Knowledge

Hopkins–Levitzki theorem

Source 📝

293: 562: 535: 504: 414: 387: 324: 473: 445: 352: 166:. The analogous statement for left Artinian rings holds as well. This is not true in general for Artinian modules, because there are 720: 679: 745: 29: 359: 33: 585: 667: 231: 632: 577: 37: 611: 144: 117: 65: 41: 716: 675: 606: 417: 109: 221: 210: 148: 89: 17: 540: 513: 482: 392: 365: 302: 120:" are equivalent. Without the semiprimary condition, the only true implication is that if 601: 167: 163: 113: 77: 450: 422: 329: 725: 132: 739: 155: 140: 131:
The theorem takes its current form from a paper by Charles Hopkins and a paper by
21: 708: 159: 584:
is a Grothendieck category with an Artinian generator, then every Artinian
537:
has a finite composition series. Stacking the composition series from the
576:
Several generalizations and extensions of the theorem exist. One concerns
93: 730:
On rings which satisfy the minimum condition for the right-hand ideals
135:, both in 1939. For this reason it is often cited as the 668:"A Seventy Years Jubilee: The Hopkins-Levitzki Theorem" 181:
is left Artinian if and only if it is left Noetherian.
162:
of the theorem is: a right Artinian ring is also right
543: 516: 485: 453: 425: 395: 368: 332: 305: 234: 168:
examples of Artinian modules which are not Noetherian
556: 529: 498: 467: 439: 408: 381: 346: 318: 287: 732:, Compositio Mathematica, v. 7, pp. 214–222. 564:end to end, we obtain a composition series for 8: 703:Rings with minimal condition for left ideals 548: 542: 521: 515: 490: 484: 475:is a semisimple ring. Furthermore, since 457: 452: 429: 424: 400: 394: 373: 367: 336: 331: 310: 304: 276: 267: 252: 239: 233: 479:is nilpotent, only finitely many of the 189:Here is the proof of the following: Let 696:Basic Algebra: Groups, Rings and Fields 623: 205:is either Artinian or Noetherian, then 713:A first course in noncommutative rings 705:, Ann. of Math. (2) 40, pages 712–730. 633:"Teilerkettensatz und Vielfachensatz" 288:{\displaystyle F_{i}=J^{i-1}M/J^{i}M} 108:-module, the three module conditions 7: 653: 173:Another direct corollary is that if 510:is Artinian (or Noetherian), then 14: 128:is both Noetherian and Artinian. 213:of this is true over any ring.) 26:Akizuki–Hopkins–Levitzki theorem 209:has a composition series. (The 143:is sometimes included since he 124:has a composition series, then 151:a few years earlier, in 1935. 1: 154:Since it is known that right 715:, Springer-Verlag. page 55 762: 637:Proc. Phys.-Math. Soc. Jpn 572:In Grothendieck categories 193:be a semiprimary ring and 158:are semiprimary, a direct 100:is a semiprimary ring and 30:descending chain condition 326:may then be viewed as an 34:ascending chain condition 177:is right Artinian, then 137:Hopkins–Levitzki theorem 48:(with 1) is called 746:Theorems in ring theory 701:Charles Hopkins (1939) 631:Akizuki, Yasuo (1935). 578:Grothendieck categories 672:Ring and Module Theory 670:. In Toma Albu (ed.). 558: 531: 500: 469: 441: 410: 383: 348: 320: 289: 559: 557:{\displaystyle F_{i}} 532: 530:{\displaystyle F_{i}} 501: 499:{\displaystyle F_{i}} 470: 442: 411: 409:{\displaystyle F_{i}} 384: 382:{\displaystyle F_{i}} 349: 321: 319:{\displaystyle F_{i}} 290: 541: 514: 483: 451: 423: 393: 366: 358:is contained in the 330: 303: 232: 694:Cohn, P.M. (2003), 468:{\displaystyle R/J} 440:{\displaystyle R/J} 347:{\displaystyle R/J} 666:Toma Albu (2010). 