Knowledge

Hodge–de Rham spectral sequence

Source 📝

908:. In this guise, all terms in the spectral sequence are of purely algebraic (as opposed to analytic) nature. In particular, the question of the degeneration of this spectral sequence makes sense for varieties over a field of characteristic 663: 806: 152: 375: 1129: 213: 477: 902: 871: 836: 507: 702: 1293: 553: 240: 1026:
over a field of characteristic 0, the Hodge–de Rham spectral sequence starting with Hochschild homology and abutting to periodic cyclic homology, degenerates:
998:
The de Rham complex and also the de Rham cohomology of a variety admit generalizations to non-commutative geometry. This more general setup studies
564: 718: 72: 1147: 1159: 259: 30: 1032: 1523: 1533: 1528: 1007: 1291:
Frölicher, Alfred (1955), "Relations between the cohomology groups of Dolbeault and topological invariants",
168: 712:
For smooth proper varieties over a field of characteristic 0, the spectral sequence can also be written as
839: 1142:
by adapting the above idea of Deligne and Illusie to the generality of smooth and proper dg-categories.
389: 1396:
Kaledin, D. (2008), "Non-commutative Hodge-to-de Rham degeneration via the method of Deligne-Illusie",
38:, who actually discovered it). This spectral sequence describes the precise relationship between the 1487: 1457: 1369: 243: 39: 1003: 979: 905: 556: 47: 35: 1503: 1477: 1447: 1431: 1405: 1385: 1312: 1270: 1231: 880: 849: 814: 525: 485: 518: 1338: 1223: 675: 250: 246: 63: 1468:
Mathew, Akhil (2020) , "Kaledin's degeneration theorem and topological Hochschild homology",
380:
together with the usual spectral sequence resulting from a filtered object, in this case the
1495: 1415: 1377: 1328: 1302: 1262: 1215: 162: 43: 1427: 1324: 982:, which only exists in positive characteristic. This degeneration result in characteristic 531: 218: 1423: 1320: 1022:. Kontsevich and Soibelman conjectured in 2009 that for any smooth and proper dg category 1011: 874: 51: 25: 1491: 1461: 1373: 1349: 1169: 21: 1333: 1517: 1507: 1389: 1274: 1235: 1203: 1018:, these invariants give back differential forms, respectively, de Rham cohomology of 923: 672:. An extension of this degeneration in a relative situation, for a proper smooth map 1435: 1250: 986:>0 can then be used to also prove the degeneration for the spectral sequence for 1164: 669: 215:
is its cohomology with complex coefficients and the left hand term, which is the
46:. On a compact Kähler manifold, the sequence degenerates, thereby leading to the 1353: 999: 946: 1419: 242:-page of the spectral sequence, is the cohomology with values in the sheaf of 1227: 658:{\displaystyle \bigoplus _{p+q=n}H^{p}(X,\Omega ^{q})=H^{n}(X,\mathbf {C} ).} 1499: 517:
The central theorem related to this spectral sequence is that for a compact
1342: 1307: 1251:"Théorème de Lefschetz et Critères de Dégénérescence de Suites Spectrales" 1204:"Théorème de Lefschetz et Critères de Dégénérescence de Suites Spectrales" 249:. The existence of the spectral sequence as stated above follows from the 1208:
Publications Mathématiques de l'Institut des Hautes Études Scientifiques
1381: 1266: 1219: 801:{\displaystyle H^{q}(X,\Omega ^{p})\Rightarrow H^{p+q}(X,\Omega ^{*}),} 147:{\displaystyle H^{q}(X,\Omega ^{p})\Rightarrow H^{p+q}(X,\mathbf {C} )} 1410: 1316: 1482: 1452: 838:
denotes the sheaf of algebraic differential forms (also known as
555:-page. In particular, it gives an isomorphism referred to as the 668:
The degeneration of the spectral sequence can be shown using
253:, which gives a quasi-isomorphism of complexes of sheaves 28:) is an alternative term sometimes used to describe the 1172:- useful for computing cohomology of Hodge decomposition 933:, the spectral sequence degenerates, provided that dim( 370:{\displaystyle \mathbf {C} \rightarrow \Omega ^{*}:=,} 1035: 883: 852: 817: 721: 678: 567: 534: 488: 392: 262: 221: 171: 75: 1124:{\displaystyle HH_{*}(C/k)\Rightarrow HP_{*}(C/k).} 1123: 896: 865: 830: 800: 696: 657: 547: 501: 471: 369: 234: 207: 146: 528:, the above spectral sequence degenerates at the 1294:Proceedings of the National Academy of Sciences 915: 1146:has given a proof of this degeneration using 945:admits a smooth proper lift over the ring of 8: 1360:et décomposition du complexe de de Rham", 1002:. To a dg category, one can associate its 1481: 1451: 1409: 1332: 1306: 1107: 1095: 1073: 1055: 1043: 1034: 888: 882: 857: 851: 822: 816: 786: 761: 745: 726: 720: 677: 644: 629: 613: 594: 572: 566: 539: 533: 493: 487: 448: 435: 407: 397: 391: 349: 331: 326: 324: 323: 317: 305: 300: 298: 297: 291: 275: 263: 261: 226: 220: 197: 176: 170: 136: 115: 99: 80: 74: 42:and the de Rham cohomology of a general 1182: 1139: 1135: 918:showed that for a smooth proper scheme 208:{\displaystyle H^{p+q}(X,\mathbf {C} )} 1444:Spectral sequences for cyclic homology 1398:Pure and Applied Mathematics Quarterly 1143: 7: 58:Description of the spectral sequence 1189:See for example Griffiths, Harris 1010:. When applied to the category of 990:over a field of characteristic 0. 957:) of length two (for example, for 885: 854: 819: 783: 742: 610: 490: 472:{\displaystyle F^{p}\Omega ^{*}:=} 445: 432: 404: 346: 314: 288: 272: 96: 14: 1191:Principles of algebraic geometry 904:with the differential being the 645: 264: 198: 137: 1148:topological Hochschild homology 18:Hodge–de Rham spectral sequence 1134:This conjecture was proved by 1115: 1101: 1085: 1082: 1066: 1063: 1049: 792: 773: 754: 751: 732: 688: 649: 635: 619: 600: 466: 460: 441: 428: 422: 416: 361: 342: 327: 301: 284: 268: 202: 188: 141: 127: 108: 105: 86: 1: 704:, was also shown by Deligne. 