Knowledge

Hoek–Brown failure criterion

Source 📝

69:
The basic idea of the Hoek–Brown criterion was to start with the properties intact rock and to add factors to reduce those properties because of the existence of joints in the rock. Although a similar criterion for concrete had been developed in 1936, the significant tool that the Hoek–Brown
555: 406: 921: 163: 417: 1060: 705: 1157: 962: 1117: 281: 224: 193: 1090: 589: 312: 796: 765: 734: 250: 320: 62:
problems. An update of the criterion was presented in 2002 that included improvements in the correlation between the model parameters and the
804: 95: 561: 1159:-plane. This feature of the Hoek–Brown criterion appears unphysical and care must be exercised when using this criterion in 550:{\displaystyle \tau _{m}={\tfrac {1}{2}}(\sigma _{1}-\sigma _{3})~;~~\sigma _{m}={\tfrac {1}{2}}(\sigma _{1}+\sigma _{3})~.} 50:. The original version of the Hoek–Brown criterion was developed by Evert Hoek and E. T. Brown in 1980 for the design of 974: 597: 737: 1172: 63: 1341: 70:
criterion gave design engineers was a quantification of the relation between the stress state and Bieniawski's
1177: 43: 1122: 1160: 71: 934: 1309:
Bieniawski, Z. T. (1976). Z. T. Bieniawski (ed.). "Rock mass classification in rock engineering".
1326: 1095: 259: 202: 171: 75: 51: 32: 1068: 567: 290: 1284: 1187: 768: 196: 17: 774: 743: 55: 713: 229: 59: 47: 39: 1335: 1182: 253: 35: 284: 1262: 401:{\displaystyle \tau _{m}={\tfrac {1}{2}}{\sqrt {A(\sigma _{m}-\tau _{m})+B^{2}}}} 965: 1243:
Hoek E.; Brown E.T. (1980). "Empirical strength criterion for rock masses".
78: 916:{\displaystyle A={\cfrac {C_{0}^{2}-T_{0}^{2}}{T_{0}}}~;~~B=C_{0}~.} 158:{\displaystyle \sigma _{1}=\sigma _{3}+{\sqrt {A\sigma _{3}+B^{2}}}} 1292:
Proceedings of the Fifth North American Rock Mechanics Symposium
560:
We can convert the above relation into a form similar to the
54:. In 1988, the criterion was extended for applicability to 74:(RMR). The Hoek–Brown failure criterion is used widely in 859: 817: 992: 862: 820: 615: 501: 435: 338: 1125: 1098: 1071: 977: 937: 807: 777: 746: 716: 600: 570: 420: 323: 293: 262: 232: 205: 174: 98: 1311:
Proc. Symposium on Exploration for Rock Engineering
1263:"The Hoek-Brown failure criterion - a 1988 update" 1151: 1111: 1084: 1054: 956: 915: 790: 759: 728: 699: 583: 549: 400: 306: 275: 244: 218: 187: 157: 1245:Journal of the Geotechnical Engineering Division 1210:. London: Institution of Mining and Metallurgy. 252:are materials constants. In terms of the mean 226:is the effective minimum principal stress, and 1055:{\displaystyle \tau _{m}={\tfrac {1}{8}}\left} 700:{\displaystyle \tau _{m}={\tfrac {1}{8}}\left} 1283:Hoek E, Carranza-Torres CT, Corkum B (2002). 