assays
SSMD
SSMD
SSMD
small molecule
siRNA
SSMD
SSMD
SSMD
SSMD
dual-flashlight plot
dual-flashlight plot
SSMD
Effect size

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.