1356:(1987), "Relèvements modulo 916:Deligne & Illusie (1987) 1160:Frölicher spectral sequence 1014:on a smooth proper variety 929:of positive characteristic 897:{\displaystyle \Omega ^{q}} 866:{\displaystyle \Omega ^{*}} 831:{\displaystyle \Omega ^{p}} 502:{\displaystyle \Omega ^{*}} 31:Frölicher spectral sequence 1550: 1420:10.4310/PAMQ.2008.v4.n3.a8 1442:Kaledin, Dmitry (2016), 1249:Deligne, Pierre (1968), 1008:periodic cyclic homology 978:). Their proof uses the 697:{\displaystyle f:X\to S} 1500:10.2140/gt.2020.24.2675 1470:Geometry & Topology 994:Non-commutative version 1125: 898: 867: 832: 802: 708:Purely algebraic proof 698: 659: 549: 503: 473: 371: 236: 209: 148: 1308:10.1073/pnas.41.9.641 1126: 970:, this ring would be 899: 868: 833: 803: 699: 660: 550: 548:{\displaystyle E_{1}} 504: 474: 372: 237: 235:{\displaystyle E_{1}} 210: 149: 1202:Deligne, P. (1968). 1033: 881: 877:, consisting of the 850: 840:Kähler differentials 815: 719: 676: 565: 532: 486: 390: 260: 219: 169: 73: 40:Dolbeault cohomology 20:(named in honor of 16:In mathematics, the 1524:Cohomology theories 1492:2017arXiv171009045M 1462:2016arXiv160100637K 1374:1987InMat..89..247D 1004:Hochschild homology 980:Cartier isomorphism 906:exterior derivative 873:is the (algebraic) 557:Hodge decomposition 48:Hodge decomposition 1534:Spectral sequences 1382:10.1007/bf01389078 1267:10.1007/BF02698925 1220:10.1007/BF02698925 1121: 894: 863: 828: 798: 694: 655: 589: 545: 526:projective variety 499: 469: 367: 247:differential forms 232: 205: 144: 1529:Complex manifolds 1012:perfect complexes 568: 336: 310: 64:spectral sequence 1541: 1510: 1485: 1476:(6): 2675–2708, 1464: 1455: 1438: 1413: 1392: 1345: 1336: 1310: 1278: 1277: 1255:Publ. Math. IHÉS 1246: 1240: 1239: 1199: 1193: 1187: 1130: 1128: 1127: 1122: 1111: 1100: 1099: 1081: 1080: 1059: 1048: 1047: 903: 901: 900: 895: 893: 892: 872: 870: 869: 864: 862: 861: 837: 835: 834: 829: 827: 826: 807: 805: 804: 799: 791: 790: 772: 771: 750: 749: 731: 730: 703: 701: 700: 695: 664: 662: 661: 656: 648: 634: 633: 618: 617: 599: 598: 588: 554: 552: 551: 546: 544: 543: 524:, for example a 508: 506: 505: 500: 498: 497: 478: 476: 475: 470: 459: 458: 440: 439: 412: 411: 402: 401: 382:Hodge filtration 376: 374: 373: 368: 360: 359: 338: 337: 335: 330: 325: 322: 321: 312: 311: 309: 304: 299: 296: 295: 280: 279: 267: 241: 239: 238: 233: 231: 230: 214: 212: 211: 206: 201: 187: 186: 163:complex manifold 153: 151: 150: 145: 140: 126: 125: 104: 103: 85: 84: 44:complex manifold 36:Alfred Frölicher 1549: 1548: 1544: 1543: 1542: 1540: 1539: 1538: 1514: 1513: 1467: 1441: 1395: 1350:Deligne, Pierre 1348: 1290: 1287: 1282: 1281: 1261:(35): 259–278, 1248: 1247: 1243: 1201: 1200: 1196: 1188: 1184: 1179: 1156: 1091: 1069: 1039: 1031: 1030: 1006:, and also its 996: 969: 952: 884: 879: 878: 875:de Rham complex 853: 848: 847: 818: 813: 812: 782: 757: 741: 722: 717: 716: 710: 674: 673: 625: 609: 590: 563: 562: 535: 530: 529: 519:Kähler manifold 515: 489: 484: 483: 444: 431: 403: 393: 388: 387: 345: 313: 287: 271: 258: 257: 222: 217: 216: 172: 167: 166: 111: 95: 76: 71: 70: 66:is as follows: 60: 26:Georges de Rham 12: 11: 5: 1547: 1545: 1537: 1536: 1531: 1526: 1516: 1515: 1512: 1511: 1465: 1439: 1404:(3): 785–876, 1393: 1368:(2): 247–270, 1346: 1301:(9): 641–644, 1286: 1283: 1280: 1279: 1241: 1214:(1): 107–126. 