612:Composition series 554: 527: 496: 465: 437: 406: 379: 344: 316: 285: 118:composition series 607:Noetherian module 447:-module, because 149:commutative rings 40:over semiprimary 753: 698: 686: 685: 663: 657: 651: 645: 644: 628: 563: 561: 560: 555: 553: 552: 536: 534: 533: 528: 526: 525: 506:are nonzero. If 505: 503: 502: 497: 495: 494: 474: 472: 471: 466: 461: 446: 444: 443: 438: 433: 415: 413: 412: 407: 405: 404: 388: 386: 385: 380: 378: 377: 354:-module because 353: 351: 350: 345: 340: 325: 323: 322: 317: 315: 314: 294: 292: 291: 286: 281: 280: 271: 263: 262: 244: 243: 90:Jacobson radical 20:, in particular 18:abstract algebra 761: 760: 756: 755: 754: 752: 751: 750: 736: 735: 693: 690: 689: 682: 665: 664: 660: 656:, Theorem 5.3.9 652: 648: 630: 629: 625: 620: 602:Artinian module 598: 592:is Noetherian. 574: 544: 539: 538: 517: 512: 511: 486: 481: 480: 449: 448: 421: 420: 396: 391: 390: 369: 364: 363: 328: 327: 306: 301: 300: 272: 248: 235: 230: 229: 187: 185:Sketch of proof 147:the result for 96:states that if 78:nilpotent ideal 12: 11: 5: 759: 757: 749: 748: 738: 737: 734: 733: 726:Jakob Levitzki 723: 706: 699: 688: 687: 680: 658: 646: 622: 621: 619: 616: 615: 614: 609: 604: 597: 594: 573: 570: 551: 547: 524: 520: 493: 489: 464: 460: 456: 436: 432: 428: 403: 399: 376: 372: 343: 339: 335: 313: 309: 284: 279: 275: 270: 266: 261: 258: 255: 251: 247: 242: 238: 186: 183: 156:Artinian rings 133:Jacob Levitzki 88:) denotes the 13: 10: 9: 6: 4: 3: 2: 758: 747: 744: 743: 741: 731: 727: 724: 722: 721:0-387-95183-0 718: 714: 710: 707: 704: 700: 697: 692: 691: 683: 681:9783034600071 677: 673: 669: 662: 659: 655: 650: 647: 642: 638: 634: 627: 624: 617: 613: 610: 608: 605: 603: 600: 599: 595: 593: 591: 587: 583: 579: 571: 569: 567: 549: 545: 522: 518: 509: 491: 487: 478: 462: 458: 454: 434: 430: 426: 419: 401: 397: 374: 370: 361: 357: 341: 337: 333: 311: 307: 298: 282: 277: 273: 268: 264: 259: 256: 253: 249: 245: 240: 236: 227: 223: 219: 214: 212: 208: 204: 200: 196: 192: 184: 182: 180: 176: 171: 169: 165: 161: 157: 152: 150: 146: 142: 141:Yasuo Akizuki 138: 134: 129: 127: 123: 119: 115: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 31: 28:connects the 27: 23: 19: 729: 712: 702: 695: 674:. Springer. 671: 661: 649: 640: 636: 626: 589: 581: 575: 565: 507: 476: 355: 296: 225: 217: 215: 206: 202: 201:-module. If 198: 194: 190: 188: 178: 174: 172: 153: 136: 130: 125: 121: 105: 101: 97: 85: 81: 73: 69: 61: 57: 53: 49: 45: 25: 15: 360:annihilator 139:. However 116:and "has a 50:semiprimary 22:ring theory 643:: 337–345. 618:References 418:semisimple 164:Noetherian 110:Noetherian 66:semisimple 44:. A ring 709:T. Y. Lam 654:Cohn 2003 257:− 160:corollary 740:Category 596:See also 299:-module 211:converse 114:Artinian 80:, where 728:(1939) 711:(2001) 389:. Each 222:radical 220:be the 197:a left 94:theorem 92:. The 76:) is a 38:modules 719:  678:  586:object 295:. The 228:. Set 145:proved 104:is an 24:, the 580:: if 416:is a 170:. 64:) is 42:rings 717:ISBN 676:ISBN 216:Let 68:and 32:and 588:in 362:of 224:of 52:if 36:in 16:In 742:: 641:17 639:. 635:. 568:. 112:, 684:. 590:G 582:G 566:M 550:i 546:F 523:i 519:F 508:M 492:i 488:F 477:J 463:J 459:/ 455:R 435:J 431:/ 427:R 402:i 398:F 375:i 371:F 356:J 342:J 338:/ 334:R 312:i 308:F 297:R 283:M 278:i 274:J 269:/ 265:M 260:1 254:i 250:J 246:= 241:i 237:F 226:R 218:J 207:M 203:M 199:R 195:M 191:R 179:R 175:R 126:M 122:M 106:R 102:M 98:R 86:R 84:( 82:J 74:R 72:( 70:J 62:R 60:( 58:J 56:/ 54:R 46:R

Index

abstract algebra
ring theory
descending chain condition
ascending chain condition
modules
rings
semisimple
nilpotent ideal
Jacobson radical
theorem
Noetherian
Artinian
composition series
Jacob Levitzki
Yasuo Akizuki
proved
commutative rings
Artinian rings
corollary
Noetherian
examples of Artinian modules which are not Noetherian
converse
radical
annihilator
semisimple
Grothendieck categories
object
Artinian module
Noetherian module
Composition series

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.