8: 1285:"Hoek-Brown failure criterion-2002 edition" 1223: 1221: 1219: 1217: 1143: 1130: 1124: 1103: 1097: 1076: 1070: 1039: 1023: 1017: 991: 982: 976: 942: 936: 901: 868: 863: 849: 844: 831: 826: 821: 814: 806: 782: 776: 751: 745: 715: 681: 668: 646: 640: 614: 605: 599: 575: 569: 532: 519: 500: 491: 466: 453: 434: 425: 419: 390: 374: 361: 349: 337: 328: 322: 298: 292: 267: 261: 231: 210: 204: 179: 173: 147: 134: 125: 116: 103: 97: 1256: 1254: 1198: 89:The Hoek–Brown criterion has the form 1152:{\displaystyle \sigma _{m}-\tau _{m}} 7: 1270:Proc. 15th Canadian Rock Mech. Symp. 1092:are unsymmetric with respect to the 1327:History of the Hoek–Brown criterion 1232:. Taylor and Francis. p. 499. 964:in the above equation, we get the 25: 1230:Design Analysis in Rock Mechanics 85:The original Hoek–Brown criterion 1208:Underground Excavations in Rock 687: 658: 562:Mohr–Coulomb failure criterion 538: 512: 472: 446: 380: 354: 1: 1313:. Balkema, Cape Town: 97–106. 957:{\displaystyle \sigma _{m}=0} 1206:Hoek E.; Brown E.T. (1980). 29:Hoek–Brown failure criterion 18:Hoek-Brown failure criterion 1261:Hoek, E. and Brown (1988). 1112:{\displaystyle \sigma _{m}} 276:{\displaystyle \sigma _{m}} 219:{\displaystyle \sigma _{3}} 188:{\displaystyle \sigma _{1}} 1358: 1173:Failure theory (material) 1085:{\displaystyle \tau _{m}} 584:{\displaystyle \tau _{m}} 307:{\displaystyle \tau _{m}} 195:is the effective maximum 64:geological strength index 1228:Pariseau, W. G. (2009). 710:The material constants 52:underground excavations 1153: 1113: 1086: 1056: 968:Hoek–Brown criterion: 958: 917: 792: 761: 738:unconfined compressive 730: 701: 585: 551: 402: 308: 277: 246: 220: 189: 159: 1161:numerical simulations 1154: 1114: 1087: 1057: 959: 918: 793: 791:{\displaystyle T_{0}} 762: 760:{\displaystyle C_{0}} 731: 702: 586: 552: 403: 309: 278: 247: 221: 190: 160: 1123: 1096: 1069: 975: 935: 805: 775: 744: 714: 598: 568: 418: 321: 291: 260: 230: 203: 172: 96: 1178:Mohr–Coulomb theory 861: 854: 836: 819: 736:are related to the 729:{\displaystyle A,B} 245:{\displaystyle A,B} 1149: 1109: 1082: 1065:The two values of 1052: 1001: 954: 913: 875: 856: 840: 822: 788: 757: 726: 697: 624: 581: 547: 510: 444: 398: 347: 304: 273: 242: 216: 185: 155: 76:mining engineering 60:surface excavation 1045: 1000: 909: 890: 887: 881: 877: 860: 818: 769:tensile strengths 690: 623: 543: 509: 486: 483: 477: 443: 396: 346: 153: 16:(Redirected from 1349: 1315: 1314: 1306: 1300: 1299: 1289: 1280: 1274: 1273: 1267: 1258: 1249: 1248: 1240: 1234: 1233: 1225: 1212: 1211: 1203: 1183:Tresca criterion 1158: 1156: 1155: 1150: 1148: 1147: 1135: 1134: 1118: 1116: 1115: 1110: 1108: 1107: 1091: 1089: 1088: 1083: 1081: 1080: 1061: 1059: 1058: 1053: 1051: 1047: 1046: 1044: 1043: 1028: 1027: 1018: 1002: 993: 987: 986: 963: 961: 960: 955: 947: 946: 922: 920: 919: 914: 907: 906: 905: 888: 885: 879: 878: 876: 874: 873: 872: 857: 855: 853: 848: 835: 