1194: 1181: 1180: 1178: 1175: 1174: 1173: 1170:Jacobian ideal 1167: 1162: 1155: 1152: 1140:Kaledin (2016) 1136:Kaledin (2008) 1132: 1131: 1120: 1117: 1114: 1110: 1106: 1103: 1098: 1094: 1090: 1087: 1084: 1079: 1076: 1072: 1068: 1065: 1062: 1058: 1054: 1051: 1046: 1042: 1038: 995: 992: 965: 950: 891: 887: 860: 856: 825: 821: 809: 808: 797: 794: 789: 785: 781: 778: 775: 770: 767: 764: 760: 756: 753: 748: 744: 740: 737: 734: 729: 725: 709: 706: 693: 690: 687: 684: 681: 666: 665: 654: 651: 647: 643: 640: 637: 632: 628: 624: 621: 616: 612: 608: 605: 602: 597: 593: 587: 584: 581: 578: 575: 571: 542: 538: 514: 511: 496: 492: 480: 479: 468: 465: 462: 457: 454: 451: 447: 443: 438: 434: 430: 427: 424: 421: 418: 415: 410: 406: 400: 396: 378: 377: 366: 363: 358: 355: 352: 348: 344: 341: 334: 329: 320: 316: 308: 303: 294: 290: 286: 283: 278: 274: 270: 266: 251:Poincaré lemma 229: 225: 204: 200: 196: 193: 190: 185: 182: 179: 175: 155: 154: 143: 139: 135: 132: 129: 124: 121: 118: 114: 110: 107: 102: 98: 94: 91: 88: 83: 79: 59: 56: 22:W. V. D. Hodge 13: 10: 9: 6: 4: 3: 2: 1546: 1535: 1532: 1530: 1527: 1525: 1522: 1521: 1519: 1509: 1505: 1501: 1497: 1493: 1489: 1484: 1479: 1475: 1471: 1466: 1463: 1459: 1454: 1449: 1445: 1440: 1437: 1433: 1429: 1425: 1421: 1417: 1412: 1407: 1403: 1399: 1394: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1362:Invent. Math. 1359: 1355: 1351: 1347: 1344: 1340: 1335: 1330: 1326: 1322: 1318: 1314: 1309: 1304: 1300: 1296: 1295: 1289: 1288: 1284: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1245: 1242: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1210:(in French). 1209: 1205: 1198: 1195: 1192: 1186: 1183: 1176: 1171: 1168: 1166: 1163: 1161: 1158: 1157: 1153: 1151: 1149: 1145: 1144:Mathew (2020) 1141: 1137: 1118: 1112: 1108: 1104: 1096: 1092: 1088: 1077: 1074: 1070: 1060: 1056: 1052: 1044: 1040: 1036: 1029: 1028: 1027: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 1000:dg categories 993: 991: 989: 985: 981: 977: 973: 968: 964: 960: 956: 948: 944: 940: 936: 932: 928: 925: 924:perfect field 921: 917: 913: 911: 907: 889: 876: 858: 845: 841: 823: 795: 787: 779: 776: 768: 765: 762: 758: 746: 738: 735: 727: 723: 715: 714: 713: 707: 705: 691: 685: 682: 679: 671: 652: 641: 638: 630: 626: 622: 614: 606: 603: 595: 591: 585: 582: 579: 576: 573: 569: 561: 560: 559: 558: 540: 536: 527: 523: 520: 512: 510: 494: 463: 455: 452: 449: 436: 425: 419: 413: 408: 398: 394: 386: 385: 384: 383: 364: 356: 353: 350: 339: 332: 318: 306: 292: 281: 276: 256: 255: 254: 252: 248: 245: 227: 223: 194: 191: 183: 180: 177: 173: 164: 160: 133: 130: 122: 119: 116: 112: 100: 92: 89: 81: 77: 69: 68: 67: 65: 57: 55: 53: 49: 45: 41: 37: 34:(named after 33: 32: 27: 23: 19: 1473: 1469: 1443: 1411:math/0611623 1401: 1397: 1365: 1361: 1357: 1354:Illusie, Luc 1298: 1292: 1258: 1254: 1244: 1211: 1207: 1197: 1190: 1185: 1165:Hodge theory 1133: 1023: 1019: 1015: 997: 987: 983: 975: 971: 966: 962: 958: 954: 947:Witt vectors 942: 938: 934: 930: 926: 919: 914: 909: 843: 810: 711: 670:Hodge theory 667: 521: 516: 513:Degeneration 481: 381: 379: 158: 156: 61: 54:cohomology. 