830: 815: 797: 795: 794: 789: 787: 786: 766: 764: 763: 758: 756: 755: 735: 733: 732: 727: 706: 704: 703: 698: 696: 692: 691: 686: 685: 673: 672: 651: 650: 641: 625: 616: 610: 609: 590: 588: 587: 582: 580: 579: 556: 554: 553: 548: 541: 537: 536: 524: 523: 511: 502: 496: 495: 484: 481: 475: 471: 470: 458: 457: 445: 436: 430: 429: 407: 405: 404: 399: 397: 395: 394: 379: 378: 366: 365: 350: 348: 339: 333: 332: 313: 311: 310: 305: 303: 302: 282: 280: 279: 274: 272: 271: 251: 249: 248: 243: 225: 223: 222: 217: 215: 214: 197:principal stress 194: 192: 191: 186: 184: 183: 164: 162: 161: 156: 154: 152: 151: 139: 138: 126: 121: 120: 108: 107: 72:rock mass rating 38:that is used in 31:is an empirical 21: 1357: 1356: 1352: 1351: 1350: 1348: 1347: 1346: 1342:Solid mechanics 1332: 1331: 1323: 1318: 1308: 1307: 1303: 1287: 1282: 1281: 1277: 1265: 1260: 1259: 1252: 1242: 1241: 1237: 1227: 1226: 1215: 1205: 1204: 1200: 1196: 1169: 1139: 1126: 1121: 1120: 1099: 1094: 1093: 1072: 1067: 1066: 1035: 1019: 1007: 1003: 978: 973: 972: 938: 933: 932: 929: 897: 864: 858: 816: 803: 802: 778: 773: 772: 747: 742: 741: 712: 711: 677: 664: 642: 630: 626: 601: 596: 595: 571: 566: 565: 564:by solving for 528: 515: 487: 462: 449: 421: 416: 415: 386: 370: 357: 324: 319: 318: 294: 289: 288: 263: 258: 257: 228: 227: 206: 201: 200: 175: 170: 169: 143: 130: 112: 99: 94: 93: 87: 56:slope stability 42:to predict the 23: 22: 15: 12: 11: 5: 1355: 1353: 1345: 1344: 1334: 1333: 1330: 1329: 1322: 1321:External links 1319: 1317: 1316: 1301: 1275: 1250: 1235: 1213: 1197: 1195: 1192: 1191: 1190: 1185: 1180: 1175: 1168: 1165: 1146: 1142: 1138: 1133: 1129: 1106: 1102: 1079: 1075: 1063: 1062: 1050: 1042: 1038: 1034: 1031: 1026: 1022: 1016: 1013: 1010: 1006: 999: 996: 990: 985: 981: 953: 950: 945: 941: 928: 927:Symmetry issue 925: 924: 923: 912: 904: 900: 896: 893: 884: 871: 867: 852: 847: 843: 839: 834: 829: 825: 813: 810: 785: 781: 754: 750: 725: 722: 719: 708: 707: 695: 689: 684: 680: 676: 671: 667: 663: 660: 657: 654: 649: 645: 639: 636: 633: 629: 622: 619: 613: 608: 604: 578: 574: 558: 557: 546: 540: 535: 531: 527: 522: 518: 514: 508: 505: 499: 494: 490: 480: 474: 469: 465: 461: 456: 452: 448: 442: 439: 433: 428: 424: 409: 408: 393: 389: 385: 382: 377: 373: 369: 364: 360: 356: 353: 345: 342: 336: 331: 327: 301: 297: 283:) and maximum 270: 266: 241: 238: 235: 213: 209: 182: 178: 166: 165: 150: 146: 142: 137: 133: 129: 124: 119: 115: 111: 106: 102: 86: 83: 40:rock mechanics 24: 14: 13: 10: 9: 6: 4: 3: 2: 1354: 1343: 1340: 1339: 1337: 1328: 1325: 1324: 1320: 1312: 1305: 1302: 1297: 1293: 1286: 1279: 1276: 1271: 1264: 1257: 1255: 1251: 1246: 1239: 1236: 1231: 1224: 1222: 1220: 1218: 1214: 1209: 1202: 1199: 1193: 1189: 1188:Mohr's circle 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1170: 1166: 1164: 1162: 1144: 1140: 