29: 17: 15: 244:holomorphic 1518:Categories 1483:1710.09045 1453:1601.00637 1285:References 1508:119591893 1390:119635574 1275:121086388 1236:121086388 1228:0073-8301 1097:∗ 1086:⇒ 1075:± 1045:∗ 886:Ω 859:∗ 855:Ω 820:Ω 788:∗ 784:Ω 755:⇒ 743:Ω 689:→ 611:Ω 570:⨁ 495:∗ 491:Ω 464:⋯ 461:→ 446:Ω 442:→ 433:Ω 429:→ 423:→ 420:⋯ 409:∗ 405:Ω 354:⁡ 347:Ω 343:→ 340:⋯ 328:→ 315:Ω 302:→ 289:Ω 277:∗ 273:Ω 269:→ 109:⇒ 97:Ω 1436:16703870 1343:16589720 1154:See also 1488:Bibcode 1458:Bibcode 1428:2435845 1370:Bibcode 1325:0073262 1177:Sources 922:over a 912:>0. 52:de Rham 50:of the 1506:  1434:  1426:  1388:  1341:  1334:528153 1331:  1323:  1315:  1273:  1234:  1226:  811:where 157:where 1504:S2CID 1478:arXiv 1448:arXiv 1432:S2CID 1406:arXiv 1386:S2CID 1317:89147 1313:JSTOR 1271:S2CID 1232:S2CID 937:)< 842:) on 161:is a 1339:PMID 1224:ISSN 1138:and 941:and 62:The 24:and 1496:doi 1416:doi 1378:doi 1329:PMC 1303:doi 1263:doi 1216:doi 482:of 351:dim 1520:: 1502:, 1494:, 1486:, 1474:24 1472:, 1456:, 1446:, 1430:, 1424:MR 1422:, 1414:, 1400:, 1384:, 1376:, 1366:89 1364:, 1352:; 1337:, 1327:, 1321:MR 1319:, 1311:, 1299:41 1297:, 1269:, 1259:35 1257:, 1253:, 1230:. 1222:. 1212:35 1206:. 1150:. 846:, 509:. 414::= 282::= 165:, 1498:: 1490:: 1480:: 1460:: 1450:: 1418:: 1408:: 1402:4 1380:: 1372:: 1358:p 1305:: 1265:: 1238:. 1218:: 1119:. 1116:) 1113:k 1109:/ 1105:C 1102:( 1093:P 1089:H 1083:] 1078:1 1071:u 1067:[ 1064:) 1061:k 1057:/ 1053:C 1050:( 1041:H 1037:H 1024:C 1020:X 1016:X 988:X 984:p 976:p 974:/ 972:Z 967:p 963:F 961:= 959:k 955:k 953:( 951:2 949:W 943:X 939:p 935:X 931:p 927:k 920:X 910:p 890:q 844:X 824:p 796:, 793:) 780:, 777:X 774:( 769:q 766:+ 763:p 759:H 752:) 747:p 739:, 736:X 733:( 728:q 724:H 692:S 686:X 683:: 680:f 653:. 650:) 646:C 642:, 639:X 636:( 631:n 627:H 623:= 620:) 615:q 607:, 604:X 601:( 596:p 592:H 586:n 583:= 580:q 577:+ 574:p 541:1 537:E 522:X 467:] 456:1 453:+ 450:p 437:p 426:0 417:[ 399:p 395:F 365:, 362:] 357:X 333:d 319:1 307:d 293:0 285:[ 265:C 228:1 224:E 203:) 199:C 195:, 192:X 189:( 184:q 181:+ 178:p 174:H 159:X 142:) 138:C 134:, 131:X 128:( 123:q 120:+ 117:p 113:H 106:) 101:p 93:, 90:X 87:( 82:q 78:H

Index

W. V. D. Hodge
Georges de Rham
Frölicher spectral sequence
Alfred Frölicher
Dolbeault cohomology
complex manifold
Hodge decomposition
de Rham
spectral sequence
complex manifold
holomorphic
differential forms
Poincaré lemma
Kähler manifold
projective variety
Hodge decomposition
Hodge theory
Kähler differentials
de Rham complex
exterior derivative
Deligne & Illusie (1987)
perfect field
Witt vectors
Cartier isomorphism
dg categories
Hochschild homology
periodic cyclic homology
perfect complexes
Kaledin (2008)
Kaledin (2016)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.