1136: 1131: 1127: 1104: 1100: 1077: 1073: 1048: 1040: 1036: 1032: 1029: 1024: 1020: 1014: 1011: 1008: 1004: 997: 994: 988: 983: 979: 971: 970: 969: 967: 951: 948: 943: 939: 926: 910: 902: 898: 894: 891: 882: 869: 865: 850: 845: 841: 837: 832: 827: 823: 811: 808: 801: 800: 799: 783: 779: 770: 752: 748: 739: 723: 720: 717: 693: 682: 678: 674: 669: 665: 661: 655: 652: 647: 643: 637: 634: 631: 627: 620: 617: 611: 606: 602: 594: 593: 592: 576: 572: 563: 544: 533: 529: 525: 520: 516: 506: 503: 497: 492: 488: 478: 467: 463: 459: 454: 450: 440: 437: 431: 426: 422: 414: 413: 412: 391: 387: 383: 375: 371: 367: 362: 358: 351: 343: 340: 334: 329: 325: 317: 316: 315: 299: 295: 286: 268: 264: 255: 254:normal stress 239: 236: 233: 211: 207: 198: 180: 176: 148: 144: 140: 135: 131: 127: 122: 117: 113: 109: 104: 100: 92: 91: 90: 84: 82: 80: 77: 73: 67: 65: 61: 57: 53: 49: 45: 41: 37: 34: 30: 19: 1310: 1304: 1295: 1291: 1278: 1269: 1247:: 1013–1025. 1244: 1238: 1229: 1207: 1201: 1119:axis in the 1064: 930: 709: 559: 410: 285:shear stress 167: 88: 68: 28: 26: 1298:: 267–273. 1194:References 966:pure shear 931:If we set 1141:τ 1137:− 1128:σ 1101:σ 1074:τ 1015:± 1009:− 980:τ 940:σ 838:− 666:σ 638:± 632:− 603:τ 573:τ 530:σ 517:σ 489:σ 464:σ 460:− 451:σ 423:τ 372:τ 368:− 359:σ 326:τ 296:τ 265:σ 208:σ 177:σ 132:σ 114:σ 101:σ 1336:Category 1272:: 31–38. 1167:See also 591:to get 411:where 66:(GSI). 44:failure 36:surface 908:  889:  886:  880:  767:) and 542:  485:  482:  476:  168:where 79:design 33:stress 1288:(PDF) 1266:(PDF) 798:) by 58:and 48:rock 27:The 46:of 1338:: 1294:. 1290:. 1268:. 1253:^ 1216:^ 1163:. 656:16 314:) 199:, 81:. 1296:1 1145:m 1132:m 1105:m 1078:m 1049:] 1041:2 1037:B 1033:4 1030:+ 1025:2 1021:A 1012:A 1005:[ 998:8 995:1 989:= 984:m 952:0 949:= 944:m 911:. 903:0 899:C 895:= 892:B 883:; 870:0 866:T 851:2 846:0 842:T 833:2 828:0 824:C 812:= 809:A 784:0 780:T 771:( 753:0 749:C 740:( 724:B 721:, 718:A 694:] 688:) 683:2 679:B 675:+ 670:m 662:A 659:( 653:+ 648:2 644:A 635:A 628:[ 621:8 618:1 612:= 607:m 577:m 545:. 539:) 534:3 526:+ 521:1 513:( 507:2 504:1 498:= 493:m 479:; 473:) 468:3 455:1 447:( 441:2 438:1 432:= 427:m 392:2 388:B 384:+ 381:) 376:m 363:m 355:( 352:A 344:2 341:1 335:= 330:m 300:m 287:( 269:m 256:( 240:B 237:, 234:A 212:3 181:1 149:2 145:B 141:+ 136:3 128:A 123:+ 118:3 110:= 105:1 20:)

Index

Hoek-Brown failure criterion
stress
surface
rock mechanics
failure
rock
underground excavations
slope stability
surface excavation
geological strength index
rock mass rating
mining engineering
design
principal stress
normal stress
shear stress
Mohr–Coulomb failure criterion
unconfined compressive
tensile strengths
pure shear
numerical simulations
Failure theory (material)
Mohr–Coulomb theory
Tresca criterion
Mohr's circle




Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.